A New Sequence of Prime Numbers

Mohammed Bouras

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

A New sequence of prime numbers

Mohammed Bouras

Abstract

In this paper, we discovered a new sequence of prime numbers, every term of this sequence is either a prime number or equal to 1 .

Keywords. Prime numbers, sequence.

1. Introduction

A number is said to be a prime number if the number is divisible by 1 and itself; otherwise it's composite. In this paper, we present two new sequences related with the continued fraction.

2. The sequence of $b(n)$

The sequence $b(n)$ satisfy the following recursive formula

$$
b(n)=(n-1) b(n-1)-n b(n-2)
$$

With the starting conditions $b(3)=1$, and $b(4)=7$
Table 1. The first few values of $\boldsymbol{b}(\boldsymbol{n})$

n	3	4	5	6	7	8	9	10	11
$\boldsymbol{b}(\boldsymbol{n})$	1	7	23	73	277	1355	8347	61573	523913

Theorem 2.1 For $n \geq 3$.
i)

$$
\frac{b(n)}{n^{2}-n-1}=\frac{1}{2-\frac{3}{3-\frac{4}{4-5} \ddots^{4}}}
$$

For $n \geq 5$.
ii) $\quad b(n)=\left(2 n^{2}-6 n+3\right) \cdot A 051403(n-5)-\left(2 n^{2}-5 n+2\right) \cdot A 051403(n-6)$

Proof. By using some simplification of the denominator of the continued fraction.

3. The sequence of $a(n)$

In this section, we present our sequence of prime numbers defined in the conjecture as follows
Conjecture 3.1. The sequence $a(n)$ of the prime numbers satisfy the following formula

$$
a(n)=\frac{n^{2}-n-1}{\operatorname{gcd}\left(b(n), n^{2}-n-1\right)}
$$

Table 2. The first few values of $\boldsymbol{a}(\boldsymbol{n})$

n	3	4	5	6	7	8	9	10	11
$\boldsymbol{a}(\boldsymbol{n})$	5	11	19	29	41	11	71	89	109

Also we have

$$
a(37)=a(43)=a(48)=a(53)=1
$$

Conjecture 3.2. every term of this sequence is either a prime number or equal to 1 .

References

[1] Richard Guy, Unsolved Problems in Number Theory, Springer science (2004).
[2] N. J. A. Sloane et al., The On-line Encyclopedia of integers sequences, https://oeis.org
(Concerned with the sequence $A 051403$)

