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Abstract. This research presents an AI-based tool (ExTree) that provides high explainability in 

prediction problems that involve multiple continuous inputs. The algorithm uses an input cou-

pling tree that gradually reduces the dimension of the system. The desired dimension reduction 

is achieved developing a network of fuzzy inference systems (FIS) wherein in each layer of the 

network, two inputs get combined to yield a single outcome. These outcomes are then submit-

ted to the same procedure at the following layer until we arrive at a single output, thereby re-

ducing the dimensionality of the problem in every step. Hence, large scale problems with more 

inputs require more layers. The final outcome is that we obtain a set of FIS nodes across the 

network, where each FIS may be characterized using an explainable control surface. The struc-

ture of the tree is optimized using a genetic algorithm that gets the best hierarchy of fuzzy fea-

tures to minimize the dispersion of the final outcome. This tool has been benchmarked using 

NASA’s wind tunnel testing database of NACA 0012 Airfoils. The results, demonstrating 

accurate validation, are of value not only from the perspective of a high performing AI-based 

algorithm, but also because of the substantial amount of interpretability and traceability that the 

algorithm offers. 

Keywords: ExTree, Input Coupling Tree, Genetic Algorithm, Fuzzy Feature 

Mapping, Dispersion, Airfoils, Dimensionality Reduction, Explainability. 

1 Introduction 

The complexity of the data increases every day, requiring more features to character-

ize properly a meaningful problem. The curse of dimensionality makes it difficult, 

and sometimes impossible, to visualize the data. Therefore, the algorithms that make 

use of this information should provide more clarity. In other words, AI has the task of 

shedding light on the problem, providing traceability for every prediction made. 

However, this is currently not the case. Instead of doing so, the tools obscure the 

process, jeopardizing the understanding from the human perspective. It has even 

reached a point where the term “black box” is used to define the functions that predict 

the results. The vast majority of the algorithms that are being used lack explainability. 

In the aerospace sector, as in many others, a wise decision (as understood by the 

machine) is not enough for humans. It is also necessary to justify the reasoning that 

leads to that prediction ([1]). 
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Neural Networks can be easily fooled ([2]), thus the outcomes of such an opaque 

reasoning require an update. Explainable Artificial Intelligence, XAI as identified by 

DARPA ([3]), seeks to find this clarification ([4],[5]). 

The tool presented in this research seeks primarily explainability in the predic-

tions of multidimensional problems. The proposed algorithm couples features in a tree 

fashion. The input features are grouped in pairs based on the dispersion they demon-

strate in the target feature. The result of each coupling is a fuzzy output that ranges 

from 0 to 1. Therefore, it could be understood as a mapping of two features into a 

non-physical fuzzy feature that still contains the information of both its inputs. To 

optimize the structure of the tree, a Genetic Algorithm (GA) is used, which aims to 

minimize the dispersion of the fuzzy outputs obtained from each pair. 

The tree is composed of layers. In each layer, the size of the problem can be re-

duced by half. In the last layer, all the information is contained in a single fuzzy fea-

ture. Therefore, the system is translated into a two-dimensional problem (the fuzzy 

variable produced in the last layer and the values of the target feature). The infor-

mation of the mapping is recorded inside the tree in the form of control surfaces or 

matrices. These control surfaces relate the two input features to the fuzzy output fea-

ture produced, thus creating an Explainable Tree (“ExTree”) with accessible visual 

data. The term “ExTree” will be used to refer to the whole explainable structure of 

couplings. 

The software developed offers the possibility of filtering the data in case there is 

a high presence of noise. For this, the dispersion of each individual is compared in 

relation to the dispersion shown by the average in the last layer of the tree as this con-

tains all the information of the original features in a single variable. 

This tool has been tested and validated with one of the NASA databases. Particu-

larly, the self-noise results of an anechoic wind tunnel testing of several NACA 0012 

airfoil blade sections ([6]) provided by the UCI Machine Learning Repository ([7]). 

The results obtained have demonstrated that the algorithm not only has a high ex-

plainability in the decision making, but also accuracy in the prediction of values. 

2 NASA Airfoil Self-Noise Data Set 

This data set was obtained from a series of aerodynamic and acoustic tests carried out 

by NASA of two and three-dimensional airfoil blade sections conducted in an anecho-

ic wind tunnel. The experiments were conducted in an anechoic wind tunnel with the 

observer’s position and the span of the airfoil being constant through the whole test-

ing.  

The data acquired was multivariable, formed by 1503 instances, with no missing 

values, and six continuous real features. The five input features are frequency (meas-

ured in [Hz]), angle of attack (measured in [ ° ] ) , chord length (measured in [m]), 

wind tunnel’s free-stream velocity  (measured in [m/s]) and suction side displacement 

thickness (measured in [m]). The only target feature is noise measured with the scaled 

sound pressure level ([dB]). 
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Other authors ([8],[9]) have already studied this data set in depth using Regres-

sion tools, Random Forests, Neural Networks, Boosting or Bagging ([10],[11]). 

3 Objectives of the research 

The first objective is dimensionality reduction, showing the ability of this tool to 

gather all the information of a multidimensional problem in a visual bidimensional 

plot.  

The second objective is explainability, creating a structure of control surfaces that 

map the fuzzy features together (two to one) in a tree shape, the ExTree. Furthermore, 

the tool has an expanding property, which fills any missing combination of features 

with inferred values. 

The final objective is validation, proving the aforementioned objectives using the 

NASA Airfoil Self-Noise Data Set while still getting high efficiency in the prediction. 

4 Methodology  

4.1 Dimensionality Reduction, Structure of the Tree 

For the dimensionality reduction, the input features {𝑋1, 𝑋2, … , 𝑋𝑛} will be grouped in 

pairs. From every pair, a fuzzy outcome feature will be created {𝐴1, 𝐴2, … , 𝐴𝑛/2} (if n 

is even, if n is odd then there will be (𝑛 + 1)/2 fuzzy features). A control surface, 

𝐶𝑆𝜅, will relate both input features, 𝑋𝑖 and  𝑋𝑖+1, to the fuzzy feature, 𝐴𝑗.  This control 

surface will depend on both the dispersion of the variables (𝐷𝜅), 

𝐷𝜅 = 𝑓(𝑋𝑖 , 𝑋𝑖+1) (1) 

and the values of the target feature (𝑌),  

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑖 , 𝑋𝑖+1, … , 𝑋𝑛) (2) 

such that 

𝐶𝑆𝜅 = 𝑓(𝐷𝜅 , 𝑌) (3) 

When two new values of the two features that define 𝐷𝜅  are considered, 𝑋′𝑖 and  

𝑋′𝑖+1, the resulting fuzzy feature, 𝐴′𝑗 , can be extracted mapping 𝑋′
𝑖 and  𝑋′

𝑖+1 in 𝐶𝑆𝜅 , 

𝐴′𝑗 = 𝐶𝑆𝜅(𝑋′𝑖 , 𝑋′𝑖+1) (4) 

In such a way that the data can be understood as dependent on the new fuzzy fea-

tures 

𝑌 = 𝑓(𝐴1, 𝐴2, … , 𝐴𝑛/2) (5) 

 

instead of using the original features (2). Thus, obtaining a reduction of dimensionali-

ty. 

 The process is then repeated considering {𝐴1, 𝐴2, … , 𝐴𝑛/2} as the new input features; 

a new set of fuzzy features {𝐵1, 𝐵2, … , 𝐵𝑛/4} is obtained (again, if n/2 is even).  
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Eventually, iterations will lead to a single output fuzzy feature, 𝑍1 . This last fea-

ture will thus contain the information of all the inputs {𝑋1, 𝑋2, … , 𝑋𝑛} and the disper-

sion of each coupling. Therefore, the multidimensional data could then be represented 

in two dimensions as, 

𝑌 = 𝑓(𝑍1) 
(6) 

For the case of the NASA Airfoil Self-Noise Data Set, the ExTree is as described 

in Fig. 1. 

 

 
 

Fig. 1. ExTree structure for 5 input features, NASA Airfoil Self-Noise Data Set. 

 

4.2 Fine Tuning, Genetic Algorithm 

A GA will be used to select accordingly the couples. Other authors ([12]) have al-

ready used GAs for camber control morphing of airfoils depending on the external 

conditions. 

But in this case, the chromosomes will refer to the order of the features in the Ex-

Tree algorithm. Each gene will contain the position of the feature to which it is refer-

ring. Therefore, it could be understood as a similar optimization to the travelling 

salesman problem ([13]). However, the fitness function in this case will reward those 

chromosomes that lead to a structure of Dispersion matrices with low values, an Ex-

Tree with low randomness.  

  

4.3 Expansion, filling unknown entries 

The control surface that arises from the combination of two features, 𝐶𝑆𝜅, is a matrix. 

However, the individuals of the data set might not cover all the entries of this matrix. 

Thus, once the known individuals are incorporated in the calculation of 𝐶𝑆𝜅, an infer-

ence process begins. Here, the main purpose is to obtain a matrix with all entries 

filled. The algorithm for the inference of those unknown combinations uses an inter-

polation of the surrounding known information.  

𝑋1
𝐷 (𝑋1,𝑋2)

𝐶𝑆 (𝐷 , 𝑌)
𝑋2

𝑋 
𝐷 (𝑋 , 𝑋4)

𝐶𝑆 (𝐷 , 𝑌)
𝑋4

𝐷 (𝐴1,𝐴2)

𝐶𝑆 (𝐷 , 𝑌)

𝐴1

𝐴2

𝑋 𝐴 

𝐵1

𝐵2

𝐷 (𝐵1,𝐵2)

𝐶𝑆 (𝐷 ,𝑌)
𝑍1
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5 Results 

5.1 Genetic Algorithm 

For the optimization problem, 60 generations of chromosomes were considered with a 

population of 20 individuals. The probability of crossover and mutation were set to 

0.8 [-] and 0.1 [-] respectively. Additionally, elitism was considered with a ratio of 0.9 

[-]. The fittest chromosome of the last population after running the GA is the order for 

which the minimum dispersion in the results. The result obtained was the following: 

𝑋1 suction side displacement thickness, 𝑋2 frequency, 𝑋  angle of attack, 𝑋4 free-

stream velocity and 𝑋  chord length. Additionally, other parameters were optimized, 

such as weights for the ponderations used in the inference. 

 

5.2 Control Surfaces 

The structure of control surfaces created by the algorithm for the case studied is 

shown below. For each of the four couplings, a set of six plots are represented. The 

first two plots of every coupling (Fig. 2 for coupling 1) are scattered representations 

of all the individuals of the data set. The green data points refer to the real data. The 

blue, purple and pink data points refer to the amount of real data points that are con-

tained within each cell of the three-dimensional space. The lighter the color and the 

bigger in size, the more concentrated that cell of the workspace. For the plots all the 

features have been normalized. 

After finding the fuzzy feature 𝐴𝑗,  of each couple (𝑋𝑖,  and 𝑋𝑖+1,), the results are 

presented in a two-dimensional matrix. For the case of the coupling 1, the first matrix 

shown in Fig. 3 represents the preliminary version of the control surface. It has some 

black areas, for which there is no known information. The yellow color  represents the 

highest value of the 𝐶𝑆 , whereas the dark blue has the lowest values. Higher values 

of 𝐶𝑆  imply higher dispersion on the values of Y. The algorithm is then able to ex-

pand the information to those NaN (Not a Number) areas of the matrix for which 

there is no prior information (second matrix of Fig. 3). This will be very helpful when 

a certain new value of a feature is encountered for which there is no similar test in the 

data set. Finally, the matrix is interpolated to have a continuous solution of the 𝐶𝑆  

(third matrix of Fig. 3).  

After substituting for the different values of the data set in 𝐶𝑆 , the output fuzzy 

feature 𝐴1 can be obtained (Fig. 4). In this figure, the red line provides the separation 

of the data according to the dispersion ranges of each set. Thus, the most useful part is 

contained within the first interval, and those data points that refer to higher random-

ness are constrained in the second. The algorithm allows the possibility of modifying 

the number of intervals and their limits depending on the user’s commands. 

The process is then repeated for all the different layers; the results can be seen be-

low for each of the remaining three couplings of the system. 
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Fig. 2. Original data set plotted using X1 and X2 as independent features and Y as dependent 

feature. 

 

Fig. 3. Inference process to obtain the control Surface CS𝛼 for the original data set. 

Fig. 4. Plotting of the fuzzy output variable A1 against Y. 
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Fig. 5. Original data set plotted using X3 and X4 as independent features and Y as dependent 

feature. 

 

Fig. 6. Inference process to obtain the control Surface CS𝛽 for the original data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Plotting of the fuzzy output variable A2 against Y. 
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Fig. 8. Original data set plotted using A1 and A2 as independent features and Y as dependent 

feature. 

 

Fig. 9. Inference process to obtain the control Surface CS𝛾  for the original data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Plotting of the fuzzy output variable B1 against Y. 
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Fig. 11. Original data set plotted using B1 and B4 as independent features and Y as dependent 

feature. 

 

Fig. 12. Inference process to obtain the control Surface CS𝛿  for the original data set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Plotting of the fuzzy output variable Z1 against Y. 
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5.3 Predicted Values 

The data was divided in 80 [%]  training and 20 [%] testing. Fig. 14 shows the differ-

ence in the results between predicted and real values. The average RMSE obtained 

after normalization of the data is 0.0838 (using cross validation). The computational 

time required for the training to obtain such result was less than 1 minute in a com-

mon computer of 8GB CPU. 

 

Fig. 14. Predicted in Black vs Real in Blue. 
 

This solution has been obtained for a certain size of the workspace cells of each 

coupling; however, it can be improved by properly refining the lattice. 

It provides a better prognosis than the Regression, and Trees techniques, while its 

computational cost is better. In addition, it allows extrapolating the information for 

unknown cases with high uncertainty (as previously mentioned for the process of 

matrix extension), proving accurate results. But above all, it reduces the dimensionali-

ty of the problem increasing significantly the transparency of the algorithm. 

6 Conclusion 

The tool proposed in this study, ExTree, allows the visualization of the data for any n-

dimensional problem. Therefore, contributes significantly in the explainability of data 

prediction. The algorithm uses multiple inferencing systems in every layer, producing 

a tree shape structure with intermediate plots that provide transparency and clarity in 

the decision making. For the optimization problem, a GA correctly obtains the most 

effective combination of features for the coupling process, minimizing the dispersion 

in the output fuzzy features of the tree. The preliminary results obtained proved that 

this methodology can still obtain accurate solutions while avoiding the use of any 

“black box”.  
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