
EasyChair Preprint
№ 6020

Audio and text toxics comments classification

Sangita Holkar, Sudhir Sawarkar and Shubhangi Vaikole

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 5, 2021

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 166

 AUDIO AND TEXT TOXIC COMMENT

CLASSIFICATION

 Sangita Holkar, Dr. S.D .Sawarkar, Dr.Shubhangi Vaikole
1Student, 2Principal, 3 Associate Professor

1Computer Department,
1Datta meghe college of Engineering, Airoli, India

Abstract : Social networking and online conversation platforms provide us with the power to share our views and ideas.

However, nowadays on social media platforms, many people are taking these platforms for granted, they see it as an opportunity

to harass and target others leading to cyber- attack and cyber-bullying which lead to traumatic experiences and suicidal attempts

in extreme cases. Manually identifying and classifying such comments is a very long, tiresome and unreliable process. To solve

this challenge, we have developed a deep learning system which will identify such negative content on online discussion

platforms and successfully classify them into proper labels. Our proposed model aims to apply the text-based Convolution Neural

Network (CNN) with NLP, using LOGISTIC REGRESSION,MULTINOMIALDB, LINEAR SVC word embedding technique.

Our model aims to improve detecting different types of toxicity to improve the social media experience. Our model classifies such

comments in six classes which are Toxic, Severe Toxic, Obscene, Threat, Insult and Identity-hate. Multi-Label Classification

helps us to provide an automated solution for dealing with the toxic comments problem we are facing.

IndexTerms -Convolution Neural Network (CNN), Python-tesseract, Logistic Regression,Multinomialdb, Linear Svc .

I. INTRODUCTION

Discussing things you care about can be difficult. The threat of abuse and harassment online means that many people stop

expressing themselves and give up on seeking different opinions. Platforms struggle to evidently facilitate conversations, leading

many communities to limit or completely shut down user comments. Discussing things you care about can be difficult. The threat

of abuse and harassment online means that many people stop expressing themselves and give up on seeking different opinions.

Platforms struggle to evidently facilitate conversations, leading many communities to limit or completely shut down user

comments. The problem which I am trying to solve is a multiclass multilabel classification which means a comment can belong to a

single class or more than one class or none.

The flow of the project is :

1. Loading the data and visualizing the data from dataset

1. Reducing the data instances which belong to none of the classes to make the dataset less skewed.

2. Standard Preprocessing for textual data, which are: lower casing the text, removing punctuations, removing stopwords,

lemmatization of the text.

3. Converting textual data into numerical embedded data via tokenization API provided by Keras framework.

4. Defining the deep learning model for the classification task.

http://www.ijrar.org/

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 167

1.1 Loading And Visualizing The Dataset

The process of converting data to something a computer can understand is referred to as pre-processing. One of the major forms

of pre-processing is to filter out useless data. In natural language processing, useless words (data), are referred to as stop word

What are Stop words?

Stop Words: A stop word is a commonly used word (such as “the”, “a”, “an”, “in”) that a search engine has been programmed to

ignore, both when indexing entries for searching and when retrieving them as the result of a search query. We would not want these

words to take up space in our database, or taking up valuable processing time. For this, we can remove them easily, by storing a list

of words that you consider to stop words. NLTK(Natural Language Toolkit) in python has a list of stopwords stored in 16 different

languages. You can find them in the nltk_data directory. home/pratima/nltk_data/corpora/stopwords is the directory address.(Do

not forget to change your home directory name)

Example

Imports

import pandas as pd

import numpy as np

from nltk.corpus import stopwords

from wordcloud import WordCloud

import matplotlib.pyplot as plt

import seaborn as sns

1.1.1 Removing Stop Words With NLTK

The following program removes stop words from a piece of text:

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

example_sent = """This is a sample sentence,

 showing off the stop words filtration."""

 stop_words = set(stopwords.words('english'))

 word_tokens = word_tokenize(example_sent)

 filtered_sentence = [w for w in word_tokens if not w in stop_words]

 filtered_sentence = []

for w in word_tokens:

 if w not in stop_words:

 filtered_sentence.append(w)

 print(word_tokens)

print(filtered_sentence)

Output:

['This', 'is', 'a', 'sample', 'sentence', ',', 'showing',

'off', 'the', 'stop', 'words', 'filtration', '.']

['This', 'sample', 'sentence', ',', 'showing', 'stop',

'words', 'filtration', '.']

Performing the Stopwords operations in a file

On loading the data we can find out the counts of the classified data individually With data to be visualize the data is sh own

in a tabular format with the command (df:describe) Seaborn is an amazing visualization library for statistical graphics plotting

in Python. It provides beautiful default styles and color palettes to make statistical plots more attractive. It is built on the top of

matplotlib library and also closely integrated into the data structures from pandas.

1.1.2 Box Plot

A box plot helps to maintain the distribution of quantitative data in such a way that it facilitates the comparisons between

variables or across levels of a categorical variable. The main body of the box plot showing the quartiles and the median’s

confidence intervals if enabled. The medians have horizontal lines at the median of each box and while whiskers have the

vertical lines extending to the most extreme, non-outlier data points and caps are the horizontal lines at the ends of the

whiskers.

http://www.ijrar.org/

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 168

After classification of the data the graph is plotted showing which of the classification is more aacurate

1.1.3 To Find The Data Visulalise The Data Individually

1.1.4 Visualizing The Data From The Dataset Finding The Various Clasiification Into The Dataset

http://www.ijrar.org/

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 169

DATA PREPROCESSING

import re

import string

import emoji

#text = "game is on 🔥 🔥"

#print(emoji.demojize(text, delimiters=("", "")))

hastag_pat = r'#[0-9a-z_]+'

mentions_pat = r'\@[0-9a-z]+'

number_pat = r'\d+'

links_pat = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'

emoji_pat = r'[^\w\s,]'

emoticons_pat = r'(?::|;|=)(?:-)?(?:\)|\(|D|P)'

def find_hashtags(tweet):

 return re.findall(hastag_pat, tweet, flags=re.I)

def find_mentions(tweet):

 return re.findall(mentions_pat, tweet, flags=re.I)

def find_links(text):

 return re.findall(links_pat, text,flags=re.I)

def find_emoji(text):

 return re.findall(emoji_pat, text,flags=re.I)

def find_emoticons(text):

 return re.findall(emoticons_pat,text,flags=re.I)

def remove_hashtags(text):

 return re.sub(hastag_pat, '', text)

def remove_mentions(text):

 return re.sub(mentions_pat, '', text)

def remove_links(text):

 return re.sub(links_pat, '', text)

def remove_emoji(text):

 return re.sub(emoji_pat, '', text)

def remove_emoticons(text):

 return re.sub(emoticons_pat, '', text)

def remove_number(text):

 return re.sub(number_pat, '', text)

def remove_punctuations(text):

 return ' '.join(word.strip(string.punctuation) for word in text.split())

def clean_data(text):

 text = text.lower()

 clean_sent = remove_hashtags(text)

 clean_sent = remove_mentions(clean_sent)

 clean_sent = remove_links(clean_sent)

 #clean_sent = remove_emoji(clean_sent)

 clean_sent = remove_emoticons(clean_sent)

 #clean_sent = emoji.demojize(clean_sent, delimiters=("", ""))

 clean_sent = remove_number(clean_sent)

 clean_sent = remove_punctuations(clean_sent)

 #clean_sent = [word for word in clean_sent if not word in set(stopwords.words('english'))]

 clean_sent = ''.join(clean_sent)

 return clean_sent

http://www.ijrar.org/

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 170

cleaning up data with syop words and other techniques gives you the data cleaning byapplying filters such as passing function of

removing hash tags , punctuation marks ,colon ,semicolon ,fullstop ,removing the reapeated characters after the words .The result

will show you the filter and clean data

which comes after cleaning

1.2 Correlation Matrix

Here in the below ouput the values showing the indentity shows that the data is of no use theere where as the other data is

very useful Correlation Matrix also shows that the data whose value is 0.99 or 0.98 are again to the indentity hence these data

are also not used for testing because that contains the non toxic data . The indentity matrix is a colourful matrix where whi te

colour is used to define for the indentity matrix .The colour of the matrix is seen in mostly 3 to 4 colours as they are not fixed

they can be taken as random the x-axis and y -axis which are differentiated on the basis od the multilbel clasiification .The

Classification is shown is expressed as toxic,severe toxic,obscene ,threat ,insult ,identity hate .

http://www.ijrar.org/

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 171

1.3 Applying Model For The Database

TYPES OF MODELS TO BE USED

1. LINEAR REGRESSION

2. MULTINOMIAL DB MODEL

3. LINEAR SVC

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialNB

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

cvec = CountVectorizer()

tvec = TfidfTransformer()

model1 = MultinomialNB()

Naive Bayes Classifier Naive Bayes is a kind of classifier which uses the Bayes Theorem. It predicts membership probabilities

for each class such as the probability that given record or data point belongs to a particular class. The class with the hig hest

probability is considered as the most likely class. This is also known as Maximum A Posteriori (MAP).

A.The MAP for a hypothesis is:

MAP(H)

= max(P(H|E))

= max((P(E|H)*P(H))/P(E))

= max(P(E|H)*P(H))

P(E) is evidence probability, and it is used to normalize the result. It remains same so, removing it won’t affect.

Naive Bayes classifier assumes that all the features are unrelated to each other. Presence or absence of a feature does not

influence the presence or absence of any other feature. We can use example for explaining the logic i.e.,

A fruit may be considered to be an apple if it is red, round, and about 4″ in diameter. Even if these features depend on each

other or upon the existence of the other features, a naive Bayes classifier considers all of these properties to independentl y

contribute to the probability that this fruit is an apple.

In real datasets, we test a hypothesis given multiple evidence(feature). So, calculations become complicated. To simplify the

work, the feature independence approach is used to ‘uncouple’ multiple evidence and treat each as an independent one.

P(H|Multiple Evidences) = P(E1| H)* P(E2|H) ……*P(En|H) * P(H) / P(Multiple Evidences)

1.3.1 Contervectoriztion

In order to use textual data for predictive modeling, the text must be parsed to remove certain words – this process is called

tokenization. These words need to then be encoded as integers, or floating-point values, for use as inputs in machine learning

algorithms. This process is called feature extraction (or vectorization).Scikit-learn’s CountVectorizer is used to convert a

collection of text documents to a vector of term/token counts. It also enables the pre-processing of text data prior to generating

the vector representation. This functionality makes it a highly flexible feature representation module for text.

TF-IDF is an information retrieval and information extraction subtask which aims to express the importance of a word to a

document which is part of a colection of documents which we usually name a corpus. It is usually used by some search

engines to help them obtain better results which are more relevant to a specific query. In this article we are going to discuss

what exactly is TF-IDF, explain the math behind it and then we will see how we can implement it in Python by using the

Scikit-Learn library.

http://www.ijrar.org/

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 172

1.3.2 Tf-Idf

TF-IDF stands for Term Frequency — Inverse Document Frequency and is a statistic that aims to better define how important

a word is for a document, while also taking into account the relation to other documents from the same corpus.

This is performed by looking at how many times a word appears into a document while also paying attention to how many

times the same word appears in other documents in the corpus.

The rationale behind this is the following:

• a word that frequently appears in a document has more relevancy for that document, meaning that there is higher probability

that the document is about or in relation to that specific word

• a word that frequently appears in more documents may prevent us from finding the right document in a collect ion; the word

is relevant either for all documents or for none. Either way, it will not help us filter out a single document or a small sub set of

documents from the whole set.

So then TF-IDF is a score which is applied to every word in every document in our dataset. And for every word, the TF-IDF

value increases with every appearance of the word in a document, but is gradually decreased with every appearance in other

documents. And the maths for that is in the next section.

Tf-Idf Formula Explained

Now let’s take a look at the simple formula behind the TF-IDF statistical measure. First let’s define some notations:

• N is the number of documents we have in our dataset

• d is a given document from our dataset

• D is the collection of all documents

• w is a given word in a document

First step is to calculate the term frequency, our first measure if the score.

Term Frequency Formula

Here f(w,d) is the frequency of word w in document d.

Inverse Document Frequency Formula

With N documents in the dataset and f(w, D) the frequency of word w in the whole dataset, this number will be lower with

more appearances of the word in the whole dataset.

while using TfidfTransformer will require you to use the CountVectorizer class from Scikit -Learn to perform Term Frequency.

 1.3.3 Linear Svc

from sklearn.svm import LinearSVC

model2 = LinearSVC()

for category in labels:

 model2.fit(X_train, train[category])

 accuracy = model2.score(X_test, test[category])

 accuracies[1].append(accuracy)

The objective of a Linear SVC (Support Vector Classifier) is to fit to the data you provide, returning a "best fit" hyperplane

that divides, or categorizes, your data. From there, after getting the hyperplane, you can then feed some features to your

classifier to see what the "predicted" class is. This makes this specific algorithm rather suitable for our uses, though you can

use this for many situations. Let's get started.

Output

Accuracy For toxic Class Is 96.19%

Accuracy For severe_toxic Class Is 99.06%

Accuracy For obscene Class Is 97.9%

Accuracy For threat Class Is 99.74%

Accuracy For insult Class Is 97.18%

Accuracy For identity_hate Class Is 99.22%

from sklearn.linear_model import LogisticRegression

model3 = LogisticRegression(n_jobs=1, solver='liblinear')

for category in labels:

 model3.fit(X_train, train[category])

 accuracy = model3.score(X_test, test[category])

 accuracies[2].append(accuracy)

 print("Accuracy For {0} Class Is {1}%".format(category,round(accuracy*100,2)))

This dataset contains approximately 10,000 tweets that have been labeled using the CrowdFlower platform as conveying

classification. That makes this dataset a unique perspective on the popular topic of sentiment analysis. While sentiment

analysis typically focuses on expressions of positive or negative opinion, this data is alternatively more grounded in emotional

states.

http://www.ijrar.org/

© 2021 IJRAR April 2021, Volume 8, Issue 2 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRAR21B1025 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 173

1.3.3.1 Features Of Linear Svc

: This column contains the text to which the label applies. It will get transformed into features used by the model during

training and prediction.This data is subjected to three standard transformation/cleaning steps:

Converting the "label" column to be a categorical variable

Removing any rows for which the label column is missing a value

Stripping out non-alphanumeric characters and converting text to lower case

Feature extraction is done using AML's native Feature Hashing module, here set to fairly conservative parameters of unigram

features and 12-bit hashing.

A logistic regression classifier is used. While the example data included with this experiment only contains two labels to

predict, the model is created as one-vs-all multiclass.

In addition to training up a model, cross-validation is included (defaults to 5-fold). Summary statistics for cross-validation can

be viewed directly via the output port of the Evaluate Model node, and predictions from the cross-validation run (averaged

across folds) are also exported to CSV for inspection of model predictions.

1.4 Conclusion

1.5 Future Analysis

The future prospects of this work lie in achieving a striking difference between these three algorithms by increasing

the size of the dataset to achieve high degrees of accuracies with three of these models. The increase in size of the datas et

will provide an increased number of features and hence, the feature extraction and modelling process will achieve

correctness and accuracy in terms of predicting the sentiment of news article on the reader.

1.6 Acknowledgments

.This System Is Implemented Under Guidance Of Prof S.D .Sawarkar And Prof Shubhangi Vaikole ,Department Of Computer

Engineering ,Airoli, India

1.7 References

[1] Thedora Chu, Max Wang, Kylie Jue. “Comment Abuse Classification with Deep Leraning.” Stanford University.

[2] Karthik Diankar, Roi Riechart, Henry Lieberman. “Modeling the Detection of Textual Cyberbullying.” Massachusetts

Institute of Technology, Cambridge MA 02139 USA.

[3] Xin Wang, Yuanchao Li, Chengjie Sun, Baoxum Wang and Xialong Wang. “Polarities of Tweets by Composing Word

Embeddings with Long Short Term Memory.” 7th International Joint Conference of Natural Language Processing. July -2005.

[4] S. V. Georgakopoulus, A. G. Vrahatis, S. K. Tasoulis, V. P. Plagianakos. “Convolutional Neural Networks for Toxic

Comment Classification.” arXiv:1802.099574v1 [cs.CL], 27 Feb 2018.

[5] Manav Kohli, Emily Kuehler and John Palowitch. “Paying attention to toxic comments.” Stanford University.

[6] E. Wulcyzn, N.Thain and L.Dixon. “Ex-Machina-Personal attacks seen at scale.” 2017 International World Wide Web

Conference Committee (IW3C2), ACM 978-1-44501-4913- - 10/17/04

http://www.ijrar.org/

