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Abstract—Graph edge partitioning divides the edges of an 

input graph into multiple balanced partitions of a given size to 

minimize the sum of vertices that are cut, which is critical to the 

performance of distributed graph computation platforms. 

Existing graph partitioning methods can be classified into two 

categories: offline graph partitioning and streaming graph 

partitioning. The first category requires global information for 

a graph during the partitioning, which is expensive in terms of 

time and memory for large-scale graphs. The second category, 

however, creates partitions solely based on the received edge 

information, which may result in lower performance than the 

offline methods. Therefore, in this study, the concept of local 

graph partitioning is introduced from local community 

detection to consider only local information, i.e., a part of the 

graph, instead of the graph as a whole, during the partitioning. 

The characteristic of storing only local information is important 

because real-world graphs are often large in scale, or they 

increase incrementally. Based on this idea, we propose a two-

stage local partitioning algorithm, where the partitioning 

process is divided into two stages according to the structural 

changes of the current partition, and two different strategies are 

introduced to deal with the respective stages. Experimental 

results with real-world graphs demonstrate that the proposed 

algorithm outperforms the rival algorithms in most cases, 

including the state-of-the-art algorithm METIS. 

Keywords—Graph edge partitioning, Distributed graph 

computing, Local information 

I. INTRODUCTION  

With the advent of the big data era, graphs are used in a 

wide range of fields, such as social networks [1-3] and 

knowledge graphs [4, 5]. The scale of graph data has increased 

rapidly and has already exceeded the processing capabilities 

of single machines [6]. To achieve better performance, 

distributed graph computation systems that process large-

scale graphs on a cluster of machines, such as Pregel [7], 

PowerGraph [8], GraphLab [9], and GraphX [10], have been 

proposed. For such systems, graph partitioning plays a 

significant role in improving their computing performance 

because it determines the computational workload of each 

machine and the communication between them. 

In distributed graph computation systems, graph 

partitioning is classified into two types: vertex partitioning, 

and edge partitioning. Most of the traditional distributed graph 

computation systems, such as Pregel and GraphLab, use 

vertex partitioning, where vertices are evenly assigned to 

different partitions by cutting the edges. However, most real-

world graphs follow the power-law distribution, i.e., most of 

the vertices have few relative neighbors, while a few vertices 

have many neighbors. In this case, vertex partitioning 

increases workload imbalance and communication overhead 

because of the high-degree vertices and the number of cross-

partition edges [11]. Different from vertex partitioning, edge 

partitioning evenly assigns edges to different partitions by 

cutting vertices. Researchers have demonstrated that edge 

partitioning performs better than vertex partitioning on many 

real-world graphs [8, 10, 11]. Therefore, edge partitioning has 

been widely adopted in recent systems, including PowerGraph, 

GraphX, and Chaos [12]. 

One traditional approach, referred to as offline graph 

partitioning, is based on a global view of the graph. This 

method obtains high-quality partitions by using multiple 

iterations based on complete graph data and is widely used in 

distributed graph computation systems. As the scale of graph 

data has increased, the offline method has become unsuitable 

for large-scale graph partitioning because it is difficult to 

obtain global information for a graph [13]. Therefore, 

streaming graph partitioning has been proposed, which treats 

graph data as an online stream by reading the data serially, and 

then determining the target partition of a vertex when it is 

accessed [14]. With the streaming graph partitioning method, 

only partial graph data is needed, which is more suitable than 

the offline method for a large-scale graph. However, some 

shortcomings in the streaming heuristics have appeared. 

Firstly, compared with the offline method, the streaming 

method results in worse partitioning quality. Secondly, to 

provide maximum flexibility, the entire arrived graph data 

must be accessed [15], which means streaming graph 

partitioning also requires large portions of the graph. 

To address the problems mentioned above, a local graph 

partitioning method is designed in this study. It relies only on 

the local information (i.e., a part of the graph) instead of the 

global information during the partitioning. Compared with the 

offline method, local graph partitioning is based on less graph 

information. Compared with the streaming method, local 

graph partitioning only needs to store data in memory for a 

single partition at most. 

Based on local graph partitioning, a two-stage local 

partitioning (TLP) algorithm is designed. Most of existing 

graph partitioning algorithms adopt a single partitioning 

strategy while ignoring the influence of graph structure 

changes on the partitioning quality during the partitioning 

process. In this study, however, the concept of modularity is 

introduced from local community detection to quantify the 

structure of local partitions. We prove that the modularity of 

each partition is positively correlated with the partitioning 

quality. According to the structural changes of the local 



partition, the partitioning process of each partition is divided 

into two stages, and different graph partitioning strategies are 

introduced at each stage. Experiments demonstrate that the 

proposed TLP algorithm performs well for graph data of 

different scales. The main contributions of this paper can be 

summarized as follows. 

 A local graph partitioning method is designed to 

partition a graph using only local information. At the 

same time, the method needs to save data for only a 

single partition in memory, which is suitable for large-

scale graph partitioning. 

 To quantify the structure change of a graph during the 
partitioning process, the concept of modularity is 
introduced. Meanwhile, the modularity of each 
partition is proved to be positively correlated with the 
graph partitioning quality. 

 Based on local graph partitioning, a new TLP 

algorithm is proposed. The partitioning process of 

each partition is divided into two stages according to 

modularity changes of local partitions. Each stage 

adopts one corresponding partitioning strategy. 

 The TLP algorithm is tested on real-world graphs of 

different scales and is compared with several classic 

graph partitioning algorithms. The experiments 

demonstrate that TLP can achieve high-quality 

partitions on graphs of different scales. 

The structure of this paper is as follows. Section Ⅱ states 

the graph partitioning problem and introduces mainstream 

graph partitioning algorithms through two classification 

methods. The concept of modularity is also introduced. In 

Section III, a local graph partitioning method is designed, and 

a new TLP algorithm is proposed. In Section Ⅳ, the 

performance of the TLP algorithm is analyzed on an extensive 

set of real-world graphs and is compared with several state-of-

the-art algorithms. Finally, Section Ⅴ concludes the paper. 

II. BACKGROUNDS 

In this section, graph partitioning algorithms are first 

introduced through two different classifications. Then the 

concept of modularity is introduced. 

A. Vertex Partition and Edge Partition 

Graph data consists of vertices and edges; thus, graph 

partitioning can be classified into vertex partitioning and edge 

partitioning.  

Definition 1. Cross-partition edge. The edge connecting 

two vertices that are allocated to different partitions in vertex 

partitioning. 

Definition 2. Spanned vertex. The vertex is adjacent to 

two edges that are allocated to different partitions in edge 

partitioning. 

Vertex partitioning refers to the allocation of all the 

vertices in a graph by cutting the edges. The objective of 

vertex partitioning is to minimize the number of cross-

partition edges and balance the number of vertices between 

the partitions. To ensure that each partition can perform local 

calculations independently in a distributed graph computation 

system, each cross-partition edge generates a corresponding 

ghost (a local replica) [8]. The process of vertex partitioning 

is illustrated in Fig. 1(a). Edge ea,b and ea,c are the cross-

partition edges, and the ghosts are the shaded vertices. 

Edge partitioning refers to the even allocation of all the 

edges of a graph and allows vertices to span partitions. In edge 

partitioning, a spanned vertex generates a mirror (a local 

replica) of the vertex. The adjacent edges of vertex a in Fig. 

1(b) are located in two partitions, resulting in a mirror shown 

as a shadow. The objective of edge partitioning is to minimize 

the number of mirrors and balance the number of edges 

between partitions. 

 

Fig. 1. Vertex vs. edge partitioning: (a) Graph G is partitioned into two 

partitions by cutting two edges, and the shaded vertices are ghosts; (b) Graph 

G is partitioned into two partitions by cutting one vertex, and the shaded 
vertex is a mirror. 

In existing distributed graph processing systems, the 

computational load of machines is usually determined by the 

number of edges and the communication between the 

machines, which is related to the number of edges shared 

across machines. Therefore, the vertex partitioning algorithm 

usually leads to an uneven computing load, and a large number 

of edges shared across machines also blocks system 

communication [11]. Therefore, more and more distributed 

graph processing systems have begun to use edge partitioning 

to improve system efficiency. 

Furthermore, the problem statement for graph edge 

partitioning is presented below. 

Denote G=(V, E) as an undirected graph with n=|V| 

vertices and m=|E| edges. For a subgraph S, denote V(S) and 

E(S) as the vertex set and edge set of S, respectively. 

Definition 3. Balanced p-edge graph partitioning. Graph 

G is partitioned into p partitions. Each partition is denoted as 

Pk (k∈{1, 2, …, p}). There are no duplicate edges between 

partitions, i.e., E(Pi)∩E(Pj)=∅ (i, j∈{1, 2, …, p}, i≠j), and 

|E(Pk)|≤C, where C is the maximum capacity for edges in each 

partition. 

Definition 4. Replication factor (RF) [13, 16]. To quantify 

the number of mirror vertices, the RF is defined as 
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The graph edge partitioning problem consists of two 

aspects, such that 1) each partition load is within a given 

bound, and 2) the number of mirror vertices is minimized. 

Hence, graph edge partitioning can be defined with Definition 

5. In Table I, we give an overview of the notation used in this 

paper, in order of presentation. 

Definition 5. Graph edge partitioning. The graph edge 

partitioning problem seeks to find a balanced p-edge graph 

partitioning to minimize the RF. 

TABLE I.  NOTATION OVERVIEW 

G=(V, E) Graph with a set of vertices V and edges E. 

Pk The kth partition of G. 

ea,b An edge connecting vertices a and b. 

n=|V| The number of vertices in V. 

m=|E| The number of edges in E. 

V(S) The vertices set of a subgraph S. 

E(S) The edges set of a subgraph S. 

p The number of partitions. 

C The maximum capacity for edges in each partition. 

RF The replication factor of a graph edge partitioning. 

M(Pk) The modularity of Pk. 

Eout(Pk) The set of external edges in Pk. 

N(vi) The set of vertices that are adjacent to vertex vi. 

N(Pk) The set of vertices that are adjacent to any vertices in Pk. 

μs1(vi) The criterion for selecting vertex v in Stage Ⅰ. 

μs2(vi) The criterion for selecting vertex v in Stage Ⅱ. 

d The average degree of the vertices in G. 

L The maximum number of vertices in each partition. 

R The ratio parameter of two stages. 

B. Offline Partition and Streaming Partition 

From another classification perspective, graph partitioning 

algorithms are classified into offline graph partitioning 

algorithms and streaming graph partitioning algorithms. 

Offline graph partitioning algorithms are based on global 

information and are usually adopted in early distributed graph 

computation systems. As shown in Fig. 2(a), offline graph 

partitioning requires complete graph data before the 

partitioning process. For example, the classic algorithm 

Kernighan-Lin (KL) [17] partitions the graph into two parts 

initially, and exchanges arbitrary pairs of vertices between the 

two parts to find the optimal solution. Based on the global 

view of the graph, the KL algorithm can obtain a good result 

if there is good initialization. METIS [18] adopts a multi-level 

partitioning scheme, which includes the following three steps: 

coarsening to reduce the size of the graph; partitioning the 

reduced graph; decoarsening to map partitions back to the 

original graph. This leads to state-of-the-art quality partitions 

on a great number of graphs [19]. 

Different from offline graph partitioning, streaming graph 

partitioning assumes that the graph data arrives in a stream, 

and the target partition is determined as the data arrives. As 

shown in Fig. 2(b), the edges arrive in the order of e1, e2, e3, …. 

When an edge arrives, it can be allocated to the target partition. 

For example, e1is allocated to P1, and e2 is allocated to P2, etc. 

The classic streaming graph partitioning algorithms such as 

LDG [15] and FENNEL [20] have greedy policies using 

different heuristics to deal with the received graph data. 

However, their precision is lower than that of METIS. Almost 

all streaming graph partitioning algorithms have the following 

characteristics: 1) When the data arrives, it is immediately 

allocated to the target partition, and it is not moved after it is 

placed. 2) Only the received data is accessed for partitioning. 

 
Fig. 2. Processes of offline graph partitioning and streaming graph 

partitioning: (a) After the graph G is obtained, it is partitioned into three 

partitions; (b) The graph data arrives in an edge stream, and the target 
partition is determined after each edge arrives. 

In general, offline graph partitioning algorithms with high 

partitioning accuracy cannot deal with large-scale graphs 

because they require complete graph information. Instead, 

large graphs can be partitioned quickly using streaming graph 

partitioning algorithms based on partial graph information. 

However, the performance of streaming partitioning is poor, 

and all the received data must be saved. As the amount of 

received data gradually increases, the data that must be saved 

gradually increases, which means large portions of the graph 

are required. 

C. Modularity 

The concept of modularity was commonly used in the 

community detection area. For example, Luo et al. introduced 

the concept of modularity M to measure the quality of the 

detected communities for local community detection [21]. The 

greater the value of M, the better the detected communities. 

Luo et al. use modularity to analyze the characteristic of the 

local community in the process of community detection [22]. 

Jie et al. use weighted modularity to find crisp and fuzzy 

communities in undirected and unweighted networks [23]. In 

this study, we introduce the concept of modularity to graph 

partitioning problems. Related concepts are defined as follows. 

Definition 6. Internal edge. The edge in one partition 

connecting two vertices that both belong to this partition. 

Definition 7. External edge. The edge in one partition 

connecting two vertices where one of the vertices is in the 

same partition, and one is not. 

Definition 8. Modularity [22]. The modularity of one 

partition is the ratio of the internal edges to the external edges, 

which is denoted as Eq. (2). 
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where E(Pk) is denoted as the set of internal edges in Pk. Eout(Pk) 

is denoted as the set of external edges in Pk. |E(Pk)|and 

|Eout(Pk)| represents the number of edges in E(Pk) and Eout(Pk), 

respectively. With the graph partitioning, the number of 

internal edges and external edges in one partition is 

continually changing. When the M(Pk) is small, the partition 

structure is loose. As the number of edges allocated to Pk 

gradually increases and the value of M(Pk) gets larger, Pk 

becomes tighter. 

Furthermore, to affirm the relationship between 

modularity and the structure of each partition, we prove the 

modularity of each partition is positively correlated with the 

graph partitioning quality in section Ⅲ. 

III. PROPOSED ALGORITHMS 

In this section, a TLP algorithm is proposed. Section A 

introduces the motivation for the algorithm. In Section B, the 

frame of the TLP algorithm is presented. Sections C and D 

illustrate respective partitioning strategies for the two stages. 

Section E presents the complexity analysis of the TLP 

algorithm. 

A. Motivation 

Local Graph Partitioning. As mentioned in Section 2.3, 

the current graph partitioning algorithms can be classified into 

offline graph partitioning algorithms and streaming graph 

partitioning algorithms. The former algorithms have higher 

partitioning precision, but they need complete graph data 

before partitioning begins. The latter algorithms can partition 

graphs according to partial graph data, but they need to save 

all the received data, and the partitioning quality is worse than 

with offline heuristics. 

 
Fig. 3. Processes of local graph partitioning. Graph G is partitioned into 

several parts sequentially. In each partition, a single vertex constitutes the 

initial local partition at first. Then, one vertex is added into the local partition 

at each step until the local partition is full. Only the current local partition 
and neighbors are accessed in each round. 

Considering the limits of the above two methods, a local 

graph partitioning method is proposed in this paper. As shown 

in Fig. 3, a graph is partitioned into three partitions 

sequentially. In round 1, the initially empty local partition is 

expanded in steps when |E(P1)|≤C. In each step, one optimal 

vertex is selected from the neighbor vertex set of Pk by a 

heuristic method, and then the edges between the optimal 

vertex and P1 are allocated to P1. After round 1 is over, round 

2 will start with a new vertex to obtain partition P2. The graph 

partitioning is complete when all three rounds have been 

completed. 

Through the above analysis, the characteristics of the local 

graph partitioning method can be summarized as follows. 

 Local graph partitioning relies only on information 

about the local partition, which is suitable for large 

graphs. 

 Only one partition is obtained per round. Pk will not 

change once round k is over, which means that only 

data for one partition needs to be saved in memory. 

Therefore, this method can effectively reduce stored 

data. 

Two stages. Most of existing graph partitioning 

algorithms adopt a single partitioning strategy during the 

whole partitioning process. However, the change in graph 

structure caused by each partition can influence the 

partitioning quality. For example, in the initial partitioning 

process, the graph structure of a partition can be loose because 

the number of edges is relatively small. With the graph 

partitioning, the partition can gradually be more compact. 

To quantify the structure of the partition, we introduce the 

concept of modularity from the field of local community 

detection [21, 22]. Modularity was originally proposed to 

detect the local community. In this study, however, 

modularity is used to measure the structure of each partition. 

To improve the accuracy of local graph partitioning, the 

partitioning process is divided into two stages according to its 

modularity. In Stage Ⅰ, a graph partitioning strategy is 

proposed to choose the closest and the local maximal-degree 

vertex. In Stage Ⅱ, the vertex that makes the local partition 

tightest is selected based on the other partitioning strategy.  

 

Fig. 4. The local partition in two stages: (a) The modularity of the local 
partition Pk is small in the initial stage, and the vertexes with larger degrees 

are selected as the core vertexes of the partition Pk; (b) The structure of Pk is 

tight in stage Ⅱ, and the vertexes close to Pk are chosen. 

As shown in Fig. 4(a), the modularity of  the local partition 

𝑃𝑘 is small in the initial stage. In this case, the core vertexes 

with the large degrees in the graph are regarded as more proper 

to be selected. In Figure 4(b), as the local partition structure in 

stage Ⅱ is tighter than in stage Ⅰ, the vertexes close to 𝑃𝑘 are 

chosen. The quality of graph partitioning can be effectively 

improved with this two-stage graph partitioning method, as 

shown by the experiments. 

B. TLP Algorithm 

In this subsection, a two-stage local partitioning (TLP) 

algorithm is proposed. In order to quantify the structure 



change of each partition with the modularity, we first prove 

the correlation between the modularity of each partition and 

the quality of graph partitioning, which is given as follows. 

Claim 1. For any graph G and any positive integer p, the 

modularity of Pk is negatively correlated with the replication 

factor of the balanced p-edge graph partitioning. 

Proof. An averaging argument is used. Given a graph 

G=(V, E) with average degree d, the number of partitions is p. 

We have 

 .2V d E   (3) 

Assume that the number of edges in each partition is equal 

in balanced p-edge graph partitioning. Then,  

 ( ) .2 kV d p E P    (4) 

As for Pk, we also have 

 ( ) ( ( ) ( ) )2k k out kV P d E P E P   . (5) 

Combining Eq. (4) and Eq. (5), we obtain 
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. (6) 

From Eq. (6), we can deduce that the larger the modularity 

of each partition, the smaller the RF, which completes the 

proof. 

 
Fig. 5. Two stages of local graph edge partitioning: (a) In stage Ⅰ, the 

modularity of Pk is smaller than 1, which means the partition structure is 

loose; (b) In stage Ⅱ, the modularity of Pk is not less than 1, which means the 
partition structure is compact. 

At the initial partitioning of Pk, the number of allocated 

edges in Pk is small, and the number of external edges in Pk is 

large. At this time, the partition structure is loose, thus M(Pk) 

is small. As the number of edges allocated to Pk gradually 

increases and the value of M(Pk) gets larger, Pk becomes 

tighter. In the TLP algorithm, the partitioning process of 𝑃𝑘 is 

divided into two stages according to M(Pk). The criteria for the 

two-stage division is shown in Table Ⅱ. 

TABLE II.  DIVISION INTO TWO STAGES BASED ON MODULARITY 

Stage Criteria 

Stage Ⅰ 0<M(Pk)≤1 

Stage Ⅱ 1≤M(Pk) 

When 0<M(Pk)≤1, the process of graph partitioning is in 

Stage Ⅰ where there are more internal edges than external 

edges in Pk. The process of graph partitioning is in Stage Ⅱ 

when M(Pk)≥1, where the partition becomes tighter. Figure 5 

displays an example of both stages. In Fig. 5(a), |E(Pk)|=2, 

|Eout(Pk)|=3, and M(Pk)=0.67, so the partitioning is in Stage Ⅰ. 

In Fig. 5(b), M(Pk)=5, thus the partitioning is in Stage Ⅱ. 

Different graph partitioning strategies for Stage I and 

Stage II are proposed in subsection C and D, respectively. The 

TLP algorithm for one partition is shown in Algorithm 1. 

C. Graph Partitioning Strategy in Stage Ⅰ 

The graph partitioning strategy in Stage Ⅰ selects the 

optimal vertex v from N(Pk) that is close to Pk and has a high 

degree. The definition of N(Pk) is as follows. 

The criterion μs1(vi) [22] for selecting vertex v from N(Pk) 

is as shown in Eq. (3). 

 1
( )

( ) ( )
( ) max

( )j i k

i j

s i
v N v P

j

N v N v
v

N v


 


  (7) 

where |N(Pk)| is the number of neighbor vertices of vi. The 

closeness between vi and partition Pk is measured by the 

closeness between vi and the vertices in partition Pk according 

to Eq. (1). At the same time, when the degree of vi is large, the 

greater the number of neighbors of vi, the larger the value   

|N(vi)∩N(vj)| may be. By calculating μs1(vi) of each vertex in 

neighbor vertex set N(Pk), the selection strategy of the optimal 

vertex v is defined as follows. 
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That is, the vertex with the largest value of μs1(vi) in 

neighbor vertex set N(Pk) is selected as the optimal vertex v. 

Then, the edges between v and the vertices in partition Pk are 

allocated to Pk. To give an example, the graph partitioning 

strategy in Stage Ⅰ is explained. From Fig. 6(a), it can be 

observed that vertices a, e, and g are in the neighbor vertex set 

N(Pk). According to Eq. (3), we can calculate that μs1(a)=0.4, 

μs1(b)=0.6, and μs1(g)=0.5. 

Then, vertex e is selected as the optimal vertex according 

to Eq. (4). As can be seen, the degree of vertex e and g are the 

same, while there are more edges between e and the vertices 

in Pk than between g and the vertices in Pk. The number of 

edges between e and the vertices in Pk is equal to that between 

a and the vertices in Pk, while the degree of e is higher than 

Algorithm 1 TLP for one partition 

1. Select vertex x from G randomly; 

2. Pk←∅; 

3. N(Pk)←N(x); 

4. while |E(Pk)|≤C do 

5.     if M(Pk)≤1 do  //Stage Ⅰ 

6.         Choose vertex 𝑣 from N(Pk) according to Section 3.3; 

7.  else do          //Stage Ⅱ 

8.         Choose vertex 𝑣 from N(Pk) according to Section 3.4; 

9.     end if 

10.     Allocate edges between v and vertices in Pk; 

11.     if N(Pk) is empty do 

12.         break 

13.     end if 

14. end 



that of a. Therefore, the graph partitioning strategy in Stage Ⅰ 

achieves the selection of a vertex close to Pk with a high degree. 

 

Fig. 6. Graph partitioning strategy in Stage Ⅰ: (a) There exist vertices a, g, e 

in the neighbor vertex set N(Pk). The optimal vertex is selected from the 

neighbor vertex set N(Pk) based on the value of μs1(vi) which is calculated by 
Eq. (7); (b) Allocate the edges between vertex e and partition Pk, because the 

vertex e is selected. 

D. Graph Partitioning Strategy in Stage Ⅱ 

In Stage Ⅱ, the local partition becomes tighter with the 

expansion by adding the optimal vertex 𝑣  from N(Pk). The 

selection criterion μs2(vi) is based on the change in modularity. 

The representation of μs2(vi) is: 

 2

1
( ) 1

1
s iv

M
  

 
， (9) 

where ∆M is defined as in Eq. (6). 

 ( ) ( )k kM M P M P   ， (10) 

where M(Pk) is the modularity before selection is performed. 

M′(Pk) is the modularity of the partition if there is a vertex vi 

allocated to Pk. The partition will be tighter if the optimal 

vertex is added with the largest value of μs2(vi). Thus, the 

selection strategy of the optimal vertex 𝑣 in Stage Ⅱ is defined 

as follows. 
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Fig. 7. Graph partitioning strategy in Stage Ⅱ: (a) There exist vertices g, e 

in the neighbor vertex set N(Pk). The optimal vertex is selected from the 

neighbor vertex set N(Pk) based on the value of μs2(vi) which is calculated by 

Eq. (9); (b) Allocate the edges between vertex e and partition Pk, because the 
vertex e is selected. 

The edges between 𝑣  and the vertices in Pk are then 

allocated to Pk. The graph partitioning strategy in Stage Ⅱ will 

be explained through an example shown in Fig. 7. Before the 

allocation, |Ein|=5, |Eout|=4, and the modularity of Pk is 

M(Pk)=1.25. At this time, N(Pk)={g, e}. Assume that vertex g 

is added to Pk, |E′in|=6, |E′out|=4, M′(Pk)=1.5, and 

∆M(g)=M′(Pk)-M(Pk)=0.25; vertex e is added to Pk, |E″in|=8, 

|E″out|=2, M″(Pk)=4, and ∆M(e)=M″(Pk)-M(Pk)=2.75. Vertex e 

can make Pk tighter because μs2(e)> μs2(g). Therefore, e is the 

optimal vertex in N(Pk). The edges connecting e and the 

vertices in Pk are then allocated to Pk. The partition result after 

allocation is shown in Fig. 7(b). 

E. Analysis of TLP 

Two characteristics of the TLP proposed are summarized 

as follows. 

 The graph partitioning process relies only on local 

information using a local graph partitioning method. 

 Only one partition must be saved in memory. 

However, there also exist some limitations in the proposed 

algorithm. 

 The graph must be traversed in BFS (Breadth First 
Search) order when the partition Pk expands. 

 The selection of the optimal vertex in N(Pk) requires 

traversing all the vertices in N(Pk), which may 

degrade time performance when N(Pk) is very large. 

Time and space complexity. Denote d as the average 
degree of the vertices in the graph G, and L as the maximum 
number of vertices in each partition. At first, there is only one 
vertex in partition Pk, and the algorithm traverses d vertices to 
determine which vertex to select into Pk. There are now two 
vertices in Pk, and the algorithm should traverse at most 2d 
vertices, and so on. In general, when there are L vertices in Pk, 
Ld vertices at most should be traversed. Furthermore, we need 
O(d) for each vertex computation in N(Pk). Because 

∑ i ∗ d ∗ dL
i=1 =d

2
L(L+1)/2 , the time complexity of our 

algorithm is O(L2d
2
). The space complexity is O(Ld) because 

we need to store only Pk and N(Pk).  

For the state-of-the-art graph partitioning algorithm 
METIS [18], the time complexity is O(n+m+klog(k)), and the 
space complexity is O(n). Although the time complexity of 
TLP is slightly higher than that of METIS, the space 
complexity of TLP is much lower than that of METIS. In 
Section Ⅳ, the partitioning quality of two algorithms will also 
be compared. 

IV. EXPERIMENTS 

In this section, the performance of our algorithm, analyzed 

through experiments, is discussed. First, the evaluation value, 

experimental platform, and real-world datasets are introduced. 

In Section 4.2, the proposed TLP algorithm is compared with 

four other algorithms. In Section 4.3, the two-stage method is 

compared with the one-stage method by redefining the 

division criterion of the two stages. 

A. Setup 

Evaluation. The RF [13] is illustrated in Eq. (1) as a 

measurement of the quality of graph partitioning. The greater 

the number of spanned vertices in each partition, the larger the 

𝑅𝐹 will be. The minimum RF is RF=1, which means there is 

no spanned vertex in any partition. 

Experimental Environment. The TLP algorithm 

proposed in this paper was implemented in Python. We 

evaluate all graph partitioning algorithms on a machine with 

an Intel i7-8700k 3.70 GHz Core processor and 48 GB RAM. 

Datasets. We used nine real-world graph datasets for our 

experiments. The statistics for the graphs are listed in Table 



Ⅲ. Graphs G1-G8 can be found in SNAP [24], and G9 comes 

from the huapu system [25]. 

TABLE III.  REAL-WORLD GRAPH DATASETS 

B. Performance Comparison 

In this subsection, we discuss the testing of the TLP 

algorithm on different graphs and compare it with several 

state-of-the-art graph partitioning algorithms. The comparison 

algorithms used in this study include METIS [18], LDG [15], 

DBH [11], and Random [8]. 

 METIS is one of the graph partitioning algorithms 

with the highest precision and is widely used in 

distributed graph computing systems. However, it is 

difficult for METIS to manage large graphs because 

it is an offline graph partitioning algorithm [14]. 

 LDG is a classic streaming graph partitioning 

algorithm that is characterized by the ability to 

quickly perform graph partitioning operations based 

on partial graph data information. Compared with 

METIS, LDG is less accurate. 

 DBH mainly focuses on the skewed degree 

distribution of power-law graphs. Experiments have 

proved that DBH has better precision when dividing 

graph data that obey the power-law distribution. 

 Random is a simple random graph partitioning 

algorithm. It can quickly divide a graph into different 

partitions in scenarios where accuracy is not required. 

To intuitively compare the accuracy of each algorithm, 

the result for Random is regarded as the worst 

partitioning quality in this study. 

Our proposed TLP algorithm and the above four 

algorithms were run on nine different graph datasets with 

partition number p=10, 15, 20. The results are shown in Fig. 

8. 

Fig. 8(a), Fig. 8(b), and Fig. 8(c) show the graph 

partitioning results when p=10, 15, 20, respectively. The x-

axis represents RF, which is a measurement of graph 

partitioning performance. The smaller the RF, the better the 

graph partitioning performance. From comparing the 

experimental results, we obtain the following conclusions. 

 The qualities of graph partitioning with TLP and 

METIS are better than other algorithms in all cases. 

 In most cases, TLP performs better than METIS, 

while some performances of TLP are slightly worse 

than those of METIS. 

To compare TLP with METIS in more detail, the 

differences in RF between the two algorithms, ∆RF, is defined 

as follows. 

 (METIS) (TLP)RF RF RF    (12) 

Where ∆RF >0, the performance of TLP is better than 

METIS. The ∆RF in all cases is shown in Table Ⅳ. 

TABLE IV.  VALUE OF ∆RF BASED ON NINE GRAPH DATASETS WHEN 

P=10, 15, 20 

 G1 G2 G3 G4 G5 

p=10 1.19 0.32 0.23 －0.09 0.14 

p=15 1.29 0.64 0.18 －0.07 0.08 

p=20 1.56 0.85 0.20 －0.09 0.12 

 G6 G7 G8 G9 Average 

p=10 0.04 0.10 0.37 0.02 0.26 

p=15 0.03 0.07 0.47 0.03 0.30 

p=20 0.05 0.09 0.48 0.03 0.36 

As shown in Table Ⅳ, ∆RF >0 in eight graphs when p=10, 

15, 20, respectively, which means that the partitioning 

qualities of TLP are better than those of METIS in most 

situations. The averages of ∆RF are also larger than 0 for 

different values of p, thus TLP performs better than METIS 

overall. 

C. Comparison of Different Divisions of Two Stages 

To prove the superiority of the TLP algorithm that divides 

the two stages based on modularity, we set the division 

between the two stages according to the number of edges in 

each partition and compare it with the TLP algorithm through 

experiments. The change in the division between the two 

stages is shown in Table Ⅴ. 

TABLE V.  THE DIVISION BETWEEN TWO STAGES BASED ON THE 

NUMBER OF EDGES 

Stage Criteria 

Stage Ⅰ 0<|E(Pk)|≤R·C 

Stage Ⅱ R·C<|E(Pk)|≤C 

where 𝑅  is the ratio parameter of the two stages. 

|E(Pk)|≤R·C and R·C<|E(Pk)| refer to Stage Ⅰ and Stage Ⅱ of 

the graph partitioning, respectively. Particularly, there is only 

Stage Ⅱ in the graph partitioning process when R=0, and there 

is only Stage Ⅰ when R=1. For ease of recollection, we call this 

algorithm TLP_R.  

To evaluate the influence of R on graph partitioning 

performance in detail, 11 different values of R are taken from 

[0, 1] with an even step length of 0.1. The experimental results 

with different values of R on 9 graphs are shown in Fig. 9, Fig. 

10, and Fig. 11, where p=10, 15, 20. 

The above insets represent the performances of TLP and 

TLP_R based on different real-world graphs where p=10, 15, 

20. The horizontal ordinate and vertical coordinate of each 

inset represent different values of R and RF, respectively. 

Therefore, the following conclusions can be drawn from the 

above experimental results: 

(1) In TLP_R, all the values of R satisfy R∈(0, 1), 

corresponding to the optimal partitioning results. 

(2) In TLP_R, the values of R satisfy R ∈ {0, 1}, 

Graph Name Notations |V(G)| |E(G)| |V(G)|+|E(G)| 

email-Eu-core G1 1,005 25,571 26,576 

Wiki-Vote G2 7,115 103,689 110,804 

CA-HepPh G3 12,008 118,521 130,529 

Email-Enron G4 36,692 183,831 220,523 

Slashdot081106 G5 77,357 516,575 593,932 

soc_Epinions1 G6 75,879 508,837 584,716 

Slashdot090221 G7 82,144 549,202 631,346 

Slashdot0811 G8 77,36 905,468 905,468 

huapu G9 4,309,321 7,030,787 11,340,108 



corresponding to the worst partitioning results. 

(3) In TLP_R, the optimal partitioning result 

corresponds to different R values in different cases. 

(4) Compared with TLP_R, TLP can obtain near-

optimal partitioning results in most cases. 

Combining conclusions (1) and (2), we deduce that graph 

partitioning with the two-stage heuristic method results in 

better quality than with the one-stage heuristic. Conclusions 

(3) and (4) mean TLP can obtain better partitioning results 

than TLP_R without adjusting parameters. 

 

Fig. 8. Replication factors for different algorithms run on real-world graphs. 

The number of partitions in (a), (b), and (c) are 10, 15, and 20, respectively. 

D. Analysis of Average Degree in Two-Stage Method 

In this subsection, we will analyze the differences between 

these two stages using the average degree. As described in 

Section Ⅲ, TLP divides the process of graph partitioning into 

two stages, in which different partitioning strategies are 

adopted. In Stage Ⅰ, the core vertexes with the large degrees in 

the graph are more likely to be chosen. In Stage Ⅱ, based on 

these center nodes, the local partition expands by selecting the 

vertices which are close to the existing partition.  

To analyze the above two strategies, the average degree of 

all vertices in these two stages are counted. As shown in Table 

Ⅵ. The average degrees of all vertices in stage Ⅰ are much 

greater than that in stage Ⅱ, which means the core vertices with 

the large degrees are chosen in stage Ⅰ indeed. In stage Ⅱ, the 

local partition expands with these core vertices as the center, 

so the average degrees in stage Ⅱ are smaller than that stage Ⅰ. 

TABLE VI.  THE AVERAGE DEGREE OF ALL VERTICES IN TWO STAGES 

BASED ON NINE GRAPHS WHERE P=10, 15, 20 

 p=10 p=15 p=20 

Stage Ⅰ Stage Ⅱ Stage Ⅰ Stage Ⅱ Stage Ⅰ Stage Ⅱ 

G1 45.85 13.16  32.44  11.15  39.20  9.29  

G2 57.13 7.67  46.90  6.25  63.34  7.19  

G3 236.86 12.72  196.17  12.78  123.01  12.48  

G4 31.46 7.63  41.08  6.22  29.21  5.79  

G5 33.25 8.92  34.55  8.36  30.37  8.00  

G6 65.62 5.09  78.16  5.80  46.46  5.52  

G7 48.60 9.23  26.27  8.82  32.49  8.10  

G8 13.93 10.95  45.42  9.17  53.56  8.24  

G9 30.91 4.15  166.99  4.11  58.66  4.02  

V. CONCLUSIONS 

In distributed graph computation systems, graph data 

partitioning impacts the communication overhead and the 

workload balance between computing resources. In this paper, 

a local graph partitioning method that relies on local graph 

information and needs to save data for only one single 

partition was proposed. Our proposed algorithm was tested on 

several real-world datasets and the results were compared with 

several state-of-the-art graph partitioning algorithms. The 

experiments demonstrated the superiority of our algorithm. 

Our algorithm can be further improved in several aspects. 

Firstly, although the TLP algorithm can achieve good 

partitioning quality relying on local graph information, the 

time complexity of TLP is higher than some state-of-the-art 

graph partitioning algorithms. We expect the partitioning 

efficiency of TLP will be improved in the future. 

Secondly, the graph data must be traversed in BFS 

(Breadth First Search) order when each partition expands, 

which means the unpartitioned graph data need to be sorted in 

BFS order after one vertex is partitioned. In future work, a 

sliding window mechanism will be introduced to sort and 

partition the graph data in parallel, which will be more suitable 

for large-scale graph partitioning. 
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Fig. 9. Replication factors for TLP and TLP_R on real-world graphs where p=10. The values of R in TLP_R are taken from [0,1] with an even step length of 

0.1. (1)-(9) is the experimental results based on 𝐺1 − 𝐺9. 

 

Fig. 10. Replication factors for TLP and TLP_R on real-world graphs where p=15. The values of R in TLP_R are taken from [0,1] with an even step length of 

0.1. (1)-(9) is the experimental results based on 𝐺1 − 𝐺9. 

 
Fig. 11. Replication factors for TLP and TLP_R on real-world graphs where p=20. The values of R in TLP_R are taken from [0,1] with an even step length of 

0.1. (1)-(9) is the experimental results based on 𝐺1 − 𝐺9. 
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