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Propositional Forms of Judgemental Interpretations

Tao Xue∗ Zhaohui Luo† Stergios Chatzikyriakidis‡

Abstract

In type-theoretical semantics, sentences may often be interpreted as judgements, rather than proposi-
tions. When interpreting composite sentences such as those involving negations and conditionals, one may
want to turn a judgemental interpretation into a proposition in order to obtain an intended semantics. In
this paper, we propose a new negation operator not for constructing propositional forms of judgemental
interpretations. not is introduced axiomatically, with five axiomatised laws to govern its behaviour, and
several examples are given to illustrate its use in semantic interpretation. In order to justify not, we
employ a heterogeneous equality to prove its laws and, since the addition of heterogeneous equality to
type theories is consistent, so is our introduction of the not operator. Also discussed is how to use the
negation operator in event semantics.

1 Introduction

In recent years, rich type systems have been successfully employed in formal semantics including, for example,
[1, 11, 16]. In some of these approaches common nouns (or some of them) are interpreted as types, rather
than as predicates. For example, in formal semantics in Modern Type Theories (MTT-semantics for short)
[15, 11, 7], the rich type structure has been used effectively to interpret a wide range of modifications [5].

Interpreting CNs as types has led to the interpretation of some sentences as judgements, rather than logical
propositions. For instance, the following sentence (1)

(1) Bob is a student.

is interpreted as the judgement bob : Student, where Student is a type, rather than the proposition student(bob),
where student is a predicate. There are some advantages with such an interpretation, one of them being that,
with CNs interpreted as types, selectional restriction can naturally be enforced automatically by means of
typing. For example, consider the following sentence (2):

(2) (#) Tables talk.

Most people would say that, in the normal circumstances, (2) is meaningless. This can be captured by typing:
for example, for talk : Human → Prop, the semantic interpretation (3) of the sentence (2) would not be
well-typed, since a table t is not a human:

(3) (#) ∀t : Table. talk(t)

Interpreting some sentences as judgements, one would want to turn a judgemental interpretation into a
proposition so that composite sentences can be interpreted by logical compositions, especially that negative
sentences and conditionals can be properly considered semantically. For example, unlike (2), the following
sentence (4) is meaningful. However, if we took the intuitive interpretation of (4), it would be the untyped
(5) since, again, a table is not a human.1

(4) Tables do not talk.

(5) (#) ∀t : Table. ¬talk(t)

How should the sentences like (4) be interpreted in such a setting? In MTT-semantics, proposals have been
made in [6] to use presuppositions of logical formula to capture non-hypothetical judgements and to extend
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the underlying type theory with a negation operator, called notold in this paper, to deal with judgemental
negations for negative sentences and hypothetical judgements for conditionals. However, although it delivers
intended semantical treatments, the correctness of notold has not been justified: for example, it has not been
proven that the extension by the notold operator is logically consistent.

In this paper, we propose a new negation operator not, which is more general than notold (notold is a
special case of not). Unlike [6], to introduce not, we do not need to assume the existence of a top type (a
super type of all other types that interpret CNs). Besides being capable of dealing with negative sentences and
conditionals in satisfactory ways, not and its associated laws can be justified by means of the heterogeneous
equality for type theories [14] and, in particular, it is shown that the extension by not is logically consistent.
This shows, we contend, that our proposal offers a satisfactory solution with an adequate justification so that
negative sentences and conditionals can be properly considered in the extended type theory.

2 Judgemental Interpretations

2.1 CNs-as-Types

Interpreting common nouns as types (CNs-as-types) is a major approach when we consider formal semantics
with Modern Type Theories. This CNs-as-types approach was first studied in Ranta’s seminal work on using
Martin-Löf type theory in formal semantics [15]. For instance, the sentence (6) is interpreted as (7):

(6) Every teacher talks.

(7) ∀x : Teacher.talk(x)

where Teacher is a type that interprets the CN ‘teacher’ and talk : Human → Prop interprets the verb
‘talk’. The CNs-as-types approach, has several advantages as compared with other approaches such as the
CNs-as-predicates approach. For example, it has been used successfully to deal with selectional restrictions
and copredication [9] and has been applied to practical reasoning by implementing these ideas in the Coq
proof assistant ([3, 4]). For instance, selectional restrictions like the ones shown below are handled by virtue of
the many sorted system, with sentences like these producing a semantic type mismatch and therefore function
application is impossible:

(8) (#) The table ate the egg.

where the predicate eat : Animal→ Food→ Prop needs an argument of type Animal while a table is not of
type Animal.

To adopt the CNs-as-types approach, it is important to note that there must be a compatible subtyping
mechanism in the type-theoretical framework, otherwise, the approach would not be viable. For instance, in
the semantics (7) of (6), Teacher is a subtype of Human and this subtyping relationship makes the application
talk(x) in (7) well-typed. Fortunately, there is a subtyping mechanism called coercive subtyping [8, 13, 17] that
is suitable for modern type theories and makes the CNs-as-types approach viable [9, 11]. We also have studied
this approach systematically to show how various classes of CNs with adjectival and adverbial modifications
can be interpreted as types in MTTs [2, 5].

2.2 Propositional forms of non-hypothetical judgements

In MTT-semantics, some of the sentences are interpreted with non-hypothetical judgements. For instance, we
can consider the following sentence (9) which is usually interpreted as (10), where Doctor is a type:

(9) John is a doctor

(10) j : Doctor

The judgement of the form (10) is called non-hypothetical, because it does not depend on other contextual
assumptions. Formally, a non-hypothetical judgement is a judgement Γ ` a : A where the context Γ is empty.

As proposed in [6], the propositional form of a non-hypothetical judgement a : A can be the proposition
pA(a), where pA(x) = True is the constant predicate that returns true for all x : A. Note that pA(a) is
well-typed (and equals True) if, and only if, a : A, because the well-typedness of pA(a) presupposes that a : A.

Definition 2.1 (predicate pA) Let A be a cn. Then, predicate pA : A → Prop is defined as: for any
x : A, pA(x) = true, where true : Prop is any (fixed) tautological proposition.
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Remark It is worth noting that the semantic meanings of two logically equivalent propositions may be
(intensionally) different. For instance, when j : Man, the proposition pMan(j) is logically equivalent to the
proposition true. However, the well-typedness of pMan(j), i.e., that pMan(j) is a proposition of type Prop,
presupposes the derivability (or, informally, correctness) of the judgement j : Man, while the well-typedness
of true does not.

2.3 Judgemental Interpretations: a Problem with Negative Sentences and Con-
ditionals

Consider the following sentences:

(11) Bob is a student.

(12) If Carl is a student, he is happy.

(13) Carl is not a student.

If we use judgemental interpretations, intuitively, we would get the semantics of (11), (12) and (13) as (14),
(15) and (16), respectively.

(14) Bob : Student

(15) Carl : Student ` happy(Carl) true

(16) (#) 6` Carl : Student

Note that, interpreting (12), we use the hypothetical judgement (15), where Carl : Student that interprets
the if-part of (12) is formalised as a contextual entry on the left of the turn-style symbol.2 Also note that
(16) is not a judgement at all (it is only a meta-level statement that the judgement ` Carl : Student is not
derivable.)

A question arises: how to interpret the negative sentences such as (13)? A solution would be to turn
a judgemental interpretation into a proposition so that composite sentences can be interpreted by logical
compositions. As a first attempt, we could think that the sentences (11), (12) and (13) could be interpreted
as pStudent(Bob), pStudent(Carl) ⇒ happy(Carl) and ¬pStudent(Carl), respectively, and then we would be
able to use logical compositions to construct semantics of more complicated composite sentences. However, we
should be very careful with such interpretations. In fact, the above is not quite right. For example, it would
not be always correct to interpret (13) as ¬pStudent(Carl), because the well-typedness of the formula already
presupposes that Carl : Student. Put in another way, we should realize that, in (13), the interpretation of
Carl may not always be of type Student; instead, it could well be some object which is not a student. In the
next section, we will propose an operator to interpret such cases of negation sentences in NL like (13).

3 NOT: a Negation Operator

A judgemental interpretation can be ‘negated’ when one considers the semantics of negative sentences or
conditionals, such as the following examples:

(17) John is not a doctor.

(18) If John is a doctor, he works hard.

The judgemental interpretation for (17) would be the negation of the judgement j : Doctor and that for (18)
would be the hypothetical judgement j : Doctor ` Jwork hardK(j) true, where Jwork hardK : Human→ Prop.
However, one cannot use ¬pDoctor(j) or pDoctor(j) ⇒ Jwork hardK(j) as the propositional forms of these
judgemental interpretations, because both of them (i.e., their well-typedness) would have already presumed
that j : Doctor, which may not be the case in either (17) or (18).

A solution to the above problem is to extend the underlying type theory with a negation operator that
can play the role of capturing propositional forms of judgemental negations and hypothetical judgements. In
[6], a negation operator notold has been proposed,3 which is of type

ΠA : cn.(A→ Prop)→ (Obj → Prop)

2It would be even better if Carl is a constant, not a variable. This requires us to introduce signatures [12].
3The operator is simply called not in [6], but we shall call it notold to distinguish it from the not operator to be introduced

in the current paper.
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where Obj is the top type in the universe cn of common nouns. Although it provided a nice way to solve
the problems in the negative sentences or conditionals, it has some drawbacks. First, the definition of notold
requires a super type of all other types that interpret common nouns, which is unnecessary. One may even
argue that the existence of such a top type is unreasonable to be assumed. Second, the justification of notold
was not given in [6] – we will do that in the current paper.

We propose a new negation operator not:

not : ΠA : cn Πp : A→ Prop.ΠB : cn.Πb : B.Prop

Intuitively, not(A, p,B, b) means that ‘b does not p’ and, in particular, when p is pA, it means ‘b is not an
A’ – see the following definition, where the proposition PA,B(t) means that for the term t of type B, t can
behave as a term of A without assuming that t is of type A.

Definition 3.1 (predicate PA,B) Assume that A,B : cn. Then, predicate PA,B : B → Prop is defined as: for
any x : B,PA,B(x) = ¬not(A, pA, B, x), where pA is the predicate defined in Definition 2.1.

For example, the propositional forms of the judgemental interpretations of (17) and (18) are (19) and (20),
respectively:

(19) not(Doctor, pDoctor, Human, j)

(20) PDoctor,Human(j)⇒ Jwork hardK(j)

where, with P being capital, PDoctor,Human(j) = ¬not(Doctor, pDoctor, Human, j) is the propositional form
of the judgemental premise j : Doctor in j : Doctor ` Jwork hardK(j) true.

Similarly, we can give some more examples for the use of not, covering both scenarios. (21)(23) are
examples for ‘b is not p’, (22)(24) are for ‘b does not p’.

(21) Women are not men.

(22) Tables do not talk.

(23) Some logicians are not linguists.

(24) Some logicians don’t talk.

The above examples can be interpreted as:

(25) ∀x : Woman. not(Man, pMan,Woman, x)

(26) ∀x : Table. not(Human, talk, Table, x)

(27) ∃x : Logician. not(Linguist, pLinguist, Logician, x)

(28) ∃x : Logician. not(Human, talk, Logician, x)

Note that, usually, we would interpret (24) as ∀x : Logician. ¬talk(x) which, according to the law (A1) below,
is equivalent to (28).

3.1 Laws for NOT

The negation operator not is introduced axiomatically. In particular, it should satisfy the laws below that
govern the behaviour of the negation operator. Before presenting them, we shall first define the notion of
injectivity which will be used in their formulations.

Definition 3.2 (injectivity) c : A→ B is injective, if for all x1, x2 : A, c(x1) = c(x2) implies that x1 = x2.

For instance, the identity function that maps x any type A to itself is injective.

Definition 3.3 A � B means that A ≤c B for some injective c.

Formally, for all A,B,C : cn, the operator not satisfies the following rules:

(A1) ∀p : A→ Prop.∀x : A.¬not(A, p,A, x)⇔ p(x)

(A2) ∀p, q : A→ Prop.(∀x : A.p(x)⇒ q(x))⇒ ∀y : B.not(A, q,B, y)⇒ not(A, p,B, y)
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(A3) If A � B, ∀p : B → Prop.∀z : C.not(B, p,C, z)⇒ not(A, p,C, z)

(A4) If A � B, ∀p : C → Prop.(∀y : B.not(C, p,B, y))⇒ ∀x : A.not(C, p,A, x)

(A5) If A � B, ∀p : C → Prop.(∃x : A.not(C, p,A, x))⇒ ∃y : B.not(C, p,B, y)

It is straightforward to see that the negation operator proposed in [6], called notold here, is a special
case: notold(A, p, o) can be defined as not(A, p,Obj, o), where Obj is the top type in cn (i.e., A ≤ Obj for
all A : cn). We note that, in (A3), p is also of type A → Prop which is a supertype of B → Prop. When
specialised to pA, the laws (A1) and (A3) are those called (L1) and (L2) in [6], which relate the operator not
with the predicate pA with (A1) saying that, if A and B are the same types, ¬not(A, pA, B, b) is logically
true and (A3) stating that, if A is a subtype of B and z : C, then z is not a Bimplies that z is not an A.
To introduce not, we do not have to assume the existence of Obj anymore, which allows more flexibility in
semantic interpretations.

In intuitiionistic (and classical) logic, if p⇒ q we can derive that ¬q ⇒ ¬p. Comparatively, (A2) says that
in our notion with not, if ‘b does p’ implies ‘b does q’, we should have ‘b does not q’ implies ‘b does not p’.

(A4) and (A5) are focusing on the type of object b for ‘b is p’ or ‘b does p’. In law (A4), if all terms of type
B ‘does not p’, then for any term of B’s subtype A, it ‘does not p’ as well. Law (A5) means that, if there is a
term x : A which satisfies ‘x does not p’, then for A’s supertype B, there exists a term y : B, which satisfies
‘y does not p’. Apparently, x is an evidence of such a claim.

Discussion on Injectivity. The injectivity condition has been added when we have coercions in laws (A3),
(A4) and (A5). Generally in coercive subtyping, injectivity is not a necessary condition. However, when
we use coercive subtyping to model subsumptive subtyping, the coercions should not be non-injective. More
precisely, in subsumptive subtyping with rule (sub), the ‘size’ of A is not bigger than that of B. But a
non-injective surjection c : A→ B implies that the size of A is not smaller than that of B.

a : A A ≤ B
a : B

(sub)

If we think that in the applications to NL semantics, subtyping means something like subsumptive subtyping,
we should then take that injectivity always holds. Particularly, we should also assume proof irrelevance [10],

Γ ` A : Prop Γ ` a : A Γ ` b : A

Γ ` a = b : A

In particular, for a Σ-type Σx : A.B(x) where B(x) is a proposition, the first projection π1 is injective because
of proof irrelevance.

Lemma 3.4 Let A be a type and B : A → Prop. If proof irrelevance holds, then the projection π1 : (Σx :
A.B(x))→ A is injective.

3.2 Examples to illustrate the laws

To explain our laws more clearly and intuitively, we are going to provide some examples for each law. As we
have mentioned above, not(A, p,B, b) means that ‘b does not p’ and. In particular, when p is pA, it means ‘b
is not an A’. Hence, the examples in this subsection will cover both special cases ‘b is not an A’ and general
cases ‘b does not p’ for each law. For each example, we will provide logical expressions as well as the Coq
codes for each expression.

Before presenting the examples, we recall the type of not (29/30), predicate pA (31/32) and predicate
PA,B (33/34) with their Coq code.

(29) not : ΠA : cn Π.p : A→ Prop.ΠB : cn.Πb : B.Prop

(30) NOT : forall A:CN, (A->Prop) -> forall B:CN, B->Prop

(31) for any x : A, pA(x) = true

(32) pr (A:CN)(a:A) := True

(33) for any x : B,PA,B(x) = ¬not(A, pA, B, x)

(34) PR(A:CN){B:CN}(b:B) := not(NOT A (pr A) B b)
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3.2.1 Examples for Law (A1)

Law (A1) is repeated here together with its Coq code:

(35) ∀p : A→ Prop.∀x : A.¬not(A, p,A, x)⇔ p(x)

(36) (p:A->Prop)(x:A),not(NOT A p A x)<->(p x).

With ‘double negation’ strategy, ¬not(A, p,B, b) intuitively means ‘b does p’ or ‘b is an A’ without preas-
sumption b : A. Specially, when B = A, this double negation should be the same with our usual description.

Example 3.5

(37) It is not the case that John is not a man.

(38) ¬not(Man, pMan,Man, John), where John : Man.

(39) not (NOT Man (pr Man) Man John)

By using (A1), we can show that pMan(John) is true when we have John : Man, it trivially conforms with
the definition of pA (Definition 2.1)

¬not(Man, pMan,Man, John)⇔ pMan(John)

Please note that, usually, we shall interpret (37) as ¬¬pMan(John), instead of (38), although these two
propositions are equivalent. (This applies to The following Example 3.6 and Example 3.9 as well.)

Example 3.6

(40) It is not the case that the animal does not eat.

(41) ¬not(Animal, eat, Animal, a),
where eat : Animal→ Prop and a : Animal, with the latter interpreting ‘the animal’.

(42) not (NOT Animal eat Animal a)

With (A1), we have the following theorem. It shows a special case for PA in Definition 3.1, where B and A
are the same (both Animal).

¬not(Animal, eat, Animal, a)⇔ eat(a)

3.2.2 Examples for Law (A2)

Law (A2) is repeated here together with its Coq code:

(43) ∀p, q : A→ Prop.(∀x : A.p(x)⇒ q(x))⇒
∀y : B.not(A, q,B, y)⇒ not(A, p,B, y)

(44) forall(p q:A->Prop),(forall(x:A),(p x)->(q x))->

forall(y:B),(NOT A q B y)->(NOT A p B y).

Example 3.7

(45) If tables don’t talk, then tables don’t talk loudly.

(46) ∀x : Human.talk(x)⇒ talk loudly(x)
∀y : Table.not(Human, talk, Table, y)⇒ not(Human, talk loudly, Table, y)

(47) (y:Table)(NOT Human talk Table y)->(NOT Human talk_loudly Table y)

In this example, we are focusing on the explanation of the laws. simply consider ‘talk loudly’ as a phrase
that can be derived from ‘talk’.

3.2.3 Examples for Law (A3)

Law (A3) is repeated here together with its Coq code:

(48) If A � B, ∀p : B → Prop.∀z : C.not(B, p,C, z)⇒ not(A, p,C, z)

(49) Variable c:A->B. Coercion c:A>->B. Lemma l:injective(c).

forall (p:B->Prop)(z:C), NOT B p C z -> NOT A p C z.

We should pay more attention to the law (A3), also (A4) and (A5). In these laws, we need to prove
injectivity for coercion c. In the previous subsection, we have shown, besides identity, the projection π1 is
injective when the second parameter of a Σ-type is a predicate – this is a common coercion in NL semantics.
For the sake of simplicity, we shall skip the injectivity proof in the rest of this section.
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Example 3.8

(50) If John is not a human, then John is not a man.

(51) not(Human, pHuman,Man, John)⇒ not(Man, pHuman,Man, John)

(52) NOT Human (pr Human) Man John -> NOT Man (pr Man) Man John

We can define Man as Man = Σ(Human,male), where male : Human→ Prop. So, we have

Σ(Human,Male) ≤π1 Human

where π1 is injective because of proof irrelevance. So, Man
preceqHuman and (51) can be easily proved by (A3).

Example 3.9

(53) It is not the case that John does not work.

(54) work : Human→ Prop,
¬not(Human,work,Man, John)

(55) not NOT Human work Man John

By using (A3) and (A1), we can show.

work(John)⇒ ¬not(Man,work,Man, John)⇒ ¬not(Human,work,Man, John)

3.2.4 Examples for Law (A4)

Law (A4) is repeated here together with its Coq code:

(56) If A � B, ∀p : C → Prop.(∀y : B.not(C, p,B, y))⇒ ∀x : A.not(C, p,A, x)

(57) Variable c:A->B. Coercion A>->B. Lemma l:injective(c).

forall(p:C->Prop),(forall(y:B),NOT C p B y)->(forall (x:A),NOT C p A x)

Similarly, we have injective projection π1 of Σ-type for coercion

Σ(Woman,Beautiful) ≤π1
Woman

Σ(Table, red) ≤π1
Table

Hence, we can give the following two examples

Example 3.10

(58) If women are not men, beautiful women are not men either.

(59) ∀x : Woman.not(Man, pMan,Woman, x) ⇒ ∀y : BWoman.not(Man, pMan, BWoman, y),
where BWoman = Σ(Woman,Beautiful).

(60) (x:Woman)(NOT Man (pr Man) Woman x)->(y:BWoman)(NOT Man (pr Man) BWoman y)

In Coq, we use record to represent Σ-type, BWoman in (60) for beautiful woman could be formally defined
as:

Record BWoman : CN := mkBwoman {bw :> Woman; _ : Beautiful bw}

Example 3.11

(61) If tables do not talk, then red tables do not talk.

(62) ∀x : Table.not(Human, talk, Table, x) ⇒ ∀y : RTable.not(Human, talk,RTable, y), where
RTable = Σ(Table, red).

(63) (x:table)(NOT Human talk Table x)-> (y:Redtable)(NOT Human talk Redtable y)

Similarly, in (62) we use Σ-type for red table, Redtable in (63) is defined with record as:

Record Redtable : CN := mkredtable{rt :> Table; _ : Red rt}.
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3.2.5 Examples for Law (A5)

Law (A5) is repeated here together with its Coq code:

(64) If A � B, ∀p : C → Prop.(∃x : A.not(C, p,A, x))⇒ ∃y : B.not(C, p,B, y)

(65) Variable c:A->B. Coercion A>->B.

Lemma l:injective(c).

forall (p:C->Prop),(exists x:A,NOT C p A x )->(exists y:B,NOT C p B y)

With De Morgen Law in classical logic, ∃x : A.not(C, p,A, x) is equivalent to ¬∀x : A.¬not(C, p,A, x). It
means that if there’s x : A such that ‘x does not p’, then it is not the case that forall x : A such that ‘x does
p’. Moreover, we have the following two examples:

Example 3.12

(66) Since not every linguist is a logician, not every human is a logician.

(67) ¬∀l : Linguist.(¬not(Logician, pLogician, Linguist, l))⇒
¬∀l : Human.(¬not(Logician, pLogician, Human, l))

(68) not(forall l:Linguist, PR Logician l)->not(forall h:Human, PR Logician h)

By definition 3.1 and type inference, PR Logician l in (68) is PLogician,Linguist(l) which equals to
not(Logician, pLogician, Linguist, l) with l : Linguist. Similarly, PR Logician h is PLogician,Human(h) which
equals to not(Logician, pLogician, Human, h) with h : Human.

Example 3.13

(69) It is not the case that every man works, so it is not the case that every human works.

(70) ¬∀l : Man.(¬not(Human,work,Man, l))⇒
¬∀l : Human.(¬not(Human,work,Human, l)).

(71) not(forall l:Man,not(NOT Human work Man l)->

not(forall l:Human,not(NOT Human work Human l)

With the subtype relation Man ≤ Human and law (A5), (69) can also be easily described and reasoned.

4 Justification of NOT

We have introduced a negation operator not with laws for negative sentences or conditionals, and shown
several examples corresponding to each law. However, from a logical aspect, we still need to show that the
operator is provided in a reasonable way. In another word, we need to show whether the introduction of
such negation operator can be justified. For example, is the extension by not logically consistent? Such
a justification has not been provided for notold proposed in [6]. In this section, we present one method to
justify not, the justification is given by means of the heterogenous equality JMeq, called John Major equality
[14].

4.1 Heterogeneous equality JMeq

In type theory, equality propositions such as the Leibniz equality are usually considered only between objects
of the same type. For examples, if a : A, b : B, A and B are different types, we usually cannot talk about
whether a and b are equal. However a heterogenous equality allows us to talk about equality on arguments
of different types.

JMeq (named as “John Major Equality”), proposed by Conor McBride [14], is a heterogenous equality,
which allows us to apply equality on arguments of different types.

JMeq : ΠA : Type.Πx : A.ΠB : Type.Πy : B.Prop

We have the following rules for JMeq

Γ ` A : Type Γ ` x : A

Γ ` JMeq A x A x : Prop

Axiom 1 For all A : Type, if x, y : A and JMeq A x A y, then x = y : A.
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It is trivial to prove the following lemma for symmetry and transitivity properties of JMeq, hence it is a
equivalent relation.

Lemma 4.1

1. (Symmetry) For all A,B : Type, x : A, y : B, JMeq A x B y, the JMeq B y A x.

2. (Transitivity) For all A,B : Type, x : A, y : B, z : C, JMeq A x B y, JMeq B y C z, the JMeq A x C z.

With JMeq, we can form proposition JMeq(A, a,B, b) to describe the equality between a and b, even if A
and B are different. In Coq standard library, JMeq is defined as:

Inductive JMeq (A:Type)(x:A) : forall B : Type, B -> Prop :=

JMeq_refl : JMeq x x

4.2 Justification of not by JMeq

With the identifier JMeq, we can define not as follows:

not(A, p,B, b) = ∀x : A.JMeq(A, x,B, b)⇒ ¬p(x) (∗∗)

Informally, it says that b does not p mean that, for any x in A, if x equals b, then p(x) is not true.
The extension of the underlying MTT (e.g., UTT) with JMeq was proved to be consistent [14]. If the

laws (Ai) (i = 1 to 5) can be proved (and done in the proof assistant Coq) with not defined as in (**), the
consistency of extending MTT with JMeq will imply that our extension with not is logically consistent as
well.

To justify not by JMeq, we need to prove (A1)-(A5) with the notion of JMeq. However, to prove (A3)
(A4) and (A5) with JMeq, we need to employ a further axiom with the notion of injectivity and coercion.

Axiom 2 ∀A,B : cn, A � B, then we have

∀x : A, JMeq(A, x,B, x)

Remark 3 ∀x : A.JMeq(A, x,B, x) actually stands for ∀x : A.JMeq(A, x,B, c(x)) with some injective coer-
cion c. Then, for any x1, x2 : A, if c(x1) = c(x2), we have JMeq(B, c(x1), B, c(x2)). Hence we can derive
that JMeq(A, x1, A, x2) with symmetry and transitivity rules of JMeq, which gives us x1 = x2 in JMeq. This
matches the injectivity of c.

Theorem 4.2 For any A,B,C : cn, if not is the notion for not(A, p,B, b) = ∀x : A.JMeq(A, x,B, b) ⇒
¬p(x), then we can prove the following (the laws for not):

1. ∀p : A→ Prop.∀x : A.¬not(A, p,A, x)⇔ p(x)

2. ∀p, q : A→ Prop.(∀x : A.p(x)⇒ q(x))⇒ ∀y : B.not(A, q,B, y)⇒ not(A, p,B, y)

3. if A � B, ∀p : B → Prop.∀z : C.not(B, p,C, z)⇒ not(A, p,C, z)

4. if A � B, ∀p : C → Prop.(∀y : B.not(C, p,B, y))⇒ ∀x : A.not(C, p,A, x)

5. if A � B, ∀p : C → Prop.(∃x : A.not(C, p,A, x))⇒ ∃y : B.not(C, p,B, y)

Proof With the definition of not and properties of JMeq, we can prove the theorem with no difficulty. The
proofs have been done in the Coq proof assistant as well – see Appendix A for their Coq statements (the
proof codes are omitted to save the space.)
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A Justification of NOT by JMeq: Coq Proofs in Brief

Here are the Coq statements of the laws (A1) to (A5), which have all been proved in Coq.

Require Import Coq.Logic.JMeq. Require Import Classical_Prop. Definition CN := Set.

(* NOT defined by means of JMeq *)

Definition NOT (A:CN)(p:A->Prop)(B:CN)(b : B) := forall x:A, JMeq x b -> not (p x).

(* A1: if x:A & p:A->Prop, NOT(A,p,A,x) iff p(x) *)

Definition A1 := forall (A:CN)(x:A)(p:A->Prop), not (NOT A p A x) <-> (p x).

(* A2: if p=>q then NOT(q,b) => NOT(p,b) *)

Definition A2 :=

forall (A B:CN)(p q:A->Prop),

(forall (x:A), (p x)->(q x)) -> forall (y:B), (NOT A q B y) -> (NOT A p B y).

(* injectivity: A functional operation f:(X)Y is injective if for all x,y:X, f(x)=f(y) implies x=y*)

Definition Inj{X Y:Type}(f:X->Y):=forall(x y:X),(f x) = (f y)->x=y.

Variables A B C : CN.

Variable cAB : A->B.

Coercion cAB : A >->B.

Axiom JMeq_inj : Inj cAB -> forall (x:A), (@JMeq A x B x ).

(* A3: If A <_c B, where c is injective, then

forall p:B->Prop. forall z:C. NOT(B; p; C; z)=>NOT(A; p; C; z). *)

Definition A3 := Inj cAB -> (forall (p:B->Prop)(c:C), NOT B p C c->NOT A p C c).

(* (A4) For A,B,C : CN, A <=_c B with Inj(c) and p : C->Prop, we have

(forall y:B. NOT(C,p,B,y)) => forall x:A. NOT(C,p,A,x) *)

Definition A4 := Inj cAB->forall(p:C->Prop),(forall(y:B),NOT C p B y)->(forall(x:A),NOT C p A x).

(* (A5) For A,B,C : CN, A <=_c B with p : C->Prop, we have

(Exsits x:A. NOT(C,p,A,x)) => Exists y:B. NOT(C,p,B,y) *)

Definition A5 :=Inj cAB->forall(p:C->Prop),(exists x:A,NOT C p A x)->(exists y:B,NOT C p B y).
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