
EasyChair Preprint

№ 1174

Local Graph Edge Partitioning with A

Two-stage Heuristic Method

Shengwei Ji, Chenyang Bu, Lei Li and Xindong Wu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 12, 2019

Local Graph Edge Partitioning with a Two-Stage

Heuristic Method

Shengwei Ji 1,2, Chenyang Bu 1,2,3, IEEE Member, Lei Li 1,2,3, IEEE Senior Member, Xindong Wu 1,3,4, IEEE Fellow

1 Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, China
2 School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China

3 Institute of Big Knowledge Science, Hefei University of Technology, Hefei, China
4 Mininglamp Academy of Sciences, Mininglamp Technology, Beijing, China

Email: swji@mail.hfut.edu.cn, chenyangbu@hfut.edu.cn, lilei@hfut.edu.cn, xwu@hfut.edu.cn

Abstract—Graph edge partitioning divides the edges of an

input graph into multiple balanced partitions of a given size to

minimize the sum of vertices that are cut, which is critical to the

performance of distributed graph computation platforms.

Existing graph partitioning methods can be classified into two

categories: offline graph partitioning and streaming graph

partitioning. The first category requires global information for

a graph during the partitioning, which is expensive in terms of

time and memory for large-scale graphs. The second category,

however, creates partitions solely based on the received edge

information, which may result in lower performance than the

offline methods. Therefore, in this study, the concept of local

graph partitioning is introduced from local community

detection to consider only local information, i.e., a part of the

graph, instead of the graph as a whole, during the partitioning.

The characteristic of storing only local information is important

because real-world graphs are often large in scale, or they

increase incrementally. Based on this idea, we propose a two-

stage local partitioning algorithm, where the partitioning

process is divided into two stages according to the structural

changes of the current partition, and two different strategies are

introduced to deal with the respective stages. Experimental

results with real-world graphs demonstrate that the proposed

algorithm outperforms the rival algorithms in most cases,

including the state-of-the-art algorithm METIS.

Keywords—Graph edge partitioning, Distributed graph

computing, Local information

I. INTRODUCTION

With the advent of the big data era, graphs are used in a

wide range of fields, such as social networks [1-3] and

knowledge graphs [4, 5]. The scale of graph data has increased

rapidly and has already exceeded the processing capabilities

of single machines [6]. To achieve better performance,

distributed graph computation systems that process large-

scale graphs on a cluster of machines, such as Pregel [7],

PowerGraph [8], GraphLab [9], and GraphX [10], have been

proposed. For such systems, graph partitioning plays a

significant role in improving their computing performance

because it determines the computational workload of each

machine and the communication between them.

In distributed graph computation systems, graph

partitioning is classified into two types: vertex partitioning,

and edge partitioning. Most of the traditional distributed graph

computation systems, such as Pregel and GraphLab, use

vertex partitioning, where vertices are evenly assigned to

different partitions by cutting the edges. However, most real-

world graphs follow the power-law distribution, i.e., most of

the vertices have few relative neighbors, while a few vertices

have many neighbors. In this case, vertex partitioning

increases workload imbalance and communication overhead

because of the high-degree vertices and the number of cross-

partition edges [11]. Different from vertex partitioning, edge

partitioning evenly assigns edges to different partitions by

cutting vertices. Researchers have demonstrated that edge

partitioning performs better than vertex partitioning on many

real-world graphs [8, 10, 11]. Therefore, edge partitioning has

been widely adopted in recent systems, including PowerGraph,

GraphX, and Chaos [12].

One traditional approach, referred to as offline graph

partitioning, is based on a global view of the graph. This

method obtains high-quality partitions by using multiple

iterations based on complete graph data and is widely used in

distributed graph computation systems. As the scale of graph

data has increased, the offline method has become unsuitable

for large-scale graph partitioning because it is difficult to

obtain global information for a graph [13]. Therefore,

streaming graph partitioning has been proposed, which treats

graph data as an online stream by reading the data serially, and

then determining the target partition of a vertex when it is

accessed [14]. With the streaming graph partitioning method,

only partial graph data is needed, which is more suitable than

the offline method for a large-scale graph. However, some

shortcomings in the streaming heuristics have appeared.

Firstly, compared with the offline method, the streaming

method results in worse partitioning quality. Secondly, to

provide maximum flexibility, the entire arrived graph data

must be accessed [15], which means streaming graph

partitioning also requires large portions of the graph.

To address the problems mentioned above, a local graph

partitioning method is designed in this study. It relies only on

the local information (i.e., a part of the graph) instead of the

global information during the partitioning. Compared with the

offline method, local graph partitioning is based on less graph

information. Compared with the streaming method, local

graph partitioning only needs to store data in memory for a

single partition at most.

Based on local graph partitioning, a two-stage local

partitioning (TLP) algorithm is designed. Most of existing

graph partitioning algorithms adopt a single partitioning

strategy while ignoring the influence of graph structure

changes on the partitioning quality during the partitioning

process. In this study, however, the concept of modularity is

introduced from local community detection to quantify the

structure of local partitions. We prove that the modularity of

each partition is positively correlated with the partitioning

quality. According to the structural changes of the local

partition, the partitioning process of each partition is divided

into two stages, and different graph partitioning strategies are

introduced at each stage. Experiments demonstrate that the

proposed TLP algorithm performs well for graph data of

different scales. The main contributions of this paper can be

summarized as follows.

 A local graph partitioning method is designed to

partition a graph using only local information. At the

same time, the method needs to save data for only a

single partition in memory, which is suitable for large-

scale graph partitioning.

 To quantify the structure change of a graph during the
partitioning process, the concept of modularity is
introduced. Meanwhile, the modularity of each
partition is proved to be positively correlated with the
graph partitioning quality.

 Based on local graph partitioning, a new TLP

algorithm is proposed. The partitioning process of

each partition is divided into two stages according to

modularity changes of local partitions. Each stage

adopts one corresponding partitioning strategy.

 The TLP algorithm is tested on real-world graphs of

different scales and is compared with several classic

graph partitioning algorithms. The experiments

demonstrate that TLP can achieve high-quality

partitions on graphs of different scales.

The structure of this paper is as follows. Section Ⅱ states

the graph partitioning problem and introduces mainstream

graph partitioning algorithms through two classification

methods. The concept of modularity is also introduced. In

Section III, a local graph partitioning method is designed, and

a new TLP algorithm is proposed. In Section Ⅳ, the

performance of the TLP algorithm is analyzed on an extensive

set of real-world graphs and is compared with several state-of-

the-art algorithms. Finally, Section Ⅴ concludes the paper.

II. BACKGROUNDS

In this section, graph partitioning algorithms are first

introduced through two different classifications. Then the

concept of modularity is introduced.

A. Vertex Partition and Edge Partition

Graph data consists of vertices and edges; thus, graph

partitioning can be classified into vertex partitioning and edge

partitioning.

Definition 1. Cross-partition edge. The edge connecting

two vertices that are allocated to different partitions in vertex

partitioning.

Definition 2. Spanned vertex. The vertex is adjacent to

two edges that are allocated to different partitions in edge

partitioning.

Vertex partitioning refers to the allocation of all the

vertices in a graph by cutting the edges. The objective of

vertex partitioning is to minimize the number of cross-

partition edges and balance the number of vertices between

the partitions. To ensure that each partition can perform local

calculations independently in a distributed graph computation

system, each cross-partition edge generates a corresponding

ghost (a local replica) [8]. The process of vertex partitioning

is illustrated in Fig. 1(a). Edge ea,b and ea,c are the cross-

partition edges, and the ghosts are the shaded vertices.

Edge partitioning refers to the even allocation of all the

edges of a graph and allows vertices to span partitions. In edge

partitioning, a spanned vertex generates a mirror (a local

replica) of the vertex. The adjacent edges of vertex a in Fig.

1(b) are located in two partitions, resulting in a mirror shown

as a shadow. The objective of edge partitioning is to minimize

the number of mirrors and balance the number of edges

between partitions.

Fig. 1. Vertex vs. edge partitioning: (a) Graph G is partitioned into two

partitions by cutting two edges, and the shaded vertices are ghosts; (b) Graph

G is partitioned into two partitions by cutting one vertex, and the shaded
vertex is a mirror.

In existing distributed graph processing systems, the

computational load of machines is usually determined by the

number of edges and the communication between the

machines, which is related to the number of edges shared

across machines. Therefore, the vertex partitioning algorithm

usually leads to an uneven computing load, and a large number

of edges shared across machines also blocks system

communication [11]. Therefore, more and more distributed

graph processing systems have begun to use edge partitioning

to improve system efficiency.

Furthermore, the problem statement for graph edge

partitioning is presented below.

Denote G=(V, E) as an undirected graph with n=|V|

vertices and m=|E| edges. For a subgraph S, denote V(S) and

E(S) as the vertex set and edge set of S, respectively.

Definition 3. Balanced p-edge graph partitioning. Graph

G is partitioned into p partitions. Each partition is denoted as

Pk (k∈{1, 2, …, p}). There are no duplicate edges between

partitions, i.e., E(Pi)∩E(Pj)=∅ (i, j∈{1, 2, …, p}, i≠j), and

|E(Pk)|≤C, where C is the maximum capacity for edges in each

partition.

Definition 4. Replication factor (RF) [13, 16]. To quantify

the number of mirror vertices, the RF is defined as

 1
()

p

kk
V P

RF
V

 (1)

The graph edge partitioning problem consists of two

aspects, such that 1) each partition load is within a given

bound, and 2) the number of mirror vertices is minimized.

Hence, graph edge partitioning can be defined with Definition

5. In Table I, we give an overview of the notation used in this

paper, in order of presentation.

Definition 5. Graph edge partitioning. The graph edge

partitioning problem seeks to find a balanced p-edge graph

partitioning to minimize the RF.

TABLE I. NOTATION OVERVIEW

G=(V, E) Graph with a set of vertices V and edges E.

Pk The kth partition of G.

ea,b An edge connecting vertices a and b.

n=|V| The number of vertices in V.

m=|E| The number of edges in E.

V(S) The vertices set of a subgraph S.

E(S) The edges set of a subgraph S.

p The number of partitions.

C The maximum capacity for edges in each partition.

RF The replication factor of a graph edge partitioning.

M(Pk) The modularity of Pk.

Eout(Pk) The set of external edges in Pk.

N(vi) The set of vertices that are adjacent to vertex vi.

N(Pk) The set of vertices that are adjacent to any vertices in Pk.

μs1(vi) The criterion for selecting vertex v in Stage Ⅰ.

μs2(vi) The criterion for selecting vertex v in Stage Ⅱ.

d The average degree of the vertices in G.

L The maximum number of vertices in each partition.

R The ratio parameter of two stages.

B. Offline Partition and Streaming Partition

From another classification perspective, graph partitioning

algorithms are classified into offline graph partitioning

algorithms and streaming graph partitioning algorithms.

Offline graph partitioning algorithms are based on global

information and are usually adopted in early distributed graph

computation systems. As shown in Fig. 2(a), offline graph

partitioning requires complete graph data before the

partitioning process. For example, the classic algorithm

Kernighan-Lin (KL) [17] partitions the graph into two parts

initially, and exchanges arbitrary pairs of vertices between the

two parts to find the optimal solution. Based on the global

view of the graph, the KL algorithm can obtain a good result

if there is good initialization. METIS [18] adopts a multi-level

partitioning scheme, which includes the following three steps:

coarsening to reduce the size of the graph; partitioning the

reduced graph; decoarsening to map partitions back to the

original graph. This leads to state-of-the-art quality partitions

on a great number of graphs [19].

Different from offline graph partitioning, streaming graph

partitioning assumes that the graph data arrives in a stream,

and the target partition is determined as the data arrives. As

shown in Fig. 2(b), the edges arrive in the order of e1, e2, e3, ….

When an edge arrives, it can be allocated to the target partition.

For example, e1is allocated to P1, and e2 is allocated to P2, etc.

The classic streaming graph partitioning algorithms such as

LDG [15] and FENNEL [20] have greedy policies using

different heuristics to deal with the received graph data.

However, their precision is lower than that of METIS. Almost

all streaming graph partitioning algorithms have the following

characteristics: 1) When the data arrives, it is immediately

allocated to the target partition, and it is not moved after it is

placed. 2) Only the received data is accessed for partitioning.

Fig. 2. Processes of offline graph partitioning and streaming graph

partitioning: (a) After the graph G is obtained, it is partitioned into three

partitions; (b) The graph data arrives in an edge stream, and the target
partition is determined after each edge arrives.

In general, offline graph partitioning algorithms with high

partitioning accuracy cannot deal with large-scale graphs

because they require complete graph information. Instead,

large graphs can be partitioned quickly using streaming graph

partitioning algorithms based on partial graph information.

However, the performance of streaming partitioning is poor,

and all the received data must be saved. As the amount of

received data gradually increases, the data that must be saved

gradually increases, which means large portions of the graph

are required.

C. Modularity

The concept of modularity was commonly used in the

community detection area. For example, Luo et al. introduced

the concept of modularity M to measure the quality of the

detected communities for local community detection [21]. The

greater the value of M, the better the detected communities.

Luo et al. use modularity to analyze the characteristic of the

local community in the process of community detection [22].

Jie et al. use weighted modularity to find crisp and fuzzy

communities in undirected and unweighted networks [23]. In

this study, we introduce the concept of modularity to graph

partitioning problems. Related concepts are defined as follows.

Definition 6. Internal edge. The edge in one partition

connecting two vertices that both belong to this partition.

Definition 7. External edge. The edge in one partition

connecting two vertices where one of the vertices is in the

same partition, and one is not.

Definition 8. Modularity [22]. The modularity of one

partition is the ratio of the internal edges to the external edges,

which is denoted as Eq. (2).

()

()
()

k

k

out k

E P
M P

E P
 (2)

where E(Pk) is denoted as the set of internal edges in Pk. Eout(Pk)

is denoted as the set of external edges in Pk. |E(Pk)|and

|Eout(Pk)| represents the number of edges in E(Pk) and Eout(Pk),

respectively. With the graph partitioning, the number of

internal edges and external edges in one partition is

continually changing. When the M(Pk) is small, the partition

structure is loose. As the number of edges allocated to Pk

gradually increases and the value of M(Pk) gets larger, Pk

becomes tighter.

Furthermore, to affirm the relationship between

modularity and the structure of each partition, we prove the

modularity of each partition is positively correlated with the

graph partitioning quality in section Ⅲ.

III. PROPOSED ALGORITHMS

In this section, a TLP algorithm is proposed. Section A

introduces the motivation for the algorithm. In Section B, the

frame of the TLP algorithm is presented. Sections C and D

illustrate respective partitioning strategies for the two stages.

Section E presents the complexity analysis of the TLP

algorithm.

A. Motivation

Local Graph Partitioning. As mentioned in Section 2.3,

the current graph partitioning algorithms can be classified into

offline graph partitioning algorithms and streaming graph

partitioning algorithms. The former algorithms have higher

partitioning precision, but they need complete graph data

before partitioning begins. The latter algorithms can partition

graphs according to partial graph data, but they need to save

all the received data, and the partitioning quality is worse than

with offline heuristics.

Fig. 3. Processes of local graph partitioning. Graph G is partitioned into

several parts sequentially. In each partition, a single vertex constitutes the

initial local partition at first. Then, one vertex is added into the local partition

at each step until the local partition is full. Only the current local partition
and neighbors are accessed in each round.

Considering the limits of the above two methods, a local

graph partitioning method is proposed in this paper. As shown

in Fig. 3, a graph is partitioned into three partitions

sequentially. In round 1, the initially empty local partition is

expanded in steps when |E(P1)|≤C. In each step, one optimal

vertex is selected from the neighbor vertex set of Pk by a

heuristic method, and then the edges between the optimal

vertex and P1 are allocated to P1. After round 1 is over, round

2 will start with a new vertex to obtain partition P2. The graph

partitioning is complete when all three rounds have been

completed.

Through the above analysis, the characteristics of the local

graph partitioning method can be summarized as follows.

 Local graph partitioning relies only on information

about the local partition, which is suitable for large

graphs.

 Only one partition is obtained per round. Pk will not

change once round k is over, which means that only

data for one partition needs to be saved in memory.

Therefore, this method can effectively reduce stored

data.

Two stages. Most of existing graph partitioning

algorithms adopt a single partitioning strategy during the

whole partitioning process. However, the change in graph

structure caused by each partition can influence the

partitioning quality. For example, in the initial partitioning

process, the graph structure of a partition can be loose because

the number of edges is relatively small. With the graph

partitioning, the partition can gradually be more compact.

To quantify the structure of the partition, we introduce the

concept of modularity from the field of local community

detection [21, 22]. Modularity was originally proposed to

detect the local community. In this study, however,

modularity is used to measure the structure of each partition.

To improve the accuracy of local graph partitioning, the

partitioning process is divided into two stages according to its

modularity. In Stage Ⅰ, a graph partitioning strategy is

proposed to choose the closest and the local maximal-degree

vertex. In Stage Ⅱ, the vertex that makes the local partition

tightest is selected based on the other partitioning strategy.

Fig. 4. The local partition in two stages: (a) The modularity of the local
partition Pk is small in the initial stage, and the vertexes with larger degrees

are selected as the core vertexes of the partition Pk; (b) The structure of Pk is

tight in stage Ⅱ, and the vertexes close to Pk are chosen.

As shown in Fig. 4(a), the modularity of the local partition

𝑃𝑘 is small in the initial stage. In this case, the core vertexes

with the large degrees in the graph are regarded as more proper

to be selected. In Figure 4(b), as the local partition structure in

stage Ⅱ is tighter than in stage Ⅰ, the vertexes close to 𝑃𝑘 are

chosen. The quality of graph partitioning can be effectively

improved with this two-stage graph partitioning method, as

shown by the experiments.

B. TLP Algorithm

In this subsection, a two-stage local partitioning (TLP)

algorithm is proposed. In order to quantify the structure

change of each partition with the modularity, we first prove

the correlation between the modularity of each partition and

the quality of graph partitioning, which is given as follows.

Claim 1. For any graph G and any positive integer p, the

modularity of Pk is negatively correlated with the replication

factor of the balanced p-edge graph partitioning.

Proof. An averaging argument is used. Given a graph

G=(V, E) with average degree d, the number of partitions is p.

We have

 .2V d E (3)

Assume that the number of edges in each partition is equal

in balanced p-edge graph partitioning. Then,

 () .2 kV d p E P (4)

As for Pk, we also have

 () (() ())2k k out kV P d E P E P . (5)

Combining Eq. (4) and Eq. (5), we obtain

1

1

1

()

(() ())

1 1
1

()

p

kk

p

k out kk

p

k
k

V P

V

E P E P

E

p M P

. (6)

From Eq. (6), we can deduce that the larger the modularity

of each partition, the smaller the RF, which completes the

proof.

Fig. 5. Two stages of local graph edge partitioning: (a) In stage Ⅰ, the

modularity of Pk is smaller than 1, which means the partition structure is

loose; (b) In stage Ⅱ, the modularity of Pk is not less than 1, which means the
partition structure is compact.

At the initial partitioning of Pk, the number of allocated

edges in Pk is small, and the number of external edges in Pk is

large. At this time, the partition structure is loose, thus M(Pk)

is small. As the number of edges allocated to Pk gradually

increases and the value of M(Pk) gets larger, Pk becomes

tighter. In the TLP algorithm, the partitioning process of 𝑃𝑘 is

divided into two stages according to M(Pk). The criteria for the

two-stage division is shown in Table Ⅱ.

TABLE II. DIVISION INTO TWO STAGES BASED ON MODULARITY

Stage Criteria

Stage Ⅰ 0<M(Pk)≤1

Stage Ⅱ 1≤M(Pk)

When 0<M(Pk)≤1, the process of graph partitioning is in

Stage Ⅰ where there are more internal edges than external

edges in Pk. The process of graph partitioning is in Stage Ⅱ

when M(Pk)≥1, where the partition becomes tighter. Figure 5

displays an example of both stages. In Fig. 5(a), |E(Pk)|=2,

|Eout(Pk)|=3, and M(Pk)=0.67, so the partitioning is in Stage Ⅰ.

In Fig. 5(b), M(Pk)=5, thus the partitioning is in Stage Ⅱ.

Different graph partitioning strategies for Stage I and

Stage II are proposed in subsection C and D, respectively. The

TLP algorithm for one partition is shown in Algorithm 1.

C. Graph Partitioning Strategy in Stage Ⅰ

The graph partitioning strategy in Stage Ⅰ selects the

optimal vertex v from N(Pk) that is close to Pk and has a high

degree. The definition of N(Pk) is as follows.

The criterion μs1(vi) [22] for selecting vertex v from N(Pk)

is as shown in Eq. (3).

 1
()

() ()
() max

()j i k

i j

s i
v N v P

j

N v N v
v

N v

 (7)

where |N(Pk)| is the number of neighbor vertices of vi. The

closeness between vi and partition Pk is measured by the

closeness between vi and the vertices in partition Pk according

to Eq. (1). At the same time, when the degree of vi is large, the

greater the number of neighbors of vi, the larger the value

|N(vi)∩N(vj)| may be. By calculating μs1(vi) of each vertex in

neighbor vertex set N(Pk), the selection strategy of the optimal

vertex v is defined as follows.

1

()
arg max ()

i k

s i
v N P

v v

 (8)

That is, the vertex with the largest value of μs1(vi) in

neighbor vertex set N(Pk) is selected as the optimal vertex v.

Then, the edges between v and the vertices in partition Pk are

allocated to Pk. To give an example, the graph partitioning

strategy in Stage Ⅰ is explained. From Fig. 6(a), it can be

observed that vertices a, e, and g are in the neighbor vertex set

N(Pk). According to Eq. (3), we can calculate that μs1(a)=0.4,

μs1(b)=0.6, and μs1(g)=0.5.

Then, vertex e is selected as the optimal vertex according

to Eq. (4). As can be seen, the degree of vertex e and g are the

same, while there are more edges between e and the vertices

in Pk than between g and the vertices in Pk. The number of

edges between e and the vertices in Pk is equal to that between

a and the vertices in Pk, while the degree of e is higher than

Algorithm 1 TLP for one partition

1. Select vertex x from G randomly;

2. Pk←∅;

3. N(Pk)←N(x);

4. while |E(Pk)|≤C do

5. if M(Pk)≤1 do //Stage Ⅰ

6. Choose vertex 𝑣 from N(Pk) according to Section 3.3;

7. else do //Stage Ⅱ

8. Choose vertex 𝑣 from N(Pk) according to Section 3.4;

9. end if

10. Allocate edges between v and vertices in Pk;

11. if N(Pk) is empty do

12. break

13. end if

14. end

that of a. Therefore, the graph partitioning strategy in Stage Ⅰ

achieves the selection of a vertex close to Pk with a high degree.

Fig. 6. Graph partitioning strategy in Stage Ⅰ: (a) There exist vertices a, g, e

in the neighbor vertex set N(Pk). The optimal vertex is selected from the

neighbor vertex set N(Pk) based on the value of μs1(vi) which is calculated by
Eq. (7); (b) Allocate the edges between vertex e and partition Pk, because the

vertex e is selected.

D. Graph Partitioning Strategy in Stage Ⅱ

In Stage Ⅱ, the local partition becomes tighter with the

expansion by adding the optimal vertex 𝑣 from N(Pk). The

selection criterion μs2(vi) is based on the change in modularity.

The representation of μs2(vi) is:

 2

1
() 1

1
s iv

M

， (9)

where ∆M is defined as in Eq. (6).

 () ()k kM M P M P ， (10)

where M(Pk) is the modularity before selection is performed.

M′(Pk) is the modularity of the partition if there is a vertex vi

allocated to Pk. The partition will be tighter if the optimal

vertex is added with the largest value of μs2(vi). Thus, the

selection strategy of the optimal vertex 𝑣 in Stage Ⅱ is defined

as follows.

2

()
arg max ()

i k

s i
v N P

v v

 (11)

Fig. 7. Graph partitioning strategy in Stage Ⅱ: (a) There exist vertices g, e

in the neighbor vertex set N(Pk). The optimal vertex is selected from the

neighbor vertex set N(Pk) based on the value of μs2(vi) which is calculated by

Eq. (9); (b) Allocate the edges between vertex e and partition Pk, because the
vertex e is selected.

The edges between 𝑣 and the vertices in Pk are then

allocated to Pk. The graph partitioning strategy in Stage Ⅱ will

be explained through an example shown in Fig. 7. Before the

allocation, |Ein|=5, |Eout|=4, and the modularity of Pk is

M(Pk)=1.25. At this time, N(Pk)={g, e}. Assume that vertex g

is added to Pk, |E′in|=6, |E′out|=4, M′(Pk)=1.5, and

∆M(g)=M′(Pk)-M(Pk)=0.25; vertex e is added to Pk, |E″in|=8,

|E″out|=2, M″(Pk)=4, and ∆M(e)=M″(Pk)-M(Pk)=2.75. Vertex e

can make Pk tighter because μs2(e)> μs2(g). Therefore, e is the

optimal vertex in N(Pk). The edges connecting e and the

vertices in Pk are then allocated to Pk. The partition result after

allocation is shown in Fig. 7(b).

E. Analysis of TLP

Two characteristics of the TLP proposed are summarized

as follows.

 The graph partitioning process relies only on local

information using a local graph partitioning method.

 Only one partition must be saved in memory.

However, there also exist some limitations in the proposed

algorithm.

 The graph must be traversed in BFS (Breadth First
Search) order when the partition Pk expands.

 The selection of the optimal vertex in N(Pk) requires

traversing all the vertices in N(Pk), which may

degrade time performance when N(Pk) is very large.

Time and space complexity. Denote d as the average
degree of the vertices in the graph G, and L as the maximum
number of vertices in each partition. At first, there is only one
vertex in partition Pk, and the algorithm traverses d vertices to
determine which vertex to select into Pk. There are now two
vertices in Pk, and the algorithm should traverse at most 2d
vertices, and so on. In general, when there are L vertices in Pk,
Ld vertices at most should be traversed. Furthermore, we need
O(d) for each vertex computation in N(Pk). Because

∑ i ∗ d ∗ dL
i=1 =d

2
L(L+1)/2 , the time complexity of our

algorithm is O(L2d
2
). The space complexity is O(Ld) because

we need to store only Pk and N(Pk).

For the state-of-the-art graph partitioning algorithm
METIS [18], the time complexity is O(n+m+klog(k)), and the
space complexity is O(n). Although the time complexity of
TLP is slightly higher than that of METIS, the space
complexity of TLP is much lower than that of METIS. In
Section Ⅳ, the partitioning quality of two algorithms will also
be compared.

IV. EXPERIMENTS

In this section, the performance of our algorithm, analyzed

through experiments, is discussed. First, the evaluation value,

experimental platform, and real-world datasets are introduced.

In Section 4.2, the proposed TLP algorithm is compared with

four other algorithms. In Section 4.3, the two-stage method is

compared with the one-stage method by redefining the

division criterion of the two stages.

A. Setup

Evaluation. The RF [13] is illustrated in Eq. (1) as a

measurement of the quality of graph partitioning. The greater

the number of spanned vertices in each partition, the larger the

𝑅𝐹 will be. The minimum RF is RF=1, which means there is

no spanned vertex in any partition.

Experimental Environment. The TLP algorithm

proposed in this paper was implemented in Python. We

evaluate all graph partitioning algorithms on a machine with

an Intel i7-8700k 3.70 GHz Core processor and 48 GB RAM.

Datasets. We used nine real-world graph datasets for our

experiments. The statistics for the graphs are listed in Table

Ⅲ. Graphs G1-G8 can be found in SNAP [24], and G9 comes

from the huapu system [25].

TABLE III. REAL-WORLD GRAPH DATASETS

B. Performance Comparison

In this subsection, we discuss the testing of the TLP

algorithm on different graphs and compare it with several

state-of-the-art graph partitioning algorithms. The comparison

algorithms used in this study include METIS [18], LDG [15],

DBH [11], and Random [8].

 METIS is one of the graph partitioning algorithms

with the highest precision and is widely used in

distributed graph computing systems. However, it is

difficult for METIS to manage large graphs because

it is an offline graph partitioning algorithm [14].

 LDG is a classic streaming graph partitioning

algorithm that is characterized by the ability to

quickly perform graph partitioning operations based

on partial graph data information. Compared with

METIS, LDG is less accurate.

 DBH mainly focuses on the skewed degree

distribution of power-law graphs. Experiments have

proved that DBH has better precision when dividing

graph data that obey the power-law distribution.

 Random is a simple random graph partitioning

algorithm. It can quickly divide a graph into different

partitions in scenarios where accuracy is not required.

To intuitively compare the accuracy of each algorithm,

the result for Random is regarded as the worst

partitioning quality in this study.

Our proposed TLP algorithm and the above four

algorithms were run on nine different graph datasets with

partition number p=10, 15, 20. The results are shown in Fig.

8.

Fig. 8(a), Fig. 8(b), and Fig. 8(c) show the graph

partitioning results when p=10, 15, 20, respectively. The x-

axis represents RF, which is a measurement of graph

partitioning performance. The smaller the RF, the better the

graph partitioning performance. From comparing the

experimental results, we obtain the following conclusions.

 The qualities of graph partitioning with TLP and

METIS are better than other algorithms in all cases.

 In most cases, TLP performs better than METIS,

while some performances of TLP are slightly worse

than those of METIS.

To compare TLP with METIS in more detail, the

differences in RF between the two algorithms, ∆RF, is defined

as follows.

 (METIS) (TLP)RF RF RF (12)

Where ∆RF >0, the performance of TLP is better than

METIS. The ∆RF in all cases is shown in Table Ⅳ.

TABLE IV. VALUE OF ∆RF BASED ON NINE GRAPH DATASETS WHEN

P=10, 15, 20

 G1 G2 G3 G4 G5

p=10 1.19 0.32 0.23 －0.09 0.14

p=15 1.29 0.64 0.18 －0.07 0.08

p=20 1.56 0.85 0.20 －0.09 0.12

 G6 G7 G8 G9 Average

p=10 0.04 0.10 0.37 0.02 0.26

p=15 0.03 0.07 0.47 0.03 0.30

p=20 0.05 0.09 0.48 0.03 0.36

As shown in Table Ⅳ, ∆RF >0 in eight graphs when p=10,

15, 20, respectively, which means that the partitioning

qualities of TLP are better than those of METIS in most

situations. The averages of ∆RF are also larger than 0 for

different values of p, thus TLP performs better than METIS

overall.

C. Comparison of Different Divisions of Two Stages

To prove the superiority of the TLP algorithm that divides

the two stages based on modularity, we set the division

between the two stages according to the number of edges in

each partition and compare it with the TLP algorithm through

experiments. The change in the division between the two

stages is shown in Table Ⅴ.

TABLE V. THE DIVISION BETWEEN TWO STAGES BASED ON THE

NUMBER OF EDGES

Stage Criteria

Stage Ⅰ 0<|E(Pk)|≤R·C

Stage Ⅱ R·C<|E(Pk)|≤C

where 𝑅 is the ratio parameter of the two stages.

|E(Pk)|≤R·C and R·C<|E(Pk)| refer to Stage Ⅰ and Stage Ⅱ of

the graph partitioning, respectively. Particularly, there is only

Stage Ⅱ in the graph partitioning process when R=0, and there

is only Stage Ⅰ when R=1. For ease of recollection, we call this

algorithm TLP_R.

To evaluate the influence of R on graph partitioning

performance in detail, 11 different values of R are taken from

[0, 1] with an even step length of 0.1. The experimental results

with different values of R on 9 graphs are shown in Fig. 9, Fig.

10, and Fig. 11, where p=10, 15, 20.

The above insets represent the performances of TLP and

TLP_R based on different real-world graphs where p=10, 15,

20. The horizontal ordinate and vertical coordinate of each

inset represent different values of R and RF, respectively.

Therefore, the following conclusions can be drawn from the

above experimental results:

(1) In TLP_R, all the values of R satisfy R∈(0, 1),

corresponding to the optimal partitioning results.

(2) In TLP_R, the values of R satisfy R ∈ {0, 1},

Graph Name Notations |V(G)| |E(G)| |V(G)|+|E(G)|

email-Eu-core G1 1,005 25,571 26,576

Wiki-Vote G2 7,115 103,689 110,804

CA-HepPh G3 12,008 118,521 130,529

Email-Enron G4 36,692 183,831 220,523

Slashdot081106 G5 77,357 516,575 593,932

soc_Epinions1 G6 75,879 508,837 584,716

Slashdot090221 G7 82,144 549,202 631,346

Slashdot0811 G8 77,36 905,468 905,468

huapu G9 4,309,321 7,030,787 11,340,108

corresponding to the worst partitioning results.

(3) In TLP_R, the optimal partitioning result

corresponds to different R values in different cases.

(4) Compared with TLP_R, TLP can obtain near-

optimal partitioning results in most cases.

Combining conclusions (1) and (2), we deduce that graph

partitioning with the two-stage heuristic method results in

better quality than with the one-stage heuristic. Conclusions

(3) and (4) mean TLP can obtain better partitioning results

than TLP_R without adjusting parameters.

Fig. 8. Replication factors for different algorithms run on real-world graphs.

The number of partitions in (a), (b), and (c) are 10, 15, and 20, respectively.

D. Analysis of Average Degree in Two-Stage Method

In this subsection, we will analyze the differences between

these two stages using the average degree. As described in

Section Ⅲ, TLP divides the process of graph partitioning into

two stages, in which different partitioning strategies are

adopted. In Stage Ⅰ, the core vertexes with the large degrees in

the graph are more likely to be chosen. In Stage Ⅱ, based on

these center nodes, the local partition expands by selecting the

vertices which are close to the existing partition.

To analyze the above two strategies, the average degree of

all vertices in these two stages are counted. As shown in Table

Ⅵ. The average degrees of all vertices in stage Ⅰ are much

greater than that in stage Ⅱ, which means the core vertices with

the large degrees are chosen in stage Ⅰ indeed. In stage Ⅱ, the

local partition expands with these core vertices as the center,

so the average degrees in stage Ⅱ are smaller than that stage Ⅰ.

TABLE VI. THE AVERAGE DEGREE OF ALL VERTICES IN TWO STAGES

BASED ON NINE GRAPHS WHERE P=10, 15, 20

 p=10 p=15 p=20

Stage Ⅰ Stage Ⅱ Stage Ⅰ Stage Ⅱ Stage Ⅰ Stage Ⅱ

G1 45.85 13.16 32.44 11.15 39.20 9.29

G2 57.13 7.67 46.90 6.25 63.34 7.19

G3 236.86 12.72 196.17 12.78 123.01 12.48

G4 31.46 7.63 41.08 6.22 29.21 5.79

G5 33.25 8.92 34.55 8.36 30.37 8.00

G6 65.62 5.09 78.16 5.80 46.46 5.52

G7 48.60 9.23 26.27 8.82 32.49 8.10

G8 13.93 10.95 45.42 9.17 53.56 8.24

G9 30.91 4.15 166.99 4.11 58.66 4.02

V. CONCLUSIONS

In distributed graph computation systems, graph data

partitioning impacts the communication overhead and the

workload balance between computing resources. In this paper,

a local graph partitioning method that relies on local graph

information and needs to save data for only one single

partition was proposed. Our proposed algorithm was tested on

several real-world datasets and the results were compared with

several state-of-the-art graph partitioning algorithms. The

experiments demonstrated the superiority of our algorithm.

Our algorithm can be further improved in several aspects.

Firstly, although the TLP algorithm can achieve good

partitioning quality relying on local graph information, the

time complexity of TLP is higher than some state-of-the-art

graph partitioning algorithms. We expect the partitioning

efficiency of TLP will be improved in the future.

Secondly, the graph data must be traversed in BFS

(Breadth First Search) order when each partition expands,

which means the unpartitioned graph data need to be sorted in

BFS order after one vertex is partitioned. In future work, a

sliding window mechanism will be introduced to sort and

partition the graph data in parallel, which will be more suitable

for large-scale graph partitioning.

VI. ACKNOWLEDGMENTS

This work was partly supported by the National Key

Research and Development Program of China, under grant

2016YFB1000901 and the National Natural Science

Foundation of China under grant 91746209. Chenyang Bu

was also partly supported by the Fundamental Research Funds

for the Central Universities (No. JZ2018HGBH0279)，the

National Natural Science Foundation of China (No.

61573327), and the Project funded by the China Postdoctoral

Science Foundation (No. 2018M630704).

Fig. 9. Replication factors for TLP and TLP_R on real-world graphs where p=10. The values of R in TLP_R are taken from [0,1] with an even step length of

0.1. (1)-(9) is the experimental results based on 𝐺1 − 𝐺9.

Fig. 10. Replication factors for TLP and TLP_R on real-world graphs where p=15. The values of R in TLP_R are taken from [0,1] with an even step length of

0.1. (1)-(9) is the experimental results based on 𝐺1 − 𝐺9.

Fig. 11. Replication factors for TLP and TLP_R on real-world graphs where p=20. The values of R in TLP_R are taken from [0,1] with an even step length of

0.1. (1)-(9) is the experimental results based on 𝐺1 − 𝐺9.

REFERENCES

[1] Z. Bu, J. Cao, H. Li, G. Gao, and H. Tao, "Gleam: A

Graph Clustering Framework based on Potential Game

Optimization for Large-scale Social Networks,"

Knowledge and Information Systems, vol. 55, no. 3, pp.

741-770, 2018.

[2] W. Luo, Z. Yan, C. Bu, and D. Zhang, "Community

Detection by Fuzzy Relations," IEEE Transactions on

Emerging Topics in Computing, vol. 1, no. 1, pp. 1-14,

2017.

[3] W. Gao, W. Luo, and C. Bu, "Evolutionary Community

Discovery in Dynamic Networks Based on Leader

Nodes," in International Conference on Big Data and

Smart Computing (BigComp), Hong Kong, China,

2016, pp. 53-60: IEEE.

[4] Y. Jiang, G. Wu, C. Bu, and X. Hu, "Chinese Entity

Relation Extraction Based on Syntactic Features," in

IEEE International Conference on Big Knowledge

(ICBK), Singapore, Singapore, 2018, pp. 99-105: IEEE.

[5] Y. Shan, C. Bu, X. Liu, S. Ji, and L. Li, "Confidence-

Aware Negative Sampling Method for Noisy

Knowledge Graph Embedding," in 2018 IEEE

International Conference on Big Knowledge (ICBK),

Singapore, Singapore, 2018, pp. 33-40: IEEE.

[6] X. Wu, X. Zhu, G. Wu, and W. Ding, "Data Mining

with Big Data," IEEE Transactions on Knowledge and

Data Engineering, vol. 26, no. 1, pp. 97-107, 2014.

[7] G. Malewicz et al., "Pregel: A System for Large-scale

Graph Processing," in ACM International Conference

on Management of Data (SIGMOD), Indianapolis,

Indiana, USA, 2010, pp. 135-146: ACM.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C.

Guestrin, "Powergraph: Distributed Graph-parallel

Computation on Natural Graphs," in USENIX

Conference on Operating Systems Design and

Implementation (OSDI), Hollywood, CA, USA, 2012,

pp. 17-30: USENIX Association.

[9] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E.

Guestrin, and J. Hellerstein, "GraphLab: A New

Framework for Parallel Machine Learning," in Annual

Conference on Uncertainty in Artificial Intelligence

(UAI), Catalina Island, CA, USA, 2014, pp. 340-349:

AUAI.

[10] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M.

J. Franklin, and I. Stoica, "Graphx: Graph Processing in

A Distributed Dataflow Framework," in USENIX

Conference on Operating Systems Design and

Implementation (OSDI), Berkeley, CA, USA, 2014, pp.

599-613: USENIX Association.

[11] C. Xie, L. Yan, W. Li, and Z. Zhang, "Distributed

Power-law Graph Computing: Theoretical and

Empirical Analysis," in Advances in Neural

Information Processing Systems (NIPS), Montreal,

Quebec, Canada, 2014, pp. 1673-1681: MIT.

[12] A. Roy, L. Bindschaedler, J. Malicevic, and W.

Zwaenepoel, "Chaos: Scale-out Graph Processing from

Secondary Storage," in Symposium on Operating

Systems Principles (SOSP), Monterey, California,

2015, pp. 410-424: ACM.

[13] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li, "Graph

Edge Partitioning via Neighborhood Heuristic," in

International Conference on Knowledge Discovery and

Data Mining (ACM SIGKDD), Halifax, NS, Canada,

2017, pp. 605-614: ACM.

[14] Y. Guo, S. Hong, H. Chafi, A. Iosup, and D. Epema,

"Modeling, Analysis, and Experimental Comparison of

Streaming Graph-partitioning Policies," Journal of

Parallel and Distributed Computing, vol. 108, no. 1, pp.

106-121, 2017.

[15] I. Stanton and G. Kliot, "Streaming Graph Partitioning

for Large Distributed Graphs," in International

Conference on Knowledge Discovery and Data Mining

(ACM SIGKDD), Beijing, China, 2012, pp. 1222-1230:

ACM.

[16] F. Bourse, M. Lelarge, and M. Vojnovic, "Balanced

Graph Edge Partition," in International Conference on

Knowledge Discovery and Data Mining (ACM

SIGKDD), New York, USA, 2014, pp. 1456-1465:

ACM.

[17] B. W. Kernighan and S. Lin, "An Efficient Heuristic

Procedure for Partitioning Graphs," The Bell System

Technical Journal, vol. 49, no. 2, pp. 291-307, 1970.

[18] G. Karypis and V. Kumar, "A Fast And High Quality

Multilevel Scheme for Partitioning Irregular Graphs,"

SIAM Journal On Scientific Computing, vol. 20, no. 1,

pp. 359-392, 1998.

[19] D. Margo and M. Seltzer, "A Scalable Distributed

Graph Partitioner," in International Conference on Very

Large Data Bases (VLDB Endowment), Kohala Coast,

Hawaii, 2015, vol. 8, no. 12, pp. 1478-1489: ACM.

[20] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M.

Vojnovic, "Fennel: Streaming Graph Partitioning for

Massive Scale Graphs," in ACM International

Conference on Web Search and Data Mining (WSDM),

New York, USA, 2014, pp. 333-342: ACM.

[21] F. Luo, Y. Yang, C. Chen, R. Chang, J. Zhou, and R. H.

Scheuermann, "Modular Organization of Protein

Interaction Networks," Bioinformatics, vol. 23, no. 2,

pp. 207-214, 2006.

[22] W. Luo, D. Zhang, H. Jiang, L. Ni, and Y. Hu, "Local

Community Detection with the Dynamic Membership

Function," IEEE Transactions on Fuzzy Systems, vol.

26, no. 5, pp. 3136-3150, 2018.

[23] J. Cao, Z. Bu, G. Gao, and H. Tao, "Weighted

Modularity Optimization for Crisp and Fuzzy

Community Detection in Large-scale Networks,"

Physica A: Statistical Mechanics and its Applications,

vol. 462, no. 15, pp. 386-395, 2016.

[24] J. Leskovec and R. Sosič, "Snap: A General-purpose

Network Analysis and Graph-mining Library," ACM

Transactions on Intelligent Systems and Technology,

vol. 8, no. 1, pp. 1-20, 2016.

[25] The website of huapu system. (2017). Accessed on May

15 2017. [Online]. Available: http://huapu.bigke.org/

