θ EasyChair Preprint № 6339

Marking Solvable Variables

Murat Sinan Aygün

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Marking Solvable Variables

Murat Sinan Aygün ${ }^{1}$
email sinan_aygun@yahoo.com

Abstract

The places of solvable variables are marked by a special function symbol. After they are substituted, a transformation is applied to make the result independent of it for generality.

Keywords: Logic • Lambda calculus • Recursive specifications • The most general substitution • Non-determinism

1 Introduction

Automated theorem proving [1, 2] began after the discovery of unification. The key point is the inference mechanism. A logical statement L_{2} can be deduced from another logical statement L_{1}, in other words, L_{2} is a consequence of L_{1}, if every truth value which makes L_{1} correct also makes L_{2} correct.

For example, $(Q \wedge R)$ can be deduced from $\left(P_{1} \wedge Q\right)$ and $\left(P_{1} \Rightarrow R\right)$. For the first statement to be true, P_{1} and Q should be true. R should also be true since P_{1} is true. Because Q and R are true, the second statement should be true. That means, the second statement can be deduced from the first or is a consequence of the first.

When logical statements contain variables, unification is used in the inference mechanism. For example, if the atom statements Q, R, P_{1} and P_{2} contain variables, unification is also involved. $(\mathrm{Q} \wedge \mathrm{R})$ can be deduced from $\left(\mathrm{P}_{1} \wedge \mathrm{Q}\right)$ and $\left(\mathrm{P}_{2} \Rightarrow \mathrm{R}\right)$ only when $\omega\left(\mathrm{P}_{1}\right)=\omega\left(\mathrm{P}_{2}\right)$.

Logic programming languages such as prolog [3] use the resolution principle as an inference engine.

$$
\begin{equation*}
(P(x) \vee Q(x)) \wedge(\neg P(a) \vee R(y)) \Rightarrow Q(a) \vee R(y) \tag{1}
\end{equation*}
$$

On the other hand, based on λ-term, which acts like a function, λ calculus [4] is another computation mechanism and plays an important role in proof systems. For example, λ-terms embedded in proof system enhance computations [5].

Similarly, recursively defined equivalence relation \approx, which is used to check whether two terms are equivalent to each other, enhances computations. However, its trivial definition which works fine for terms that do not contain variables leads to non-determinism for terms that contain variables.

Definition 1. The recursive relation \approx is defined as follows

1. $a \approx b$
2. $b \approx a$
3. $a \approx a$
4. $b \approx b$
5. if $f(x) \approx f(y) x \approx y$
6. if $g\left(x_{1}, x_{2}\right) \approx g\left(x_{3}, x_{4}\right) x_{1} \approx x_{3}$ and $x_{2} \approx x_{4}$

Example 1. The rules of Definition 1 are applied to (2)

$$
\begin{equation*}
g(g(a, b), f(b)) \approx g(g(b, a), f(a)) \tag{2}
\end{equation*}
$$

$-\mathrm{g}(\mathrm{g}(\mathrm{a}, \mathrm{b}), \mathrm{f}(\mathrm{b})) \approx \mathrm{g}(\mathrm{g}(\mathrm{b}, \mathrm{a}), \mathrm{f}(\mathrm{a}))$ (using rule 6)
$-g(a, b) \approx g(b, a)$ and $f(b) \approx f(a)$ (using rules 5 and 6)
$-\mathrm{a} \approx \mathrm{b}$ and $\mathrm{b} \approx \mathrm{a}$ and $\mathrm{b} \approx \mathrm{a}$
Example 2. Some terms may be variables as in (3)

$$
\begin{equation*}
g(x, f(b)) \approx g(f(y), f(a)) \tag{3}
\end{equation*}
$$

$-\mathrm{g}(\mathrm{x}, \mathrm{f}(\mathrm{b})) \approx \mathrm{g}(\mathrm{f}(\mathrm{y}), \mathrm{f}(\mathrm{a}))$ (using rule 6)
$-x \approx f(y)$ and $f(b) \approx f(a)$ (using rule 5)
$-\mathrm{x} \approx \mathrm{f}(\mathrm{y})$ and $\mathrm{b} \approx \mathrm{a}$ (using rule 2)
$-\mathrm{x} \approx \mathrm{f}(\mathrm{y})$ (if x is substituted by $\mathrm{f}\left(\mathrm{x}_{1}\right)$, then by using rule 5)
$-x_{1} \approx y$ (if x_{1} is substituted by $f\left(x_{2}\right)$ and y is substituted by $f\left(y_{1}\right)$, then by using rule 5)
$-\mathrm{x}_{2} \approx \mathrm{y}_{1}$
$\mathrm{x}_{2} \approx \mathrm{y}_{1}$ in Example 2 leads to an infinite branch. The aim here is to find a substitution ω for s and t terms such that $\omega(\mathrm{s}) \approx \omega(\mathrm{t})$ holds. Although the rules in Definition 1 can be used for this purpose, they lead to infinite branches as in Example 2. The question here is how the relation \approx can be changed to produce a general substitution by eliminating unnecessary ones.

2 The Redefinition Of The Relation \approx

2.1 Preliminaries

In the following, the prior knowledge this paper needs is given. In particular, terms, λ-terms, logical terms, substitution, signature are defined.
Definition 2. τ is used for base types and other types are built from τ by using the symbol \rightarrow such as $\tau \rightarrow \tau, \tau \rightarrow \tau \rightarrow \tau, \ldots, \tau \rightarrow \tau \rightarrow \ldots \rightarrow \tau$. The capital letters $A_{1}, A_{2}, A_{3}, .$. are used to represent an unknown type in type expressions and can be $\tau, \tau \rightarrow \tau, \tau \rightarrow \tau \rightarrow \tau, \ldots, \tau \rightarrow \tau \rightarrow \ldots \rightarrow \tau$. The symbol o is used as the type of logical arguments. τ and o are used as base types, the first is used for terms, the second for logical proposition, in other words, true and false statements. On the other hand, A_{1}, A_{2}, \ldots are variables in type expressions to denote something whose value is unknown and will be set during the computations. They can take any value from the infinite set $\{\tau, \tau \rightarrow \tau, \tau \rightarrow \tau \rightarrow \tau, \ldots, \tau \rightarrow \tau \rightarrow \ldots \rightarrow \tau, .$.$\} .$

In order to prevent any ambiguity, the type expression $\mathrm{k}_{1} \rightarrow \mathrm{k}_{2} \rightarrow \mathrm{k}_{3}$ can be interpreted as $\mathrm{k}_{1} \rightarrow\left(\mathrm{k}_{2} \rightarrow \mathrm{k}_{3}\right)$.

Definition 3. Terms are defined as follows. The constants a and b are of the type τ. The function f is of the type $\tau \rightarrow \tau$ and g is of the type $\tau \rightarrow \tau \rightarrow \tau$. Logical terms are defined as follows. The propositions p, q, r are of the type $\tau \rightarrow$ o and called atomic logical terms. The logical operators conjunction, disjunction and implication, which are of the type $o \rightarrow o \rightarrow o$, are respectively represented by the symbols \wedge, \vee and \Rightarrow. The operators \wedge, \vee and \Rightarrow are used in infix notation. p or q is represented as $p \vee q, p$ and q as $p \wedge q$ and p implies q as $p \Rightarrow q$.

Definition 4. If m is a term of the type $k_{1} \rightarrow k_{2}$ and n is a term of the type k_{1}, then $m n$ is a term of the type k_{2}.

Example 3. Assume that the variables x and y are of the type $\tau . \mathrm{g}(\mathrm{x}, \mathrm{b}), \mathrm{f}(\mathrm{f}(\mathrm{y}))$, $\mathrm{f}(\mathrm{f}(\mathrm{b}))$ are valid terms of the type τ whereas $\mathrm{p}(\mathrm{g}(\mathrm{x}, \mathrm{y})), \mathrm{q}(\mathrm{f}(\mathrm{f}(\mathrm{b}))), \mathrm{p}(\mathrm{g}(\mathrm{x}, \mathrm{y})) \wedge$ $\mathrm{q}(\mathrm{f}(\mathrm{y})), \mathrm{p}(\mathrm{g}(\mathrm{x}, \mathrm{y})) \vee \mathrm{q}(\mathrm{f}(\mathrm{y})), \mathrm{p}(\mathrm{g}(\mathrm{x}, \mathrm{y})) \Rightarrow \mathrm{q}(\mathrm{f}(\mathrm{y}))$ are valid logical terms of the type o.

In the following, the symbols $\mathrm{x}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{y}, \mathrm{y}_{1}, \mathrm{v}, \mathrm{v}_{1}$ represent variables, t , $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$ terms, $\mathrm{k}_{1}, \mathrm{k}_{2}$ types and $\omega, \omega_{1}, \omega_{2}$ substitutions.

Definition 5. The function symbol ν is of the type $A \rightarrow \tau$ and is used to mark the places of solvable variables.

Definition 6. Substituting a variable x_{1} by a term t_{1} is represented by $x_{1} \rightarrow$ t_{1}. Substitution is a mapping from variables to terms and can be denoted by $\left\{x_{1}\right.$ $\left.\rightarrow t_{1}, x_{2} \rightarrow t_{2}, x_{3} \rightarrow t_{3}, \ldots\right\}$. Substitution is called renaming if $t_{1}, t_{2}, t_{3}, \ldots$ are all variables. Applying substitution ω to an expression e, meaning replacing the variables of e with the terms in the range of ω if they are in the domain of ω, can be denoted by $\omega(e) . \omega_{1}\left(\omega_{2}\right)$ is the resulting substitution after applying ω_{1} to each term in the range of ω_{2}.

Example 4.

$$
\begin{equation*}
\left\{x_{1} \rightarrow f(a), y_{1} \rightarrow g\left(x_{2}, x_{3}\right)\right\}\left(p\left(x_{1}\right) \vee q\left(y_{1}\right)\right)=p(f(a)) \vee q\left(g\left(x_{2}, x_{3}\right)\right) \tag{4}
\end{equation*}
$$

Example 5. Assume that r_{1} and r_{2} are unary relations.

$$
\begin{equation*}
\left\{x_{1} \rightarrow f(a), y_{1} \rightarrow g\left(b, x_{3}\right)\right\}\left(r_{1}\left(x_{1}\right) \text { and } r_{2}\left(y_{1}\right)\right)=r_{1}(f(a)) \text { and } r_{2}\left(g\left(b, x_{3}\right)\right) \tag{5}
\end{equation*}
$$

Definition 7. Substitution φ is more general than substitution ω if there is a substitution ϕ such that $\omega=\phi(\varphi)$.

Example 6.

$$
\begin{equation*}
\left\{x_{2} \rightarrow g\left(x_{3}, x_{4}\right)\right\}\left\{x_{1} \rightarrow f\left(x_{2}\right)\right\}=\left\{x_{1} \rightarrow f\left(g\left(x_{3}, x_{4}\right)\right)\right\} \tag{6}
\end{equation*}
$$

$\left\{\mathrm{x}_{1} \rightarrow \mathrm{f}\left(\mathrm{x}_{2}\right)\right\}$ is more general than $\left\{\mathrm{x}_{1} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{x}_{3}\right)\right)\right\}$.

Definition 8. A term t is linear if each variable of t is different.
Definition 9. Abstraction and application operations are defined as follows. If s is a term of k_{2} and x is of k_{1}, λx.s is a term of $k_{1} \rightarrow k_{2}$ and used to denote functions. On the other hand, application operation, which is used to evaluate functions, is denoted by

$$
\begin{equation*}
\left(\lambda x . t_{1}\right) t_{2}=\left\{x \rightarrow t_{2}\right\} t_{1} \tag{7}
\end{equation*}
$$

If $\left(\lambda x . t_{1}\right)$ is a term of $k_{1} \rightarrow k_{2}$ and t_{2} is a term of $k_{1},\left\{x \rightarrow t_{2}\right\} t_{1}$ is a term of k_{2}.
$\left(\lambda \mathrm{x}_{1} \cdot \lambda \mathrm{x}_{2} \cdot \mathrm{t}_{1}\right) \mathrm{t}_{2} \mathrm{t}_{3}$ can be interpreted as $\left(\left(\left(\lambda \mathrm{x}_{1} \cdot \lambda \mathrm{x}_{2} \cdot \mathrm{t}_{1}\right) \mathrm{t}_{2}\right) \mathrm{t}_{3}\right)$.
Example 7. Assume that x, y are variables of the type $\tau . \lambda \mathrm{x} . \mathrm{f}(\mathrm{x}), \lambda \mathrm{x} . \lambda \mathrm{y} \cdot \mathrm{g}(\mathrm{x}, \mathrm{y})$ are lambda terms of the types $\tau \rightarrow \tau, \tau \rightarrow \tau \rightarrow \tau$ respectively.

Definition 10. Signature, denoted by Σ, is a set of constants and function symbols.

Variables can only be substituted by the elements of Σ.
Example 8. By Definition 3 and 5,

$$
\begin{equation*}
\Sigma=\{a, b, f, g, p, q, r, \wedge, \vee, \Rightarrow, \nu\} \tag{8}
\end{equation*}
$$

The term $g(x, y)$ can be $g(x, b)$ if $\{y \rightarrow b\}$ is applied or $g(d, y)$ if $\{x \rightarrow d\}$ is applied, but $g(d, y)$ is not a valid term since $\{x \rightarrow d\}$ is not a valid substitution (d is not an element of Σ).

2.2 The Redefinition Of The Relation \approx And The Transformations

For the desired computations, the relation structure will be extended.
Definition 11. A goal statement is either a substitution or a relation, which is called an atomic goal statement. If A_{1}, A_{2}, A_{3} are goal statements,

- A_{1} and A_{2}
- if A_{1} else A_{2}
- if A_{1} else A_{2} else A_{3}
$-\lambda x . A_{1}$
are also goal statements. If B_{1} is a relation and B_{2} is a goal statement,
- B_{1}
- if $B_{1} B_{2}$
are relation statements.

Definition 12. The goal statements are used as follows.

$$
\begin{gather*}
\text { if } A_{1} \text { else } A_{2} \text { else } A_{3} \tag{9}\\
\text { if } A_{1} \text { else } A_{2} \tag{10}\\
A_{1} \text { and } A_{2} \tag{11}\\
\lambda x \cdot A_{1} \tag{12}
\end{gather*}
$$

The expression 9 is used to denote the following. If A_{1} is satisfied, do not consider A_{2} and A_{3}. If A_{1} fails, consider A_{2}. If A_{2} is satisfied, do not consider A_{3}. If A_{2} fails, consider A_{3}. Similarly, for 10, consider A_{2} only if A_{1} fails, if A_{1} is satisfied, do not consider A_{2}. On the other hand, for 11, consider both A_{1} and A_{2}. For the expression 12, consider $\left\{x \rightarrow c_{1}\right\} A_{1}$ where c_{1} is a new constant of the type τ.

The first is called ELSE 3 rule, the second ELSE 2, the third AND and the fourth ABSTRACTION, shortly ABS.

Example 9. Given the relation \asymp

1. $\mathrm{a} \asymp \mathrm{b}$
2. $\mathrm{b} \asymp \mathrm{a}$
3. $a \asymp a$
4. $\mathrm{b} \asymp \mathrm{b}$
5. if $\nu(\mathrm{x}) \asymp \nu(\mathrm{y})\{\mathrm{y} \rightarrow \mathrm{x}\}$
6. if $x \asymp y \lambda c_{1} \cdot\left(\left(\mathrm{xc}_{1}\right) \asymp\left(\mathrm{y} \mathrm{c}_{1}\right)\right)$
7. if $f(x) \asymp f(y) x \asymp y$
8. if $\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \asymp \mathrm{g}\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right) \mathrm{x}_{1} \asymp \mathrm{x}_{3}$ and $\mathrm{x}_{2} \asymp \mathrm{x}_{4}$

Consider the expression 13

$$
\begin{equation*}
\lambda c_{1} \cdot g\left(\nu\left(c_{1}\right), b\right) \asymp \lambda c_{1} \cdot g\left(\nu\left(c_{1}\right), a\right) \tag{13}
\end{equation*}
$$

where both $\lambda \mathrm{c}_{1} \cdot \mathrm{~g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{b}\right), \lambda \mathrm{c}_{1} \cdot \mathrm{~g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{a}\right)$ are of the type $\tau \rightarrow \tau$.
$-\lambda \mathrm{c}_{1} \cdot \mathrm{~g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{b}\right) \asymp \lambda \mathrm{c}_{1} \cdot \mathrm{~g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{a}\right)$ where $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \wedge, \vee, \Rightarrow, \nu\}$ (using rule 6 and $\mathbf{A B S}$)
$-\mathrm{g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{b}\right) \asymp \mathrm{g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{a}\right)$ where $\Sigma=\left\{\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \wedge, \vee, \Rightarrow, \nu, \mathrm{c}_{1}\right\}$ (using rule 8)
$-\nu\left(\mathrm{c}_{1}\right) \asymp \nu\left(\mathrm{c}_{1}\right)$ and $\mathrm{b} \asymp$ a (using rule 2)
$-\nu\left(\mathrm{c}_{1}\right) \asymp \nu\left(\mathrm{c}_{1}\right)$ and true (using rule 5)

- true and true

Similarly,
$-\lambda \mathrm{c}_{1} \cdot \mathrm{~g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{b}\right) \asymp \mathrm{x}$ where $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \wedge, \vee, \Rightarrow, \nu\}$ (using rule 6 and ABS)
$-\mathrm{g}\left(\nu\left(\mathrm{c}_{1}\right), \mathrm{b}\right) \asymp\left(\mathrm{x} \mathrm{c}_{1}\right)$ where $\Sigma=\left\{\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \wedge, \vee, \Rightarrow, \nu, \mathrm{c}_{1}\right\}$ (if x is substituted by $\lambda c_{1} \cdot \mathrm{~g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and using rule 8$)$
$-\nu\left(\mathrm{c}_{1}\right) \asymp \mathrm{x}_{1}$ and $\mathrm{b} \asymp \mathrm{x}_{2}$ (if x_{1} is substituted by $\nu\left(\mathrm{x}_{3}\right)$ and x_{2} is substituted by b)
$-\nu\left(\mathrm{c}_{1}\right) \asymp \nu\left(\mathrm{x}_{3}\right)$ and $\mathrm{b} \asymp \mathrm{b}$ (using rule 5 and 4$)$

- $\left\{\mathrm{x}_{3} \rightarrow \mathrm{c}_{1}\right\}$ and true

The following is given because the rules of \approx are applied to terms in well defined form.

Definition 13. A well defined form is either the constants a, b or $\nu(x)$, which are called atomic well defined forms. If t_{1} and t_{2} are well defined forms, then $f\left(t_{1}\right), p\left(t_{1}\right), q\left(t_{1}\right), r\left(t_{1}\right), g\left(t_{1}, t_{2}\right),\left(t_{1} \wedge t_{2}\right),\left(t_{1} \vee t_{2}\right)$ and $\left(t_{1} \Rightarrow t_{2}\right)$ are also called well defined forms.

Example 10. The terms $\mathrm{g}(\nu(\mathrm{x}), \mathrm{f}(\mathrm{b})), \mathrm{g}(\mathrm{f}(\nu(\mathrm{y})), \mathrm{f}(\mathrm{a}))$ are well defined forms whereas the terms $\mathrm{g}(\nu(\mathrm{f}(\mathrm{b})), \mathrm{f}(\mathrm{b})), \mathrm{g}(\mathrm{f}(\nu(\mathrm{y})), \mathrm{x})$ are not well defined forms.

The function ν is treated differently from constants or other functions. The following definition is given to denote a unary relation that holds for constants or functions other than ν.

Definition 14. The one-place relation μ holds for the terms a, b, $f\left(t_{1}\right), g\left(t_{1}, t_{2}\right)$ whereas it does not hold for $\nu(x)$.

Example 11. $\mu \mathrm{f}(\mathrm{a}), \mu \mathrm{f}(\nu(\mathrm{x})), \mu \mathrm{a}, \mu \mathrm{g}\left(\mathrm{a}, \nu\left(\mathrm{x}_{2}\right)\right)$ return true whereas $\mu \nu\left(\mathrm{x}_{2}\right)$ returns false.

Example 12. The rules in \approx (see Supplementary Material) are applied to the well defined forms in 14 as follows.

$$
\begin{equation*}
g(\nu(x), f(b)) \approx g(f(\nu(y)), f(a)) \tag{14}
\end{equation*}
$$

$-\mathrm{g}(\nu(\mathrm{x}), \mathrm{f}(\mathrm{b})) \approx \mathrm{g}(\mathrm{f}(\nu(\mathrm{y})), \mathrm{f}(\mathrm{a}))$ where $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \wedge, \vee, \Rightarrow, \nu\}$ (using rule 9)
$-\nu(\mathrm{x}) \approx \mathrm{f}(\nu(\mathrm{y}))$ and $\mathrm{f}(\mathrm{b}) \approx \mathrm{f}(\mathrm{a})$ (using rule 8)
$-\nu(\mathrm{x}) \approx \mathrm{f}(\nu(\mathrm{y}))$ and $\mathrm{b} \approx \mathrm{a}$ (using rule 2)
$-\nu(\mathrm{x}) \approx \mathrm{f}(\nu(\mathrm{y}))$ and true (using rule 6)
$-\mu \mathrm{f}(\nu(\mathrm{y}))$ and $\{\mathrm{x} \rightarrow \mathrm{f}(\nu(\mathrm{y}))\}$ and true

- true and $\{\mathrm{x} \rightarrow \mathrm{f}(\nu(\mathrm{y}))\}$ and true
$\nu(\mathrm{x}) \approx \mathrm{f}(\nu(\mathrm{y}))$ in Example 12 leads to one solution only. The type of x is unknown before the substitution. After the substitution, its type becomes τ. When the rules of \approx are applied, the variable x in $\nu(\mathrm{x})$ should not be substituted before in order to make things clear. This necessitates the specific forms. Given $\mathrm{s} \approx \mathrm{t}$, s and t should be linear and the variables of s should be different from those of t.

Additionally, when $\mathrm{s} \approx \mathrm{t}$ succeeds, the condition that any term should be a well defined form is not guaranteed. The condition is satisfied after a transformation step, which is called normalization.

Definition 15. Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables of a term t_{1}. Also assume that y_{1}, y_{2}, \ldots, y_{n} are new variables and $\omega=\left\{x_{1} \rightarrow y_{1}, x_{2} \rightarrow y_{2}, \ldots, x_{n} \rightarrow y_{n}\right\}$. Let t_{2} be the resulting term after removing all ν functions not marking a variable from $t_{1} . \omega\left(t_{2}\right)$ is called the normalization of the term t_{1}.

Example 13. The expression 15 is the normalization of the expression 16 where $\omega=\left\{\mathrm{x}_{1} \rightarrow \mathrm{y}_{1}, \mathrm{x}_{2} \rightarrow \mathrm{y}_{2}\right\}$

$$
\begin{equation*}
p\left(g\left(f\left(\nu\left(y_{1}\right)\right), g\left(\nu\left(y_{2}\right), \nu\left(y_{1}\right)\right)\right)\right) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
p\left(g\left(\nu\left(f\left(\nu\left(x_{1}\right)\right)\right), g\left(\nu\left(x_{2}\right), \nu\left(x_{1}\right)\right)\right)\right) \tag{16}
\end{equation*}
$$

If A_{1}, A_{2}, A_{3}, and A_{4} are linear atomic terms and the variables of A_{1} and A_{2} are different from those of A_{3} and A_{4}, the following logical transformations can be specified:

$$
\begin{align*}
& A_{1} \wedge A_{2} \text { and } A_{3} \Rightarrow A_{4} \text { leads to } A_{1} \approx A_{3} \text { and } A_{2} \wedge A_{4} \tag{17}\\
& A_{1} \vee A_{2} \text { and } A_{3} \Rightarrow A_{4} \text { leads to } A_{1} \approx A_{3} \text { and } A_{2} \vee A_{4} \tag{18}
\end{align*}
$$

Normalization is applied to the logical terms $\mathrm{A}_{2} \wedge \mathrm{~A}_{4}$ and $\mathrm{A}_{2} \vee \mathrm{~A}_{4}$
The normalization of a term is carried out in three steps. The first step is called abstraction.

Definition 16. Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables of a term $t_{1} . \lambda c_{1} \cdot \lambda c_{2} \ldots \lambda c_{n} \cdot t_{2}$ is called the abstraction form of t_{1}, if the expression 19 holds

$$
\begin{equation*}
t_{1}=\left(\lambda c_{1} \cdot \lambda c_{2} \ldots \lambda c_{n} . t_{2}\right) x_{1} x_{2} \ldots x_{n} \tag{19}
\end{equation*}
$$

In the definition above, ordering in the list $\lambda c_{1} \cdot \lambda c_{2} \ldots . \lambda c_{n}$ is not important.
Example 14. The expression 20 is the abstraction form of the expression 21 where x_{1} and x_{2} are respectively represented by y_{1} and y_{2} in the abstraction form.

$$
\begin{gather*}
\lambda y_{1} \cdot \lambda y_{2} \cdot p\left(g\left(\nu\left(f\left(\nu\left(y_{1}\right)\right)\right), g\left(\nu\left(y_{2}\right), b\right)\right)\right) \wedge q\left(\nu\left(f\left(\nu\left(y_{1}\right)\right)\right)\right) \tag{20}\\
p\left(g\left(\nu\left(f\left(\nu\left(x_{1}\right)\right)\right), g\left(\nu\left(x_{2}\right), b\right)\right)\right) \wedge q\left(\nu\left(f\left(\nu\left(x_{1}\right)\right)\right)\right) \tag{21}
\end{gather*}
$$

The second step is called elimination.
Definition 17. Let t_{1} be the abstraction form of a term such that each variable in t_{1} is bound by an abstraction. t_{2} is called the elimination form of t_{1} if t_{2} is the resulting term after all ν functions in t_{1} are eliminated.

Example 15. The expression 22 is the elimination form of the expression 23.

$$
\begin{align*}
\lambda y_{1} \cdot \lambda y_{2} \cdot p\left(g\left(f\left(y_{1}\right), g\left(y_{2}, b\right)\right)\right) & \wedge q\left(f\left(y_{1}\right)\right) \tag{22}\\
\lambda y_{1} \cdot \lambda y_{2} \cdot p\left(g\left(\nu\left(f\left(\nu\left(y_{1}\right)\right)\right), g\left(\nu\left(y_{2}\right), b\right)\right)\right) & \wedge q\left(\nu\left(f\left(\nu\left(y_{1}\right)\right)\right)\right) \tag{23}
\end{align*}
$$

The third step is called marking.

Definition 18. Let $\lambda c_{1} \cdot \lambda c_{2} \ldots \lambda c_{n} . t_{1}$ be the elimination form of a term such that each variable in t_{1} is bound by an abstraction and t_{1} does not contain $\nu . t_{2}$ is called the marking form of $\lambda c_{1} \cdot \lambda c_{1} \ldots \lambda c_{n} . t_{1}$ if the expression 24 holds

$$
\begin{equation*}
t_{2}=\left(\lambda c_{1} \cdot \lambda c_{2} \ldots \lambda c_{n} \cdot t_{1}\right) \nu\left(y_{1}\right) \nu\left(y_{2}\right) \ldots \nu\left(y_{n}\right) \tag{24}
\end{equation*}
$$

Example 16. The expression 25 is the marking form of the expression 26.

$$
\begin{align*}
& p\left(g\left(f\left(\nu\left(v_{1}\right)\right), g\left(\nu\left(v_{2}\right), b\right)\right)\right) \wedge q\left(f\left(\nu\left(v_{1}\right)\right)\right) \tag{25}\\
& \lambda y_{1} \cdot \lambda y_{2} \cdot p\left(g\left(f\left(y_{1}\right), g\left(y_{2}, b\right)\right)\right) \wedge q\left(f\left(y_{1}\right)\right) \tag{26}
\end{align*}
$$

Abstraction form is computed by $\rightarrow_{A}, \rightarrow_{B}, \rightarrow_{C}$ transformations. Elimination form is computed by \rightarrow_{D} transformation. Marking form is computed by \rightarrow_{E} transformation. (see Supplementary Material).

3 Verification

Definition 19. The equivalence relation \equiv is defined for the type τ as follows. 27, 28, 29, 30, 31 hold.

$$
\begin{align*}
a & \equiv a \tag{27}\\
b & \equiv b \tag{28}\\
a & \equiv b \tag{29}\\
b & \equiv a \tag{30}\\
x & \equiv x \tag{31}
\end{align*}
$$

If $t_{1} \equiv t_{2}$ holds for t_{1}, t_{2} which are of the type τ, 32 holds.

$$
\begin{equation*}
f\left(t_{1}\right) \equiv f\left(t_{2}\right) \tag{32}
\end{equation*}
$$

If $t_{1} \equiv t_{3}$ and $t_{2} \equiv t_{4}$ hold for $t_{1}, t_{2}, t_{3}, t_{4}$ which are the type $\tau, 33$ holds.

$$
\begin{equation*}
g\left(t_{1}, t_{2}\right) \equiv g\left(t_{3}, t_{4}\right) \tag{33}
\end{equation*}
$$

The relation can also be defined for the type o. If $t_{1} \equiv t_{2}$ holds for the terms t_{1}, t_{2} which are of the type τ, then 34, 35, 36 hold.

$$
\begin{align*}
p\left(t_{1}\right) & \equiv p\left(t_{2}\right) \tag{34}\\
q\left(t_{1}\right) & \equiv q\left(t_{2}\right) \tag{35}\\
r\left(t_{1}\right) & \equiv r\left(t_{2}\right) \tag{36}
\end{align*}
$$

If $t_{1} \equiv t_{3}$ and $t_{2} \equiv t_{4}$ hold for the logical terms $t_{1}, t_{2}, t_{3}, t_{4}$, then 37 and 38 hold.

$$
\begin{align*}
& \left(t_{1} \wedge t_{2}\right) \equiv\left(t_{3} \wedge t_{4}\right) \tag{37}\\
& \left(t_{1} \vee t_{2}\right) \equiv\left(t_{3} \vee t_{4}\right) \tag{38}
\end{align*}
$$

Example 17. 39, 40, 41, 42, 43, 44 hold.

$$
\begin{align*}
g(f(x), f(b)) & \equiv g(f(x), f(a)) \tag{39}\\
g(f(x), y) & \equiv g(f(x), y) \tag{40}\\
g(g(f(x), y), a) & \equiv g(g(f(x), y), b) \tag{41}\\
p(f(a)) & \equiv p(f(b)) \tag{42}\\
q(g(f(y), a)) & \equiv q(g(f(y), b)) \tag{43}\\
(p(g(x, f(a))) \wedge q(g(y, f(x)))) & \equiv(p(g(x, f(b))) \wedge q(g(y, f(x)))) \tag{44}
\end{align*}
$$

Definition 20. Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables of a term t not containing ν. Let $y_{1}, y_{2}, \ldots, y_{n}$ be new variables and assume that the equation 45 holds.

$$
\begin{equation*}
\omega=\left\{x_{1} \rightarrow \nu\left(y_{1}\right), x_{2} \rightarrow \nu\left(y_{2}\right), \ldots, x_{n} \rightarrow \nu\left(y_{n}\right)\right\} \tag{45}
\end{equation*}
$$

Then, $\omega(t)$ is called the well defined form of the term t.
Example 18. 47 is the well defined form of 48 where the equation 46 holds.

$$
\begin{gather*}
\omega=\left\{x_{1} \rightarrow \nu\left(x_{2}\right), y_{1} \rightarrow \nu\left(y_{2}\right)\right\} \tag{46}\\
\left(p\left(g\left(\nu\left(x_{2}\right), f(b)\right)\right) \vee q\left(g\left(\nu\left(y_{2}\right), f\left(\nu\left(x_{2}\right)\right)\right)\right)\right) \tag{47}\\
\left(p\left(g\left(x_{1}, f(b)\right)\right) \vee q\left(g\left(y_{1}, f\left(x_{1}\right)\right)\right)\right) \tag{48}
\end{gather*}
$$

Lemma 1. Let t_{1}, t_{2} be linear terms not containing ν, \wedge, \vee and \Rightarrow. Assume that the variables of t_{1} are different from the variables of t_{2} and s_{1}, s_{2} are the well defined forms of t_{1}, t_{2} respectively. Similarly assume that the variables of s_{1} are different from the variables of s_{2}. Then the statement 49 holds

$$
\begin{equation*}
\phi\left(t_{1}\right) \equiv \phi\left(t_{2}\right) \text { if and only if } s_{1} \approx s_{2} \tag{49}
\end{equation*}
$$

Lemma 2. Let t_{1}, t_{2} be linear terms not containing $\nu, \wedge, \vee, \Rightarrow$ and x_{1}, x_{2}, \ldots, x_{n} be variables of t_{1}, t_{2}. Assume that the variables of t_{1} are different from the variables of t_{2}. Given ω in 50, let $s_{1}=\omega\left(t_{1}\right)$ and $s_{2}=\omega\left(t_{2}\right)$ hold.

$$
\begin{equation*}
\omega=\left\{x_{1} \rightarrow \nu\left(y_{1}\right), x_{2} \rightarrow \nu\left(y_{2}\right), \ldots, x_{n} \rightarrow \nu\left(y_{n}\right)\right\} \tag{50}
\end{equation*}
$$

If $s_{1} \approx s_{2}$ holds and ω_{1} is the resulting substitution and a substitution ω_{2} is formed using 51 and 52 where $1 \leq j \leq n, 1 \leq i \leq n$, u is a term other than a variable, then ω_{2} is the most general substitution that satisfies 53

$$
\begin{gather*}
x_{j} \rightarrow x_{i} \in \omega_{2} \text { if and only if } y_{j} \rightarrow y_{i} \in \omega_{1} \tag{51}\\
x_{j} \rightarrow u \in \omega_{2} \text { if and only if } y_{j} \rightarrow \omega(u) \in \omega_{1} \tag{52}\\
\omega_{2}\left(t_{1}\right) \equiv \omega_{2}\left(t_{2}\right) \tag{53}
\end{gather*}
$$

Lemma 3. Given a term t_{1} such that all the variables of t_{1} are marked by the function ν and there is no bound variable in $t_{1}, \rightarrow_{A} t_{1} x$ holds once and terminates. The resulting substitution is $\left\{x \rightarrow t_{2}\right\}$ where t_{2} is the abstraction form of t_{1}.

Lemma 4. Given a term t_{1} such that each variable of t_{1} is bound by an abstraction, $\rightarrow_{D} t_{1} x$ holds once and terminates. The resulting substitution is $\left\{x \rightarrow t_{2}\right\}$ where t_{2} is the elimination form of t_{1}.

Lemma 5. Given a term t_{1} such that each variable of t_{1} is bound by an abstraction and t_{1} does not contain $\nu, \rightarrow_{E} t_{1} x$ holds once and terminates. The resulting substitution is $\left\{x \rightarrow t_{2}\right\}$ where t_{2} is the marking form of t_{1}.

Definition 21. Given a term t_{1} such that all the variables of t_{1} are marked by the function ν and there is no bound variable in t_{1}, the three transformations $\rightarrow_{A} t_{1} x_{1}$ and $\rightarrow_{D} x_{1} x_{2}$ and $\rightarrow_{E} x_{2} x_{3}$ is briefly denoted by $\rightarrow_{N} t_{1} x_{3}$.

Logical transformations are applied to the special logical forms.
Definition 22. Let P_{1}, P_{2}, Q, R be linear and atomic logical terms not containing ν. Assume that the variables of P_{1} and Q are different from those of P_{2} and $R . \omega$ is a most general substitution. The expressions 54 and 55 are used to show the same transformation. The notation in 55 is preferred since it is more compact form.

$$
\begin{gather*}
\left(P_{1} \wedge Q\right) \text { and }\left(P_{2} \Rightarrow R\right) \text { implies }\left(\omega\left(P_{1}\right) \equiv \omega\left(P_{2}\right)\right) \text { and } \omega(R) \wedge \omega(Q) \tag{54}\\
\left(P_{1} \wedge Q\right) \models_{P_{2} \Rightarrow R}(\omega(R) \wedge \omega(Q)) \tag{55}
\end{gather*}
$$

The same formulation can be done by using well defined forms. Let $P_{1}{ }^{w}, P_{2}{ }^{w}$, Q^{w}, R^{w} be well defined forms of linear and atomic logical terms not containing ν. Assume that the variables of $P_{1}{ }^{w}$ and Q^{w} are different from those of $P_{2}{ }^{w}$ and R^{w}. The expression 57 is the compact form of 56 .

$$
\begin{gather*}
\left(P_{1}^{w} \wedge Q^{w}\right) \text { and }\left(P_{2}^{w} \Rightarrow R^{w}\right) \text { implies }\left(P_{1}^{w} \approx P_{2}^{w}\right) \text { and }\left(\rightarrow_{N}\left(R^{w} \wedge Q^{w}\right)\left(R_{1}^{w} \wedge Q_{1}^{w}\right)\right) \tag{57}\\
\left(P_{1}^{w} \wedge Q^{w}\right) \neq_{P_{2}^{w} \Rightarrow R^{w}}\left(R_{1}^{w} \wedge Q_{1}^{w}\right) \tag{56}
\end{gather*}
$$

Similarly, 59 and 61 are the compact forms of 58 and 60 respectively.

$$
\begin{gather*}
\left(P_{1} \vee Q\right) \text { and }\left(P_{2} \Rightarrow R\right) \text { implies }\left(\omega\left(P_{1}\right) \equiv \omega\left(P_{2}\right)\right) \text { and } \omega(R) \vee \omega(Q) \tag{58}\\
\left(P_{1} \vee Q\right) \models_{P_{2} \Rightarrow R}(\omega(R) \vee \omega(Q)) \tag{59}\\
\left(P_{1}^{w} \vee Q^{w}\right) \text { and }\left(P_{2}^{w} \Rightarrow R^{w}\right) \text { implies }\left(P_{1}^{w} \approx P_{2}^{w}\right) \text { and }\left(\rightarrow_{N}\left(R^{w} \vee Q^{w}\right)\left(R_{1}^{w} \vee Q_{1}^{w}\right)\right) \tag{61}
\end{gather*}
$$

$$
\begin{equation*}
\left(P_{1}^{w} \vee Q^{w}\right) \neq_{P_{2}^{w} \Rightarrow R^{w}}\left(R_{1}^{w} \vee Q_{1}^{w}\right) \tag{60}
\end{equation*}
$$

The logical transformations have the following property.

Theorem 1. Let P_{1} be a logical term not containing ν. Also assume that there is a logical term P_{2} such that $P_{1} \equiv P_{2}$ holds and Q_{1} is the well defined form of P_{2}. Then, the statement 62 holds where R^{w} is the well defined form of R.

$$
\begin{equation*}
P_{1} \models_{R} P_{3} \text { if and only if } Q_{1} \models_{R^{w}} Q_{2} \tag{62}
\end{equation*}
$$

 P_{4} such that $P_{3} \equiv P_{4}$ holds and Q_{2} is the well defined form of P_{4}.

Lemma 6. The logical transformations \models_{R} produce linear atomic logical terms.
The expression 63 leads to the expression 64.

$$
\begin{gather*}
p(f(\nu(x))) \wedge q(f(\nu(x))) \text { and } p(\nu(z)) \Rightarrow r(\nu(z)) \tag{63}\\
p(f(\nu(x))) \approx p(\nu(z)) \text { and } \rightarrow_{N}(q(f(\nu(x))) \wedge r(\nu(z))) U \tag{64}
\end{gather*}
$$

In the following examples, the proofs of the statements in 64 are given
Example 19.

$$
\begin{align*}
& p(f(\nu(x))) \approx p(\nu(z)) \tag{65}\\
& f(\nu(x)) \approx \nu(z) \tag{66}\\
& \mu f(\nu(x)) \text { and }\{z \rightarrow f(\nu(x))\} \tag{67}\\
& \text { true and }\{z \rightarrow f(\nu(x))\} \tag{68}
\end{align*}
$$

Example 20.

$$
\begin{gather*}
\rightarrow_{B}(q(f(\nu(x))) \wedge r(\nu(f(\nu(x))))) c\left(U_{1} c\right) \tag{69}\\
\rightarrow_{B} q(f(\nu(x))) c U_{2} \text { and } \rightarrow_{B} r(\nu(f(\nu(x)))) c U_{3} \tag{70}\\
\left\{U_{1} \rightarrow \lambda c .\left(U_{2} \wedge U_{3}\right)\right\} \tag{71}\\
\rightarrow_{B} f(\nu(x)) c U_{4} \text { and } \rightarrow_{B} r(\nu(f(\nu(x)))) c U_{3} \tag{72}\\
\left\{U_{1} \rightarrow \lambda c .\left(U_{2} \wedge U_{3}\right), U_{2} \rightarrow q\left(U_{4}\right)\right\} \tag{73}\\
\rightarrow_{B} \nu(x) c U_{5} \text { and } \rightarrow_{B} r(\nu(f(\nu(x)))) c U_{3} \tag{74}\\
\left\{U_{1} \rightarrow \lambda c .\left(U_{2} \wedge U_{3}\right), U_{2} \rightarrow_{q} q\left(U_{4}\right), U_{4} \rightarrow f\left(U_{5}\right)\right\} \tag{75}\\
\rightarrow_{B} \nu(x) c \nu\left(U_{6}\right) \text { and } \rightarrow_{B} r(\nu(f(\nu(x)))) c U_{3} \tag{76}\\
\left\{U_{1} \rightarrow \lambda c .\left(U_{2} \wedge U_{3}\right), U_{2} \rightarrow q\left(U_{4}\right), U_{4} \rightarrow f\left(U_{5}\right), U_{5} \rightarrow \nu\left(U_{6}\right)\right\} \tag{77}\\
\rightarrow_{B} r(\nu(f(\nu(x)))) c U_{3} \tag{78}\\
\left\{U_{1} \rightarrow \lambda c .\left(U_{2} \wedge U_{3}\right), U_{2} \rightarrow q\left(U_{4}\right), U_{4} \rightarrow f\left(U_{5}\right), U_{5} \rightarrow \nu\left(U_{6}\right), U_{6} \rightarrow(x c)\right\} \tag{79}\\
\rightarrow_{B} r(\nu(f(\nu(x)))) c U_{3} \tag{80}\\
\left\{U_{1} \rightarrow \lambda c .\left(q(f(\nu(x c))) \wedge U_{3}\right)\right\} \tag{81}\\
\rightarrow_{B} \nu(f(\nu(x))) c U_{7} \tag{82}\\
\left\{U_{1} \rightarrow \lambda c .\left(q(f(\nu(x c))) \wedge U_{3}\right), U_{3} \rightarrow r\left(U_{7}\right)\right\} \tag{83}
\end{gather*}
$$

$$
\begin{gather*}
\rightarrow_{B} \nu(f(\nu(x))) c \nu\left(U_{8}\right) \tag{84}\\
\left\{U_{1} \rightarrow \lambda c \cdot\left(q(f(\nu(x c))) \wedge U_{3}\right), U_{3} \rightarrow r\left(U_{7}\right), U_{7} \rightarrow \nu\left(U_{8}\right)\right\} \tag{85}\\
\rightarrow_{B} f(\nu(x)) c U_{8} \tag{86}\\
\left\{U_{1} \rightarrow \lambda c \cdot\left(q(f(\nu(x c))) \wedge U_{3}\right), U_{3} \rightarrow r\left(U_{7}\right), U_{7} \rightarrow \nu\left(U_{8}\right)\right\} \tag{87}\\
\rightarrow_{B} \nu(x) c U_{9} \tag{88}\\
\left\{U_{1} \rightarrow \lambda c .\left(q(f(\nu(x c))) \wedge U_{3}\right), U_{3} \rightarrow r\left(U_{7}\right), U_{7} \rightarrow \nu\left(U_{8}\right), U_{8} \rightarrow f\left(U_{9}\right)\right\} \tag{89}\\
\rightarrow_{B} \nu(x) c \nu\left(U_{10}\right) \tag{90}\\
\left\{U_{1} \rightarrow \lambda c .\left(q(f(\nu(x c))) \wedge U_{3}\right), U_{3} \rightarrow r\left(U_{7}\right), U_{7} \rightarrow \nu\left(U_{8}\right), U_{8} \rightarrow f\left(U_{9}\right), U_{9} \rightarrow \nu\left(U_{10}\right)\right\} \tag{91}\\
t r u e \tag{92}
\end{gather*}
$$

Example 21.

$$
\begin{gather*}
\rightarrow_{C}(q(f(\nu(x c))) \wedge r(\nu(f(\nu(x c))))) c \tag{94}\\
\rightarrow_{C} q(f(\nu(x c))) c \tag{95}\\
\rightarrow_{C} f(\nu(x c)) c \tag{96}\\
\rightarrow_{C} \nu(x c) c \tag{97}\\
\text { true } \tag{98}\\
\{x \rightarrow \lambda c . c\} \tag{99}
\end{gather*}
$$

Example 22.

$$
\begin{equation*}
\rightarrow_{A}(q(f(\nu(x))) \wedge r(\nu(f(\nu(x))))) Y \tag{100}
\end{equation*}
$$

$$
\begin{gather*}
\rightarrow_{B}(q(f(\nu(x))) \wedge r(\nu(f(\nu(x))))) c\left(Y_{1} c\right) \text { and } \rightarrow_{C}\left(Y_{1} c\right) c \text { and } \tag{101}\\
\rightarrow_{A}\left(Y_{1} c\right)(Y c) \tag{102}
\end{gather*}
$$

Example 23.

$$
\begin{align*}
& \rightarrow_{D} \lambda c .(q(f(\nu(c))) \wedge r(\nu(f(\nu(c))))) U \tag{114}\\
& \rightarrow_{D}(q(f(\nu(c))) \wedge r(\nu(f(\nu(c)))))(U c) \tag{115}\\
& \rightarrow_{D} q(f(\nu(c))) U_{1} \text { and } \rightarrow_{D} r(\nu(f(\nu(c)))) U_{2} \tag{116}\\
& \left\{U \rightarrow \lambda c .\left(U_{1} \wedge U_{2}\right)\right\} \tag{117}\\
& \rightarrow_{D} f(\nu(c)) U_{3} \text { and } \rightarrow_{D} r(\nu(f(\nu(c)))) U_{2} \tag{118}\\
& \left\{U \rightarrow \lambda c .\left(U_{1} \wedge U_{2}\right), U_{1} \rightarrow q\left(U_{3}\right)\right\} \tag{119}\\
& \rightarrow_{D} \nu(c) U_{4} \text { and } \rightarrow_{D} r(\nu(f(\nu(c)))) U_{2} \tag{120}\\
& \left\{U \rightarrow \lambda c .\left(U_{1} \wedge U_{2}\right), U_{1} \rightarrow q\left(U_{3}\right), U_{3} \rightarrow f\left(U_{4}\right)\right\} \tag{121}\\
& \text { true and } \rightarrow_{D} r(\nu(f(\nu(c)))) U_{2} \tag{122}\\
& \left\{U \rightarrow \lambda c .\left(U_{1} \wedge U_{2}\right), U_{1} \rightarrow q\left(U_{3}\right), U_{3} \rightarrow f\left(U_{4}\right), U_{4} \rightarrow c\right\} \tag{123}\\
& \text { true and } \rightarrow_{D} r(\nu(f(\nu(c)))) U_{2} \tag{124}\\
& \left\{U \rightarrow \lambda c .\left(q(f(c)) \wedge U_{2}\right)\right\} \tag{125}\\
& \text { true and } \rightarrow_{D} \nu(f(\nu(c))) U_{5} \tag{126}\\
& \left\{U \rightarrow \lambda c .\left(q(f(c)) \wedge U_{2}\right), U_{2} \rightarrow r\left(U_{5}\right)\right\} \tag{127}\\
& \text { true and } \rightarrow_{D} f(\nu(c)) U_{5} \tag{128}\\
& \left\{U \rightarrow \lambda c .\left(q(f(c)) \wedge U_{2}\right), U_{2} \rightarrow r\left(U_{5}\right)\right\} \tag{129}\\
& \text { true and } \rightarrow_{D} \nu(c) U_{6} \tag{130}\\
& \left\{U \rightarrow \lambda c .\left(q(f(c)) \wedge U_{2}\right), U_{2} \rightarrow r\left(U_{5}\right), U_{5} \rightarrow f\left(U_{6}\right)\right\} \tag{131}\\
& \text { true and true } \tag{132}\\
& \left\{U \rightarrow \lambda c .\left(q(f(c)) \wedge U_{2}\right), U_{2} \rightarrow r\left(U_{5}\right), U_{5} \rightarrow f\left(U_{6}\right), U_{6} \rightarrow c\right\} \tag{133}\\
& \text { true and true } \tag{134}\\
& \{U \rightarrow \lambda c .(q(f(c)) \wedge r(f(c)))\} \tag{135}
\end{align*}
$$

Example 24.

$$
\begin{gather*}
\rightarrow_{E} \lambda c \cdot(q(f(c)) \wedge r(f(c))) U \tag{136}\\
\rightarrow_{E}(q(f(\nu(y))) \wedge r(f(\nu(y)))) U \tag{137}\\
\rightarrow_{E}(q(f(\nu(y))) \wedge r(f(\nu(y))))\left(U_{1} \wedge U_{2}\right) \tag{138}\\
\left\{U \rightarrow\left(U_{1} \wedge U_{2}\right)\right\} \tag{139}\\
\operatorname{true} \tag{140}\\
\left\{U \rightarrow\left(U_{1} \wedge U_{2}\right), U_{1} \rightarrow q(f(\nu(y))), U_{2} \rightarrow r(f(\nu(y)))\right\} \tag{141}\\
\operatorname{true} \tag{142}
\end{gather*}
$$

4 Conclusion

The specification of the relation \approx is trivial for terms not containing variables. When terms contain variables, its trivial formulation leads to non-determinism. This paper addresses this issue. It redefines the relation by using the function ν, which is used to mark the places of variables, to solve this problem. So terms that are used are defined in a special format, which is called well defined forms. But this specific form also brings the two restrictions. First, logical atomic terms should be linear. Second, after substitution, well defined form is not preserved. As a result, this necessitates an extra transformation step, which is called normalization. After normalization, terms are guaranteed to be in a good shape, they are again in well defined form.

Further research in this approach can be done to eliminate the first restriction. One way, variables are marked not in the original term but in its copy form. To mark the variables of an original term using its copy eliminates the linearity restriction. The other way is to change the definition of linearity to include more terms.

5 Supplementary Material

1. $\mathrm{a} \approx \mathrm{b}$
2. $\mathrm{b} \approx \mathrm{a}$
3. $a \approx a$
4. $\mathrm{b} \approx \mathrm{b}$
5. if $\nu(\mathrm{x}) \approx \nu(\mathrm{y})\{\mathrm{y} \rightarrow \mathrm{x}\}$
6. if $\nu(\mathrm{x}) \approx \mathrm{y}(\mu \mathrm{y})$ and $\{\mathrm{x} \rightarrow \mathrm{y}\}$
7. if $\mathrm{y} \approx \nu(\mathrm{x})(\mu \mathrm{y})$ and $\{\mathrm{x} \rightarrow \mathrm{y}\}$
8. if $\mathrm{f}(\mathrm{x}) \approx \mathrm{f}(\mathrm{y}) \mathrm{x} \approx \mathrm{y}$
9. if $\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \approx \mathrm{g}\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right) \mathrm{x}_{1} \approx \mathrm{x}_{3}$ and $\mathrm{x}_{2} \approx \mathrm{x}_{4}$
10. if $p(x) \approx p(y) x \approx y$
11. if $q(x) \approx q(y) x \approx y$
12. if $r(x) \approx r(y) x \approx y$
13. if $\rightarrow_{A} \mathrm{x} \mathrm{y}$ if $\lambda \mathrm{c}_{1} \cdot\left(\rightarrow_{B} \mathrm{x} \mathrm{c}_{1}\left(\mathrm{y}_{1} \mathrm{c}_{1}\right)\right.$ and $\rightarrow_{C}\left(\mathrm{y}_{1} \mathrm{c}_{1}\right) \mathrm{c}_{1}$ and $\left.\rightarrow_{A}\left(\mathrm{y}_{1} \mathrm{c}_{1}\right)\left(\mathrm{y} \mathrm{c}_{1}\right)\right)$ else $\{y \rightarrow x\}$
14. \rightarrow_{B} ava
15. $\rightarrow_{B} \mathrm{bvv}$
16. if $\rightarrow_{B} \nu\left(\mathrm{x}_{1}\right)$ v $\nu\left(\mathrm{x}_{2}\right)$ if $\left\{\mathrm{x}_{2} \rightarrow\left(\mathrm{x}_{1} \mathrm{v}\right)\right\}$ else $\rightarrow_{B} \mathrm{x}_{1}$ v x_{2} else $\left\{\mathrm{x}_{2} \rightarrow \mathrm{x}_{1}\right\}$
17. if $\rightarrow_{B} \mathrm{f}(\mathrm{x}) \vee \mathrm{f}(\mathrm{y}) \rightarrow_{B} \mathrm{x} \vee \mathrm{y}$
18. if $\rightarrow_{B} \mathrm{~g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \vee \mathrm{g}\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right) \rightarrow_{B} \mathrm{x}_{1} \vee \mathrm{x}_{3}$ and $\rightarrow_{B} \mathrm{x}_{2} \vee \mathrm{x}_{4}$
19. if $\rightarrow_{B} \mathrm{p}(\mathrm{x}) \vee \mathrm{p}(\mathrm{y}) \rightarrow_{B} \mathrm{x} v \mathrm{y}$
20. if $\rightarrow_{B} \mathrm{q}(\mathrm{x}) \vee \mathrm{q}(\mathrm{y}) \rightarrow_{B} \mathrm{x} v \mathrm{y}$
21. if $\rightarrow_{B} \mathrm{r}(\mathrm{x}) \mathrm{vr}(\mathrm{y}) \rightarrow_{B} \mathrm{x} v \mathrm{y}$
22. if $\rightarrow_{B}\left(\mathrm{x}_{1} \wedge \mathrm{x}_{2}\right)$ v $\left(\mathrm{x}_{3} \wedge \mathrm{x}_{4}\right) \rightarrow_{B} \mathrm{x}_{1} \vee \mathrm{x}_{3}$ and $\rightarrow_{B} \mathrm{x}_{2} \vee \mathrm{x}_{4}$
23. if $\rightarrow_{B}\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \vee\left(\mathrm{x}_{3} \vee \mathrm{x}_{4}\right) \rightarrow_{B} \mathrm{x}_{1} \vee \mathrm{x}_{3}$ and $\rightarrow_{B} \mathrm{x}_{2} \vee \mathrm{x}_{4}$
24. if $\rightarrow_{C} \nu\left(\mathrm{x}_{1}\right) \mathrm{v}\left(\text { if } \omega\left(\mathrm{x}_{1}\right)=\mathrm{v} \text { else } \rightarrow_{C} \mathrm{x}_{1} \mathrm{v}\right)^{1}$
25. if $\rightarrow_{C} \mathrm{f}(\mathrm{x}) \mathrm{v} \rightarrow_{C} \mathrm{xv}$
26. if $\rightarrow_{C} \mathrm{~g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ v (if $\rightarrow_{C} \mathrm{x}_{1}$ v else $\rightarrow_{C} \mathrm{x}_{2} \mathrm{v}$)
27. if $\rightarrow_{C} \mathrm{p}(\mathrm{x}) \mathrm{v} \rightarrow_{C} \mathrm{x} \mathrm{v}$
28. if $\rightarrow_{C} \mathrm{q}(\mathrm{x}) \mathrm{v} \rightarrow_{C} \mathrm{x} v$
29. if $\rightarrow_{C} \mathrm{r}(\mathrm{x}) \mathrm{v} \rightarrow_{C} \mathrm{x} \mathrm{v}$
30. if $\rightarrow_{C}\left(\mathrm{x}_{1} \wedge \mathrm{x}_{2}\right) \mathrm{v}$ (if $\rightarrow_{C} \mathrm{x}_{1} \mathrm{v}$ else $\rightarrow_{C} \mathrm{x}_{2} \mathrm{v}$)
31. if $\rightarrow_{C}\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) v$ (if $\rightarrow_{C} \mathrm{x}_{1} \mathrm{v}$ else $\rightarrow_{C} \mathrm{x}_{2} \mathrm{v}$)
32. \rightarrow_{D} a a
33. \rightarrow_{D} b b
34. if $\rightarrow_{D} \nu(\mathrm{x}) \mathrm{y}$ if $\rightarrow_{D} \mathrm{x}$ y else $\{\mathrm{y} \rightarrow \mathrm{x}\}$
35. if $\rightarrow_{D} f(x) f(y) \rightarrow_{D} x y$
36. if $\rightarrow_{D} \mathrm{~g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{g}\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right) \rightarrow_{D} \mathrm{x}_{1} \mathrm{x}_{3}$ and $\rightarrow_{D} \mathrm{x}_{2} \mathrm{x}_{4}$
37. if $\rightarrow_{D} \mathrm{p}(\mathrm{x}) \mathrm{p}(\mathrm{y}) \rightarrow_{D} \mathrm{xy}$
38. if $\rightarrow_{D} \mathrm{q}(\mathrm{x}) \mathrm{q}(\mathrm{y}) \rightarrow_{D} \mathrm{x} \mathrm{y}$
39. if $\rightarrow_{D} \mathrm{r}(\mathrm{x}) \mathrm{r}(\mathrm{y}) \rightarrow_{D} \mathrm{x} y$
40. if $\rightarrow_{D}\left(\mathrm{x}_{1} \wedge \mathrm{x}_{2}\right)\left(\mathrm{x}_{3} \wedge \mathrm{x}_{4}\right) \rightarrow_{D} \mathrm{x}_{1} \mathrm{x}_{3}$ and $\rightarrow_{D} \mathrm{x}_{2} \mathrm{x}_{4}$
41. if $\rightarrow_{D}\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right)\left(\mathrm{x}_{3} \vee \mathrm{x}_{4}\right) \rightarrow_{D} \mathrm{x}_{1} \mathrm{x}_{3}$ and $\rightarrow_{D} \mathrm{x}_{2} \mathrm{x}_{4}$
42. if $\rightarrow_{D} \mathrm{x}_{1} \mathrm{x}_{2} \lambda \mathrm{c}_{1} \cdot\left(\rightarrow_{D}\left(\mathrm{x}_{1} \mathrm{c}_{1}\right)\left(\mathrm{x}_{2} \mathrm{c}_{1}\right)\right)$
43. if $\rightarrow_{E} \mathrm{p}\left(\mathrm{x}_{1}\right) \mathrm{p}\left(\mathrm{x}_{2}\right)\left\{\mathrm{x}_{2} \rightarrow \mathrm{x}_{1}\right\}$
44. if $\rightarrow_{E} \mathrm{q}\left(\mathrm{x}_{1}\right) \mathrm{q}\left(\mathrm{x}_{2}\right)\left\{\mathrm{x}_{2} \rightarrow \mathrm{x}_{1}\right\}$
45. if $\rightarrow_{E} \mathrm{r}\left(\mathrm{x}_{1}\right) \mathrm{r}\left(\mathrm{x}_{2}\right)\left\{\mathrm{x}_{2} \rightarrow \mathrm{x}_{1}\right\}$
46. if $\rightarrow_{E}\left(\mathrm{x}_{1} \wedge \mathrm{x}_{2}\right)\left(\mathrm{x}_{3} \wedge \mathrm{x}_{4}\right)\left\{\mathrm{x}_{3} \rightarrow \mathrm{x}_{1}, \mathrm{x}_{4} \rightarrow \mathrm{x}_{2}\right\}$
47. if $\rightarrow_{E}\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right)\left(\mathrm{x}_{3} \vee \mathrm{x}_{4}\right)\left\{\mathrm{x}_{3} \rightarrow \mathrm{x}_{1}, \mathrm{x}_{4} \rightarrow \mathrm{x}_{2}\right\}$
48. if $\rightarrow_{E} \mathrm{x}_{1} \mathrm{x}_{2} \rightarrow_{E}\left(\mathrm{x}_{1} \nu\left(\mathrm{y}_{1}\right)\right) \mathrm{x}_{2}$

References

1. Chang, C., Char, R.-Lee, T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, New York, San Francisco, London (1973)
2. Robinson, A., Voronkov, A.: Handbook of Automated Reasoning. 1st edn. The Mit Press, Cambridge, Massachusetts (2001)
3. Clocksin, W., Mellish, C.: Programming in Prolog. Springer-Verlag, Berlin, New York (2003)
4. Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/lambdacalculus/
5. LFM'99 Proceedings, https://www.site.uottawa.ca/ afelty/LFM99/index.html/
${ }^{1} \omega=\left\{\mathrm{x}_{2} \rightarrow \lambda \mathrm{c}_{1} \cdot \lambda \mathrm{c}_{2} \ldots \lambda \mathrm{c}_{n} \cdot \mathrm{v}\right\}$ and x_{2} is a variable of a term replacing the variable x_{1}.
