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Abstract—The underwater sensor network is currently a hot 

research field in academia and industry with many underwater 

applications, such as ocean monitoring, seismic monitoring, 

environment monitoring, and seabed exploration. Underwater 

target tracking is a critical component of ocean development. 

This paper studies the underwater target tracking problem of 

the wireless sensor network. In practical applications, the core 

technology of the target tracking algorithm is the filtering 

algorithm, which directly identifies the accuracy of the target 

tracking system. Nonlinear filtering is a hot issue in target 

tracking because feasible projects are mostly non-linear systems. 

The linearization method used in traditional Kalman filtering 

has serious shortcomings in tracking accuracy. Therefore, this 

paper presents the improved cubature Kalman filtering (ICKF) 

algorithm for underwater target tracking. There is uncertainty 

in the target movement, an adaptive forgetting factor is given 

into the cubature Kalman filtering algorithm to directly modify 

the error covariance to reduce the impact of uncertainties. Then, 

interactive multi-model technology is introduced to establish the 

IMMICKF algorithm with multiple states. Compared with 

other filtering algorithms, the new algorithm can effectively deal 

with noise-related non-linear target tracking problems and 

obtain better estimation accuracy. The numerical simulation is 

given to demonstrate the effectiveness of the IMMICKF 

algorithm. 

Keywords—underwater sensor network, target tracking, 

cubature Kalman filtering, adaptive forgetting factor, interacting 

multiple model  

 

I. INTRODUCTION  

With the depletion of land resources development, marine 

development is becoming the focus of research. Compared 

with traditional research methods, wireless sensor networks 

consist of sensor nodes which have the functions of sensing, 

signal processing, and wireless communication. The wireless 

sensor network is one of the most important technologies for 

underwater research[1]. The underwater sensor networks are 

generally applied for geological monitoring, submarine 

environmental monitoring and environmental[2][3]. Research 

on underwater target tracking systems based on wireless 

sensor networks has been a hot issue in recent years[4]. It can 

be used in various military and civil fields such as coast 

defense, marine rescue and fish detection[5].  

Underwater target tracking is to obtain the relevant 

information of the target through multiple sensors and 

estimate the state of the target's motion. To get more detailed 

information about the moving target, many underwater target 

tracking algorithms are proposed. Due to the particularity of 

the environment, there are numerous limitations in the 

tracking process. In practice, the core of the target tracking 

algorithm is the filtering algorithm, which directly determines 

the accuracy of the target tracking system. In 1960, the famous 

Kalman filter[6] proposed by Kalman greatly promoted the 

development of modern filtering theory. Kalman filtering (KF) 

introduces the state-space model into the theory of optimal 

filtering and gives the optimal estimation solution of a linear 

system. However, the Kalman filtering algorithm is only 

suitable for linear systems. In practical engineering 

applications, numerous systems are not linear, which limits 

the application of Kalman filtering in nonlinear systems.  

To solve the filtering problem of nonlinear systems, many 

nonlinear filtering algorithms based on Kalman filtering have 

been put forward. The extended Kalman filter[7] (EKF) 

algorithm linearizes the nonlinear system and uses a Kalman 

filter to estimate the state of the target. The nonlinear problem 

is transformed into a linear problem by using the Taylor 

expansion formula, and the first-order term of the Taylor 

expansion term is retained to reduce the error. The unscented 

Kalman filtering[8] (UKF) algorithm is based on the 

unscented transformation (UT) to deal with the nonlinear 

problem. The UKF does not need to linearize the problem and 

calculate the Jacobian matrix that the algorithm obtains 

estimated values by the unscented transformation. The particle 

filtering[9] (PF) algorithm is implemented by the non-

parametric Monte Carlo simulation method. Randomly 

sampled particles are used to approximate the posterior 

probability density, which can be utilized to nonlinear and 

non-Gaussian systems. In 2009, Arasaratnam and Haykin 

proposed a cubature Kalman filtering (CKF) algorithm[10]. 

The CKF algorithm uses spherical-radial cubature rule to 

select sampling points and uses integrals to calculate problems 

that provide a systematic solution for high-dimensional 

nonlinear filtering problems.  

Some researchers have studied underwater target tracking 

based on filtering algorithms. The filtering algorithms in target 

tracking can well estimate and foresee the state of the target to 

eliminate the target-related uncertainties caused by noise in 

the networks. The authors[11] implement underwater target 

tracking based on particle filtering that achieves real-time and 

stable target tracking in the real environment. The authors[12] 

design the strong tracking filter based on UKF to deal with 

correlated noise and sudden change of state. The algorithm 

adjusts the state prediction error covariance matrix in real-

time by introducing a sub-optimal adjustment factor to adjust 

the gain matrix of the corresponding filter effectively. 

Compared with other non-linear filtering algorithms such as 

EKF and UKF algorithms, the cubature Kalman filtering 

algorithm[13] has the advantages of easy implementation, 



strong non-linear approximation characteristics and high 

estimation accuracy. Therefore, CKF is more suitable for the 

practical environment and is widely used in estimation 

problems in various fields. 

Most of these filtering algorithms are intended for a single 

motion model of the target. Generally, the underwater target 

does not perform only one motion mode. Therefore, we focus 

on multiple models for target tracking in underwater sensor 

network researchers have conducted related research[14]–[16]. 

An interacting multiple model (IMM) filter[16] is applied to 

estimate the position and velocity of the underwater target. 

The authors[14] propose a centralized fusion algorithm based 

on interacting multiple models and adaptive Kalman filter for 

target tracking in underwater acoustic sensor networks. 

Specifically, by introducing an optimal centralized fusion 

Kalman filtering algorithm in the adaptive forgetting factor. 

The algorithm combines the advantages of the Kalman 

filtering algorithm and the interacting model to implement an 

interactive Kalman filtering tracking algorithm. In high-

dimensional cases, numerical stability and filtering accuracy 

of the CKF algorithm are superior to the Kalman filtering 

algorithm. Therefore, we will consider the CKF algorithm in 

the adaptive forgetting factor for better underwater target 

tracking accuracy. 

The rest of this paper is organized as follows. Section II 

introduces the underwater target tracking system model. In 

Section III, a CKF tracking algorithm based on the forgetting 

factor is presented, and a complete tracking algorithm is 

proposed. Finally, the performance of the underwater target 

tracking system by numerical simulation is evaluated in 

Section IV. 

II. SYSTEM MODEL 

A. Target motion model 

The target tracking algorithms are based on models, and 

the specific movement state of the target is described through 

the models. Target tracking system modeling mainly includes 

two parts: one is a motion model to describe the behavior of 

the target; the other is a measurement model for the 

observation of the target's behavior. Therefore, the 

mathematical expression of the underwater target tracking 

models is also divided into two parts: the motion model and 

the measurement model. The general form of the state-space 

model is as follows: 

         {
X𝑘+1 = 𝑓(𝑋𝑘)+𝑤𝑘 = 𝐴𝑘𝑋𝑘 +𝐵𝑘𝑤𝑘

𝑌𝑘+1 = ℎ(𝑋𝑘+1) + 𝑣𝑘+1                          
              (1) 

where 𝑋𝑘  and 𝑌𝑘  denote the target state and measured 

variables at 𝑘 , respectively; 𝑤𝑘and a 𝑣𝑘  are independent 

process noise and measurement Gaussian noise sequences 

with zero means and covariances 𝑄𝑘 and 𝑅𝑘, respectively; 𝑓a
nd a ℎ  are represented as transfer function; 𝐴  and B are 

known matrices.  A target is set to move to a three-

dimensional plane. Its state 𝑋𝑘 is composed of position and 

velocity, namely, 𝑋𝑘 = [𝑥𝑘 , 𝑣𝑥 , 𝑦𝑘 , 𝑣𝑦 , 𝑧𝑘 , 𝑣𝑧]
𝑇 . That 

(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) denotes the position coordinate of the target and 

(𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) represents the velocity in x, y, and z coordination 

at k. 

The value of target modeling is to obtain the true motion 

state of the target which is unknown. Therefore, the choice of 

target motion model directly affects the accuracy of target 

tracking and the calculation of subsequent filtering 

algorithm[17]. The three most common target motion models: 

constant velocity (CV), constant acceleration (CA) and 

constant turn (CT) models. For the underwater targets, the 

most common motion states are CV and CT motion[18]. 

B. CV model 

The CV model assumes that the target moves linearly at a 

constant speed in which the target speed does not change and 

the acceleration is zero. However, the acceleration cannot be 

maintained at zero due to interference in reality. Therefore, 

the 𝑤𝑘 ∈ 𝑅
3aaisa na three- imedsiodnla rnd oma nccelerntioda

 isturbndcea doisea obeyidga thea zero-menda Gnussinda

 istributiod.a Ta isa thea snmplidga idtervnla (nssume a ida thea

snmplidga timea𝑘𝑇).aThed,a thea stntea trndsitiodamntrixand a

thea isturbndceatrndsitiodamntrixanreagivedansafollows[19]: 
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C. CT model 

The CT model is a motion model used to simulate a target 

for making a cornering motion with a constant angular 

velocity. The angular velocity ω is constant over some time. 

Similarly, the  𝑤𝑘 ∈ 𝑅
3aaisa na three- imedsiodnla rnd oma

nccelerntioda  isturbndcea doisea obeyidga thea zero-menda

Gnussinda  istributiod.a a Thed,a thea stntea trndsitiodamntrixa

nd a thea  isturbndcea trndsitioda mntrixa nrea giveda nsa

follows[19]: 

𝐴𝑘 = 𝐴𝐶𝑇 =
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𝐵𝑘 = 𝐵𝐶𝑇 = 𝐵𝐶𝑉  

D. Measurement model 

In this paper, it is assumed that all the sensors are 

homogeneous and the position coordination is known. Sensors 

measure the distance to the target by transmitting acoustic 

pulses. The choice of measurement model depends on the way 

of the sensors detects the target. The measurement model of 

the target is given as follows[20]: 
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+ 𝑣𝑘 

where  𝑟𝑘 , 𝜃𝑘  and 𝜑𝑘  denote are the observation distance, 

azimuth angle, and the elevation angle, respectively. 

III. PROBLEM FORMULATION  

Underwater target tracking systems are generally non-

linear, so their motion state estimation is essentially a non-

linear filtering problem. The most important metric in target 

tracking is tracking accuracy, and the selection of filtering 

algorithm directly affects the tracking efficiency. In this 

section, we will introduce the adaptive forgetting factor into 

the CKF algorithm to adjust the covariance matrix to reduce 

the bias in dynamic models for better tracking accuracy. 

A. Cubature Kalman Filter 

The CKF algorithm is a novel nonlinear filtering algorithm 

proposed by Ienkaran Arasaratnam and Simon Haykin in 2009, 

which solves the problem that Kalman filtering has a poor 

estimation effect when the state variable is high-dimensional. 

The CKF algorithm is based on a Gaussian filtering 

framework. Its core is used a third-order spherical-phase 

diameter volume rule to approximate the posterior mean and 

covariance of the nonlinear function. The CKF algorithm 

considers the Gaussian integration from the point of numerical 

integration. 

In CKF, transforming the integral form into a radial 

integral spherical form and a third-degree spherical-radial rule 

are the two most critical steps. Therefore, we will briefly 

introduce the principle of the CKF algorithm. Consider the 

general points: 

            𝐼(𝑓) = ∫ 𝑓(𝑥)exp (−𝑥𝑥𝑇)𝑑𝑥
𝑅𝑛

                      (2) 

Using spherical radial transformation, let 𝑥 = 𝑟𝑦 , 𝑦𝑦𝑇 =
1, and 𝑥𝑥𝑇 = 𝑟2, 𝑟 ∈ [0,∞).  

𝐼(𝑓) = ∫ ∫𝑓(𝑟𝑦)𝑟𝑛−1 exp(−𝑟2) 𝑑𝜎(𝑦)𝑑𝑟
∞

0

 

According to the invariant theory, the simplest form of the 

third-degree spherical cubature rule is assumed as follows: 

∫𝑓(𝑟𝑦) 𝑑𝜎(𝑦) ≈ 𝑤∑𝑓[𝑢]𝑖

2𝑛

𝑖=1

 

[𝑢]𝑖  get the invariant point set after permutation and 

significant transformation. 

According to the Gaussian quadrature rule and the 

spherical-radial rule, the standard Gaussian weighted integral 

can be calculated using the third-degree spherical-radial rule 

which is given as follows: 

𝐼𝑁(𝑓) = ∫ 𝑓(𝑥)𝑁(𝑥; 0, 𝐼)𝑑𝑥
𝑅𝑛

≈ ∑ 𝑤𝑖𝑓(𝜉𝑖)
𝑚
𝑖=1          (3) 

where 𝜉𝑖 = √
𝑚

2
[𝟏]𝑖, 𝑤𝑖 =

1

𝑚
, 𝑖 = 1,2,⋯ ,𝑚 = 2𝑛. Therefore, 

using the cubature point set  { 𝜉𝑖 , 𝑤𝑖} to numerically calculate 

the integral, the CKF algorithm can be obtained. Let 

𝑥~𝑁(𝑥; �̂�, 𝑃) and 𝑃 = 𝑆𝑆𝑇, we can get  

𝐼𝑁(𝑓) = ∫ 𝑓(𝑥)𝑁(𝑥; �̂�, 𝑃)𝑑𝑥
𝑅𝑛

≈ ∑ 𝑤𝑖𝑓(𝑆𝜉𝑖 + �̂�)𝑚
𝑖=1     (4) 

Considering the nonlinear system filtering model as in 

Formula 1, and applying the cubature rule to the KF algorithm. 

The CKF algorithm can be obtained as follows. 

• Initialization 

Step 1: Give the filter initial condition values �̂�0, 𝑃0, 𝑄0, 

𝑅0. According to the tracking requirements, step 2 to step 8 

are performed cyclically at time 𝑘 = 1,2,⋯. 

• Prediction 

Step 2: Compute �̂�𝑘−1 and error covariance matrix 𝑃𝑘−1 at 

time 𝑘 − 1, and calculate cubature points according to the 

cubature rule mentioned above. 

𝑃𝑘−1 = 𝑆𝑘−1𝑆𝑘−1
𝑇  

χ𝑖,𝑘−1 = �̂�𝑘−1 + 𝑆𝑘−1𝜉𝑖 ,   𝑖 = 1,2,⋯ ,𝑚 

Step 3: Perform cubature points transformation according 

to the motion model. 

χ̂𝑖,𝑘|𝑘−1 = 𝑓(χ𝑖,𝑘−1) 

Step 4: Compute the one-step prediction state estimate and 

the one-step prediction error covariance. 

�̂�𝑘|𝑘−1 =
1

𝑚
∑χ̂𝑖,𝑘|𝑘−1

𝑚

𝑖=1

 

𝑃𝑘|𝑘−1 =
1

𝑚
∑χ̂𝑖,𝑘|𝑘−1�̂�𝑖,𝑘|𝑘−1

𝑇

𝑚

𝑖=1

− �̂�𝑘|𝑘−1�̂�𝑘|𝑘−1
𝑇 + Q𝑘−1 

• Update 

Step 5: Cubature points are calculated from the state 

prediction �̂�𝑘|𝑘−1 and the prediction error covariance matrix 

𝑃𝑘|𝑘−1 at time k. 

𝑃𝑘|𝑘−1 = 𝑆𝑘|𝑘−1𝑆𝑘|𝑘−1
𝑇  

χ𝑖,𝑘|𝑘−1 = �̂�𝑘|𝑘−1 + 𝑆𝑘|𝑘−1𝜉𝑖 

Step 6: Perform the cubature points non-linear 

transformation according to the measurement model. 

𝑌𝑖,𝑘|𝑘−1 = ℎ(χ𝑖,𝑘|𝑘−1) 

Step 7: Compute the measurement prediction, the 

innovation covariance matrix, cross-covariance matrix 

between state and measurement, and the filter gain. 

�̂�𝑘|𝑘−1 =
1

𝑚
∑𝑌𝑖,𝑘|𝑘−1

𝑚

𝑖=1

 

𝑃𝑦,𝑘|𝑘−1 =
1

𝑚
∑𝑌𝑖,𝑘|𝑘−1𝑌𝑖,𝑘|𝑘−1

𝑇

𝑚

𝑖=1

− �̂�𝑘|𝑘−1�̂�𝑘|𝑘−1
𝑇 + 𝑅𝑘 



𝑃𝑥𝑦,𝑘|𝑘−1 =
1

𝑚
∑χ𝑖,𝑘|𝑘−1𝑌𝑖,𝑘|𝑘−1

𝑇

𝑚

𝑖=1

− �̂�𝑘|𝑘−1�̂�𝑘|𝑘−1
𝑇  

𝐾𝑘 = 𝑃𝑥𝑦,𝑘|𝑘−1𝑃𝑦,𝑘|𝑘−1
−1  

Step 8: Compute the posterior state estimation and the 

estimation error covariance matrix at time k. 

�̂�𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑌𝑘 − �̂�𝑘|𝑘−1) 

𝑃𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝑃𝑦,𝑘|𝑘−1𝐾𝑘
𝑇 

The CKF algorithm calculates the state estimation and 

covariance through a set of sampling points based on a non-

linear function, which avoids the linearization of non-linear 

systems. The algorithm is independent and suitable for any 

non-linear systems[21]. 

B. An Improved Cubature Kalman Filter 

In the nonlinear estimation problem, the model and the 

nonlinear system cannot be completely matched due to the 

statistical characteristics of noise, etc., which affects the effect 

of filtering estimation. In practical applications, filtering 

divergence may be caused by inaccurate system models. The 

strong tracking filter (STF) has been proposed which can 

effectively enhance the robustness of the non-linear algorithm 

by adjusting the filtering gain and overcome the influence of 

uncertain factors on the filtering estimation result[22]. 

However, the traditional STF algorithm requires that the non-

linear functions are continuously differentiable, the filtering 

performance is poor under strong nonlinearity, and the 

Jacobian matrix needs to be calculated which makes the STF 

algorithm limited.  

In the case of uncertainties or great noise, the error 

covariance will be increased. Therefore, the authors [18], [21], 

[23]propose an adaptive forgetting factor to directly modify 

the error covariance to compensate for the effect of biased 

dynamic models. In this paper, we will use the forgetting 

factor into the CKF algorithm to improve the efficiency of 

underwater target tracking. 

The covariance matrix can reflect the uncertainty of the 

measurement result. The innovation covariance is equal to 

Λ𝑘 = 𝑃𝑦,𝑘|𝑘−1. The innovation covariance will be increased in 

the presence of uncertainties. The increased innovation 

covariance can be estimated as [24]: 

Λ𝑘+1
′ = {

𝜂1𝜂1
𝑇 ,                   𝑘 = 0

𝜌∗Λ𝑘
′ +𝜂𝑘+1𝜂𝑘+1

𝑇

1+𝜌
, 𝑘 ≥ 1

                 (5) 

where 𝜂𝑘 = 𝑌𝑘 − �̂�𝑘|𝑘−1 is the innovation, and 0 ≤ 𝜌 ≤ 1 is a 

weighting factor determined by the prior data or current data. 

The relationship between Λ𝑘
′  and Λ𝑘 can be expressed as: 

               Λ𝑘
′ = 𝜏𝑘Λ𝑘                                (6) 

where 𝜏𝑘 = 𝑚𝑎𝑥 {1,
1

𝑚
𝑡𝑟(Λ𝑘

′ Λ𝑘
−1)} is a scalar variable. Here 

an adaptive forgetting factor will be given to modify the error 

covariance to reduce the impact of uncertainties. The error 

covariance can be expressed as 

                           𝑃𝑘|𝑘−1
′ = 𝜆𝑘𝑃𝑘|𝑘−1                               (7) 

The relationship between Λ𝑘
′  and 𝑃𝑦,𝑘|𝑘−1  is extended to 

the improved CKF algorithm: 

                            Λ𝑘
′ = 𝜆𝑘𝑃𝑦,𝑘|𝑘−1                                 (8) 

where 𝜆𝑘 ≥ 1  is an adaptive forgetting factor[24] that the 

prediction error covariance matrix will increase due to the 

uncertainties. Therefore, the forgetting factor improves 

tracking efficiency by changing the covariance. The  𝜆𝑘 is a 

scalar, it can be easily obtained by equations (5)-(8) : 

𝜆𝑘 = 𝑚𝑎𝑥 {1,
𝑡𝑟(Λ𝑘

′ − 𝑅𝑘)

𝑡𝑟(𝑃𝑦,𝑘|𝑘−1 − 𝑅𝑘)
} 

According to the adaptive forgetting factor and the CKF 

algorithm, the update process of the CKF algorithm can be 

improved as: 

Step 5:  

𝑃𝑘|𝑘−1
′ = 𝜆𝑘𝑃𝑘|𝑘−1 = 𝑆𝑘|𝑘−1𝑆𝑘|𝑘−1

𝑇  

χ𝑖,𝑘|𝑘−1 = �̂�𝑘|𝑘−1 + 𝑆𝑘|𝑘−1𝜉𝑖 

Step 7:  

𝑃𝑦,𝑘|𝑘−1 =
1

𝑚
∑𝑌𝑖,𝑘|𝑘−1𝑌𝑖,𝑘|𝑘−1

𝑇

𝑚

𝑖=1

− �̂�𝑘|𝑘−1�̂�𝑘−1
𝑇 + 𝑅𝑘 

Λ𝑘
′ = 𝜆𝑘𝑃𝑦,𝑘|𝑘−1 

C. IMMICKF Algorithm 

The target's motion characteristics remain unchanged 

during the interval called a non-motorized target, such as 

uniform linear motion and uniformly accelerated linear 

motion. However, in practical applications, the target cannot 

always keep regular movement, and the external disturbance 

motion characteristics will always change. The interacting 

multiple model algorithm is widely used in the field of target 

tracking. This algorithm uses two or more models to describe 

the possible states during the movement of the target. Then, 

the system state estimation is performed by effective weighted 

fusion, which effectively overcomes the single model 

estimation error problem. Therefore, this paper uses the 

Interacting Multiple Model (IMM) combined with the 

improved cubature Kalman filtering algorithm to perform 

underwater target tracking more accurately. 

Due to the underwater moving targets, this paper mainly 

uses the CV and CT models mentioned in the second section. 

The selection of the target motion model in the interactive 

multi-model algorithm is an important process. This paper 

mainly uses the CV and CT models mentioned in the second 

section. The IMMICK algorithm uses multiple filters. Each 

filter corresponds to a different underwater target state-space 

model. These models are used to describe the corresponding 

target motion mode. Each filter has different results depending 

on the target state. 

It is assumed that there are 𝑠 motion states under the target, 

and 𝑠  cubature Kalman filters correspond to them. Among 

them, the target state equation of the 𝑖𝑡ℎ model is: 

𝑋𝑘+1
𝑖 = 𝐴𝑘

𝑖 𝑋𝑘
𝑖 + 𝐵𝑘

𝑖𝑤𝑘
𝑖  



In the IMMICKF algorithm, it is assumed that at any time, 

the 𝑖𝑡ℎ model is valid at the current time 𝑘. At the time 𝑘 − 1, 

each filter obtains a predicted state value and covariance value. 

Then, combine the corresponding model probability value of 

each filter at time 𝑘 − 1 and Markov probability transition 

matrix 𝑃  to obtain the mixed state estimation value and 

covariance value of each filter at time 𝑘. 

The probability transition matrix 𝑃  represents the 

probability that the underwater target changes from one state-

space model to another state-space model. The matrix P is 

expressed as follows: 

𝑃 = [

𝑝11 ⋯ 𝑝1𝑠
⋮ ⋱ ⋮
𝑝𝑠1 ⋯ 𝑝𝑠𝑠

] 

where 𝑝𝑖𝑗  indicates the probability that the target moves from 

the 𝑖𝑡ℎ motion model to the 𝑗𝑡ℎ motion model. 

According to the general IMM algorithm and the 

improved cubature Kalman algorithm, the optimal IMMICKF 

algorithm is given as follows: 

Step 1: Input interacting  

The prediction probability of model 𝑗  which is the 

normalization constant is given: 

𝑐𝑗 =∑𝑝𝑖𝑗𝜇𝑖(𝑘 − 1)

𝑠

𝑖=1

 

where 𝜇𝑖(𝑘 − 1) is the probability of model 𝑖 at time 𝑘 − 1. 

The mixture probability from model 𝑖 to model 𝑗 is: 

𝜇𝑖𝑗(𝑘 − 1) =
𝑝𝑖𝑗𝜇𝑖(𝑘 − 1)

𝑐𝑗
 

The hybrid state estimation of model 𝑗 is: 

�̂�0𝑗(𝑘 − 1) =∑�̂�𝑖(𝑘 − 1)𝜇𝑖𝑗(𝑘 − 1)

𝑠

𝑖=1

 

The hybrid error covariance of model 𝑗 is: 

𝑃0𝑗(𝑘 − 1) =∑𝜇𝑖𝑗(𝑘 − 1){𝑃𝑖(𝑘 − 1)

𝑠

𝑖=1

+ [�̂�𝑖(𝑘 − 1) − �̂�0𝑗(𝑘 − 1)]

× [�̂�𝑖(𝑘 − 1) − �̂�0𝑗(𝑘 − 1)]
𝑇} 

Step 2: Improved Cubature Kalman Filter 

Input the values �̂�0𝑗(𝑘 − 1) , 𝑃0𝑗(𝑘 − 1)  and the 

underwater target measurement 𝑌𝑘 to get the predicted values 

�̂�𝑗(𝑘) and 𝑃𝑗(𝑘) through the filter. 

Compute one-step prediction: 

𝑃0𝑗(𝑘 − 1) = 𝑆𝑗(𝑘 − 1)𝑆𝑗
𝑇(𝑘 − 1) 

χ𝑖,𝑘−1 = �̂�0𝑗(𝑘 − 1) + 𝑆𝑗(𝑘 − 1)𝜉𝑖 ,   𝑖 = 1,2,⋯ ,𝑚 

χ̂𝑖,𝑘|𝑘−1 = 𝑓(χ𝑖,𝑘−1) 

�̂�𝑗(𝑘|𝑘 − 1) =
1

𝑚
∑χ̂𝑖,𝑘|𝑘−1

𝑚

𝑖=1

 

𝑃𝑗(𝑘|𝑘 − 1) =
1

𝑚
∑χ̂𝑖,𝑘|𝑘−1�̂�𝑖,𝑘|𝑘−1

𝑇

𝑚

𝑖=1

− �̂�𝑗(𝑘|𝑘 − 1)

∗ �̂�𝑗
𝑇(k|k − 1) + Q𝑗(𝑘 − 1) 

Use the adaptive forgetting factor to modify the error one-

step prediction covariance by the cubature Kalman algorithm, 

and the cubature points are calculated. 

𝑃𝑗
′(𝑘|𝑘 − 1) = 𝜆𝑗(𝑘)𝑃𝑗(𝑘|𝑘 − 1) = 𝑆𝑗(𝑘 − 1)𝑆𝑗

𝑇(𝑘 − 1) 

χ𝑖,𝑘−1 = �̂�0𝑗(𝑘 − 1) + 𝑆𝑗(𝑘 − 1)𝜉𝑖  

𝑌𝑖,𝑘|𝑘−1 = ℎ(χ𝑖,𝑘|𝑘−1) 

�̂�𝑗(𝑘|𝑘 − 1) =
1

𝑚
∑𝑌𝑖,𝑘|𝑘−1

𝑚

𝑖=1

 

𝑃𝑦,𝑗(𝑘|𝑘 − 1) =
1

𝑚
∑𝑌𝑖,𝑘|𝑘−1𝑌𝑖,𝑘|𝑘−1

𝑇

𝑚

𝑖=1

− �̂�𝑗(𝑘|𝑘 − 1)

∗ �̂�𝑗
𝑇(k|k − 1) + 𝑅𝑗(𝑘) 

𝑃𝑥𝑦,𝑗(𝑘|𝑘 − 1) =
1

𝑚
∑χ𝑖,𝑘|𝑘−1𝑌𝑖,𝑘|𝑘−1

𝑇

𝑚

𝑖=1

− �̂�𝑗(𝑘|𝑘 − 1)

∗ �̂�𝑗
𝑇(𝑘|𝑘 − 1) 

where  
Λ𝑗
′ (𝑘) = 𝜆𝑗(𝑘)𝑃𝑦,𝑗(𝑘|𝑘 − 1) 

𝜆𝑗(𝑘) = 𝑚𝑎𝑥 {1,
𝑡𝑟(Λ𝑗

′ (𝑘) − 𝑅𝑗(𝑘))

𝑡𝑟(𝑃𝑦,𝑗(𝑘|𝑘 − 1) − 𝑅𝑗(𝑘))
} 

Compute the Kalman gain. 

𝐾𝑗(𝑘) = 𝑃𝑥𝑦,𝑗(𝑘|𝑘 − 1)𝑃𝑦,𝑗
−1(𝑘|𝑘 − 1) 

Compute the posterior state estimation and the estimation 

error covariance matrix at time k. 

�̂�𝑗(𝑘) = �̂�𝑗(𝑘|𝑘 − 1) + 𝐾𝑗(𝑘)(𝑌𝑘 − �̂�𝑗(𝑘|𝑘 − 1)) 

𝑃𝑗(𝑘) = 𝑃𝑗
′(𝑘|𝑘 − 1) − 𝐾𝑗(𝑘)𝑃𝑦,𝑗(𝑘|𝑘 − 1)𝐾𝑗

𝑇(𝑘) 

Step 3: Model probability update 

The calculation of model probability Ω𝑗(𝑘) is realized by 

the likelihood function. The likelihood function of model 𝑗 is  
as follows: 

Ω𝑗(𝑘) =
1

(2𝜋)𝑛/2|Λ𝑗
′ (𝑘)|1/2

exp {−
1

2
𝑣𝑗
𝑇[Λ𝑗

′ (𝑘)]−1𝑣𝑗} 

where 𝑣𝑗 = 𝑌𝑘 − �̂�𝑗(𝑘|𝑘 − 1). 

The probability of model 𝑗 at time 𝑘 is as follows: 

𝜇𝑗(𝑘) =
Ω𝑗(𝑘)𝑐𝑗

𝑐
 

where 𝑐 = ∑ Ω𝑗(𝑘)𝑐𝑗
𝑠
𝑗=1  is the normalization constant. 

Step 3: Output interaction 

Based on the model probabilities corresponding to each 

filter, the pre-measured state value of each filter is calculated 

by weighting to obtain the total state estimation �̂�𝑘  and the 

total error covariance estimation 𝑃𝑘 at time 𝑘. 



�̂�𝑘 =∑�̂�𝑗(𝑘)𝜇𝑗(𝑘)

𝑠

𝑗=1

 

                       𝑃𝑘 =∑𝜇𝑖(𝑘 − 1){𝑃𝑖(𝑘)

𝑠

𝑖=1

+ [�̂�𝑖(𝑘 − 1) − �̂�𝑘][�̂�𝑖(𝑘 − 1) − �̂�𝑘]
𝑇} 

The final output value of the IMM algorithm is not 

calculated by selecting a corresponding model at each time to 

perform state estimation. It is obtained by importing multiple 

target motion models through the filtering algorithm weighted 

fusion. The complete target tracking algorithm is shown in 

Algorithm 1. 

IV. NUMERICAL SIMULATION 

In this section, we use MATLAB software for the 

numerical simulation to prove the performance of the 

proposed algorithm. 

In the numerical simulation, all the sensors are uniformly 

distributed in the detection area of 1000𝑚 × 1000𝑚 ×
1000𝑚. The coordinates of each sensor are known and the 

sensor's sensing radius is 300𝑚. The sampling interval 𝑇 is 

assumed to be 1𝑠 . All the sensors are assumed to be 

homogeneous and the additive noise variance is set to 𝜎2 = 5. 

The target initial position coordinate 𝑋0  is set as  

[300; 10; 300; 10; 100; 2]. The angular velocity of the CT 

model is 𝜔 = 0.052𝑟𝑎𝑑/𝑠. The target motion model is the 

CV model in 1𝑠 − 40𝑠 and 80𝑠 − 100𝑠. The target motion 

model is the CT model in  40𝑠 − 80𝑠. The root means square 

error (RMSE) is used to measure the performance of the 

underwater target tracking. The RMSE of the proposed 

IMMICKF algorithm is set as: 

𝑅𝑀𝑆𝐸(𝑘) =
√
  
  
  
  
  
  

∑

[(�̂�𝑘
𝑙 (1) − 𝑋𝑘(1))

2

+(�̂�𝑘
𝑙 (3) − 𝑋𝑘(3))

2

+(�̂�𝑘
𝑙 (5) − 𝑋𝑘(5))

2]

𝑀𝐶
𝑙=1

𝑀𝐶
 

where 𝑀𝐶  is the number of Monte Carlo simulation. All 

simulation results in this section were performed 100 Monte 

Carlo simulations. 

In the proposed algorithm, we use two motion models, 

including CV and CT models. The Markov chain transition 

probability matrix controlling the model transformation is 

given by: 

𝑃 = [
0.98 0.02
0.02 0.98

] 

The true trajectory of the target motion and the estimated 

trajectory of the IMMICKF algorithm is shown in Fig. 1. From 

Fig. 1, we can see that the optimal algorithm can well estimate 

the target's motion trajectory. 

 

Fig. 1. The true trajectory and the results of the IMMICKF. 

Root mean square error is a measure of the deviation 

between the predicted value and the true value. The RMSEs 

of positions in X-direction, Y-direction, and Z-direction of the 

IMMICKF and the CKF algorithm are given in Fig. 2. 

 

 

Algorithm 1 

1. Iditinlizntiod:a𝑃, 𝑃0, 𝑋0, 𝑌0, 𝜇0, �̂�0 

2. Fora𝑘 = 1,2,⋯ 

3. aaFora𝑗 = 1,2,⋯ 

4. aaaaaCnlculnteahybri aestimntioda�̂�0𝑗(𝑘 − 1),a𝑃0𝑗(𝑘 − 1) 

5. aaaaaCnlculnteaode-stepapre ictiod 

6. aaaaaForgettidgafnctora𝜆𝑗(𝑘)nd aKnlmndagnida𝐾𝑗(𝑘) 

7. aaaaaCnlculnteastnteaestimnteaofamo ela𝑗 ntatimeaK 

8. aaaaaTotnlaestimntioda�̂�𝑘and aerroracovnrindceaestimntioda𝑃𝑘 

9. aaEd afor 

10. Ed afor 



 

Fig. 2.   RMSEs of positions in X-direction, Y-direction, and Z-

direction of the IMMICKF and the CKF algorithm. 

From Fig. 2, we can see that the RMSEs of positions in X-

direction. Y-direction and Z-direction of the IMMICKF 

algorithm are smaller than the CKF algorithm. When the 

system model is uncertain, the CKF algorithm cannot adapt to 

the uncertainty of the model, and the RMSEs of the target 

motion state is large. The IMMICKF algorithm is utilized to 

reduce the system uncertainty by introducing an adaptive 

forgetting factor to complete the underwater target tracking. 

Meanwhile, compared with the single model CKF algorithm, 

the proposed algorithm has better tracking accuracy in the 

Underwater sensor network 

V. CONCLUSIONS 

In this paper, an IMMICKF algorithm has been proposed 

for underwater target tracking in the underwater sensor 

network due to the uncertainties of the underwater target 

tracking system and the traditional CKF algorithm cannot 

solve the problem of the related noise. Therefore, a new 

filtering algorithm was established by introducing an adaptive 

forgetting factor technology to reduce system uncertainty. The 

optimal ICKF algorithm is proposed based on the optimal 

CKF algorithm. Then, interactive multi-model technology is 

introduced to establish the IMMICKF algorithm with CV and 

CT models because of the variety of motion modes of 

underwater targets. Finally, compared with the CKF algorithm, 

simulation results have been summarized as follows: the 

tracking accuracy of the IMMICKF algorithm is the best in 

the tracking effect and obtains good estimation error stability. 

And the proposed algorithm can effectively deal with the non-

linear target tracking system. The proposed algorithm can be 

used in various ocean exploration applications. In future work, 

we will further study the problems of robustness and 

computational complexity in the IMMICKF algorithm for 

target tracking in the underwater sensor network   
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