
EasyChair Preprint

№ 684

Quasi-Monte Carlo Flows

Florian Wenzel, Alexander Buchholz and Stephan Mandt

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 17, 2018



Quasi-Monte Carlo Flows

Florian Wenzel∗
TU Kaiserslautern

Germany
wenzelfl@hu-berlin.de

Alexander Buchholz∗
ENSAE-CREST, Paris

France
alexander.buchholz@ensae.fr

Stephan Mandt
Univ. of California, Irvine

USA
mandt@uci.edu

Abstract

Normalizing flows provide a general approach to construct flexible variational
posteriors. The parameters are learned by stochastic optimization of the variational
bound, but inference can be slow due to high variance of the gradient estimator.
We propose Quasi-Monte Carlo (QMC) flows which reduce the variance of the
gradient estimator by one order of magnitude. First results show that QMC flows
lead to faster inference and samples from the variational posterior cover the target
space more evenly.

1 Introduction

Variational inference constructs approximations to intractable target distributions by solving an opti-
mization problem. The introduction of the reparametrization gradient and the score function gradient
(Kingma and Welling, 2013; Rezende et al., 2014; Ranganath et al., 2014) enabled the application of
variational inference to a variety of complex Bayesian model (e.g. variational autoencoders (Kingma
and Welling, 2013) and Bayesian deep neural networks (Blundell et al., 2015; Neal, 2012)).

An important problem in variational inference is to design complex variational families which enable
better posterior approximations. Rezende and Mohamed (2015) introduced a flexible family of
distributions, called normalizing flows. Normalizing flows transform a base distribution through
a number of tractable transformations into more complicated distributions. The parameters of the
flow are learned by stochastic optimizing using the reparameterization gradient estimator, but the
optimization can be slow due to high noise in the gradient estimator.

In this paper, we introduce Quasi-Monte Carlo (QMC) flows which aim on reducing the variance
of the gradient estimator in order to achieve faster inference. We build on the idea of Quasi-Monte
Carlo variational inference (QMCVI), recently introduced by Buchholz et al. (2018). QMC flows are
constructed by replacing the Monte-Carlo samples of the base distribution in the normalizing flow
by samples from a Quasi-Monte Carlo sequence. QMC flows reduce the variance of the gradient
estimator by one order of magnitude and lead to posterior samples that cover the target space more
evenly.

2 Background

Variational Inference Inference in probabilistic models aims to compute the posterior distribution
p(z|x) of the hidden variables z given the data x. Since this distribution is often intractable, the idea
behind variational inference (Jordan et al., 1999) is to approximate the posterior by a variational
distribution qλ(z). The optimal variational parameters λ are learned by maximizing the so-called
evidence lower bound (ELBO), L(λ) = Eqλ(z)[log p(x, z)− log qλ(z)]. For some models, specific
properties of the model can be exploited to obtain closed-form updates to optimize the ELBO (e.g.
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Jähnichen et al., 2018; Wenzel et al., 2018). Here we focus on a general approach by using the
reparameterization gradient estimator.

Normalizing flows In order to obtain a good approximation to the posterior it is crucial to use
a rich enough variational distribution. A way of increasing the flexibility of the approximation is
by using normalizing flows (Rezende and Mohamed, 2015). Normalizing flows are defined as a
transformation of a random variable z ∼ q(z) through an invertible mapping f : Rd 7→ Rd. The
density of z′ = f(z) is given as

q(z′) = q(z)

∣∣∣∣det
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∂z′
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using the change of variables formula and the inverse function theorem. When stacking several of
these transformations one obtains the normalizing flow

zK = fK ◦ · · · ◦ f2 ◦ f1(z0),

log qK(zK) = log q0(z0)−
K∑
k=1

log
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Normalizing flows allow for easy computations of expectations with respect to q(zK) making use
of EqK [h(z)] = Eq0 [h(fK ◦ · · · ◦ f2 ◦ f1(z0))]. Hence only samples from q(z0) are required. A
normalizing flow can lead to arbitrary complex variational distributions q(zK) if more layers are
added.

An example of a simple flow is the planar flow: f(z) = z + uh(wtz + b), where λ = {w ∈ Rd, u ∈
Rd, b ∈ R} and h is a smooth element wise non-linearity. Other examples of flows are e.g. radial
flows (Rezende et al., 2014), inverse autoregressive flows (Kingma et al., 2016), Sylvester flows
(Berg et al., 2018) and neural autoregressive flows (Huang et al., 2018).

All these approaches have in common that they are trained by stochastic optimization of a variational
bound (ELBO). The gradients of the variational bound are estimated based on samples from the base
distribution q(z0). In this paper, we replace samples from the base distribution by samples from a
Quasi-Monte Carlo (QMC) sequence. This leads to a gradient estimator with lower variance and,
therefore, to faster optimization.

Uniform sequence Halton sequence Scrambled Sobol sequence

Figure 1: MC (left), QMC (center) and RQMC (right) se-
quences of length N = 256 on [0, 1]2. QMC and RQMC tend
to cover the target space more evenly.

Quasi-Monte Carlo We recall now
the ideas behind QMC. Low discrep-
ancy sequences, also called QMC se-
quences, are used for integrating a
function ψ over the [0, 1]d hypercube.
When using standard i.i.d. samples
on [0, 1]d, the error of the approxima-
tion isO(N−1). QMC achieves a rate
of convergence in terms of the MSE
of O

(
N−2(logN)2d−2

)
if ψ is suf-

ficiently regular (Leobacher and Pil-
lichshammer, 2014). This is achieved
by a deterministic sequence that cov-
ers the hypercube more evenly. From
a theoretical perspective the performance of QMC deteriorates with the dimension. However, in
practice QMC tends to work well even as the dimension increases.

On a high level, QMC sequences are constructed such that the number of points that fall in a
rectangular volume is proportional to the volume. This idea is closely linked to stratification. Halton
sequences e.g. are constructed using coprime numbers (Halton, 1964). Sobol sequences are based
on the reflected binary code (Antonov and Saleev, 1979). More details on QMC can be found in
Niederreiter (1992); Leobacher and Pillichshammer (2014); Dick et al. (2013).

QMC sequences are deterministic and, therefore, inconvenient for constructing estimators. Carefully
reintroducing randomness while preserving the structure of the sequence leads to randomized QMC
(RQMC) sequences. RQMC can be used for obtaining unbiased estimators. For illustration purposes,
we show different sequences in Figure 1.
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QMC or RQMC can be used for integration not only with respect to uniform distributions. To work
with other distributions the initial sequence on [0, 1]d is transformed by a function Γ that maps
uniform random samples to the desired distribution (e.g. the inverse cumulative distribution function).
This function has to be sufficiently smooth. Constructing QMC sequences typically costsO(N logN)
(Gerber and Chopin, 2015).

3 Quasi-Monte Carlo Flows

We propose Quasi-Monte Carlo (QMC) flows, a flexible class of variational distributions that exhibit
low variance for gradient estimation. To construct a QMC flow we take an ordinary normalizing
flow (1) and turn it into a QMC flow by replacing the base distribution q(z0) by a randomized QMC
sequence (RQMC).

In normalizing flows, the base distribution q(z0) is typically a Gaussian distribution (parameterized
by a neural network), i.e. q(z0) = N (z0|µ(x),Σ(x)) and µ(x),Σ(x) are non-linear functions of the
data. Samples from the normalizing flow zk ∼ qk(zk) are obtained by first, generating a sample
z0 ∼ q(z0) and then pushing it through the flow (1). The base sample z0 is generated via the
reparameterization trick, z0 = r(ε) = µ+ Σ

1
2 ε and ε ∼ N (0, I).

To obtain a QMC flow we only add a slight change to the generative process. A sequence of samples
{z1, . . . , zN} from the QMC flow is generated as follows. We first generate a randomized QMC
(RQMC) sequence {u1, . . . , uN} and apply the flow

zn = fK ◦ · · · ◦ f2 ◦ f1 ◦ r(ε̃n), (2)

where ε̃n = Φ−1(un) and Φ−1 is the inverse Normal cumulative distribution function. The samples
from the QMC flow will approximate the same distribution as samples from the original flow, but
have the advantage that the reparameterization gradient estimator exhibits lower variance.

Low variance gradient estimation. The parameters of the normalizing flow are learned by stochas-
tic optimization of the ELBO using the reparameterization gradient (Kingma and Welling, 2013;
Rezende et al., 2014),

∇λ L(λ) = Ep(ε)[∇λ log p(x, fλ(ε))−∇λ log qK(fλ(ε)|λ)] = Ep(ε)[gλ(ε)]. (3)

We obtain an estimator of the gradient by approximating this expectation by

∇λ L(λ ≈ 1

N

N∑
n=1

gλ(ε̃n),

where the samples ε̃n are based on a RQMC sequence (1). This is in contrast to the standard approach
to normalizing flows where the gradient estimator is based on Monte Carlo samples from a Normal
distribution, i.e. εn ∼ N (0, I).

Our RQMC based gradient estimator is unbiased and exhibits lower variance than the ordinary MC
based gradient estimator. The asymptotic variance of the gradient estimator for standard normalizing
flows is O(N−1). Provided sufficient regularity of gλ(ε), the variance of our gradient estimator is
one order of magnitude lower O(N−2). For a proof see Buchholz et al. (2018).

Faster convergence and more diverse samples. Due to reduced gradient noise, QMC flows can
be faster learned than standard normalizing flows which we show empirically in the experiments.
Buchholz et al. (2018) provide a theoretical analysis and show in the simplified setting of stochastic
gradient descent with a constant learning rate, that the RQMC based gradient estimator leads to an
asymptotic converge that is one order of magnitude faster than the standard MC based approach.

A second advantage of QMC flows are, that samples pushed through the flow are more diverse, if
the transformation via the flow is sufficiently smooth. That means that QMC flow samples cover
the target space more evenly (low discrepancy) and estimators based on those samples have lower
variance. In the experiments we show that estimating the mean of the target distribution is more
accurate using our approach.
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Figure 2: Top row, left and middle: Convergence of the ELBO based on different sample sizes. The
experiments have been repeated 50 times to get confidence intervals. The gradient estimators based
on RQMC points show a faster convergence. For 200 samples both MC and RQMC behave similarly.
Top row, right: RMSE of the mean of the estimators based on MC or RQMC points pushed through
the flow. For smaller sample sizes RQMC yields more precise estimators. Bottom row: Samples
pushed through the flow. RQMC points cover the target space more evenly.

4 Experiments

We fit a normalizing flow to a 2-dimensional multimodal distribution with an energy function given as

U(z) =
1

2

(
||z|| − 2

0.4

)
− log

(
e−1/2[

Z1−2
0.6 ]

2

+ e−1/2[
Z2+2
0.6 ]

2)
.

We use a planar flow with 32 layers. The results of the training over 4000 steps using an Adagrad
optimizer (Duchi et al., 2011) and different sample sizes for the construction of the stochastic gradient
estimator are shown in Figure 2.

For samples sizes of 20, 50, 100, the RQMC approaches show a faster convergence to a higher value
of the ELBO. For a sample size of 200 this effect disappears as the variance of the gradient estimator
becomes negligible for both MC and RQMC sampling. A second advantage of QMC for normalizing
flows is the fact that points, that get pushed through the flow, allow a more precise estimation of
expectations with respect to the transformation.

5 Conclusion

Depending on the setting, QMC may lead to substantial improvements of the optimization procedure
required for variational inference with normalizing flows. As the use of QMC comes with almost no
computational overhead, our method is an easy way of improving existing implementations.

The concept of QMC flows can also be used in the setting of more involved approaches than the
standard normalizing flow, e.g. the inverse autoregressive flow (Kingma et al., 2016) or Sylvester
flow (Berg et al., 2018). We will leave the investigation for future studies.
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