F EasyChair Preprint

A HMAC Scheme Based on 6D Hyper Chaotic Maps for Enhanced Security

Omessead Benmbarak

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

A HMAC Scheme Based on 6D Hyper chaotic maps for Enhanced Security

Abstract

The HMAC (Keyed-Hash Message Authentication Code) algorithm serves as a cornerstone of security widely employed to ensure data authentication and integrity within information systems and computer networks. Essentially straightforward, HMAC relies on hash functions utilizing a secret key. The cryptographic strength of HMAC derives from its adept utilization of efficient cryptographic characteristics like balancing and the avalanche effect. In our research, we introduce a fresh HMAC algorithm incorporating hyperchaotic systems to bolster its cryptographic attributes. Our 6D-HMAC showcases resilience against MAC collision threats, displays heightened sensitivity to key, plaintext, and error propagation influences, and presents enhanced security in contrast to traditional approaches.

Index Terms-MAC, Hash functions; 6D Dimensions Maps; Hyperchaotic System

I. Introduction

Ensuring the authenticity of data and guarding against alterations are crucial aspects of information security. Message authentication codes (MACs) play a pivotal role in achieving these objectives. Among MAC variants, HMAC [1] (Hashbased Message Authentication Code) stands out for its effectiveness due to several reasons, as noted :

- Unlike MACs employing encryption algorithms, HMAC operates with hash functions, which, while slower, offer robust security.
- Many hardware cryptographic tools are optimized for handling large data volumes, making HMAC a preferred choice.
- Licensing requirements are often associated with other cryptographic algorithms, whereas HMAC is freely available.
HMAC [2], a cornerstone of cryptographic message authentication, plays a crucial role in verifying the authenticity and data integrity of messages. Widely used in data exchange and storage applications, it ensures the legitimacy of the data source. As a specialized Message Authentication Code (MAC), HMAC utilizes a shared secret key and a hash function to generate a message digest (tag). This tag assures that the message originated from a trusted source and has not been tampered with during transmission or storage. This paper introduces a novel Message Authentication Code (MAC) proposal tailored for hyperchaotic systems. In essence, it represents an advancement over its predecessor HMAC, where the Mask, Encryptor, and compression components of this new MAC are grounded on the most chaotic 6D system.

The article is organized as follows: Section 2 provides an overview of 6-dimensional hyperchaotic systems; Section 3
presents the proposed 6D-HMAC model; Section 4 outlines the analysis conducted to assess the effectiveness of 6D-HMAC. Finally, Section 6 offers the conclusion of the article.

II. Six dimensional (6D) hyperchaotic system

Mathematical analyses have highlighted the nonlinear nature and dynamic complexities inherent in commonly used chaotic functions, posing challenges in predicting their responses. Studies indicate that hyperchaotic functions exhibit significantly more intricate dynamic behaviors compared to their low-dimensional counterparts [30]. Chaotic systems are characterized by a minimum requirement of four dimensions, while low-dimensional chaotic functions feature a single positive Lyapunov exponent, contrasting with high-dimensional functions which typically possess at least two such exponents. Authors [3] offered the following definition for a 6dimensional hyperchaotic system:

$$
\begin{cases}x_{1} & =a\left(x_{2}-x_{1}\right)+x_{4}-x_{5}-x_{6} \tag{1}\\ x_{2} & =c x_{1}-x_{2}-x_{1} x_{3} \\ x_{3} & =-b x_{3}+x_{1} x_{2} \\ x_{4} & =d x_{4}-x_{2} x_{3} \\ x_{5} & =e x_{6}+x_{3} x_{2} \\ x_{6} & =r x_{1}\end{cases}
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, and r are constants and x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, and x_{6} are the state variables of the 6 D hyperchaotic system. In this study, $\mathrm{a}=10, \mathrm{~b}=\frac{8}{3}, \mathrm{c}=28, \mathrm{~d}=-1$, $\mathrm{e}=10$, and $\mathrm{r}=3$ were selected as constants. This ensures that the system has two positive Lyapunov exponents [4] that satisfy the condition (the sum of all exponents is negative).

Figure 1 illustrates the corresponding two-dimensional (x_{1}, $\left.x_{2}\right),\left(x_{1}, x_{3}\right),\left(x_{2}, x_{3}\right)$, and $\left(x_{1}, x_{4}\right)$ phase portraits of the system.
The Lyapunov exponents are displayed in Table I.

TABLE I
VALUES OF LYAPUNOV EXPONENTS

$l_{\text {LE1 }}$	0.362485
$l_{\text {LE2 }}$	0.24709
$l_{\text {LE3 }}$	0
$l_{\text {LE4 }}$	-0.225698
$l_{\text {LE5 }}$	-10.0017
$l_{\text {LE6 }}$	-15.0708

Fig. 1. Hyperchaotic attractor of system 1 in 2-D spaces with (a, b, c, d, e, r) $=\left(10, \frac{8}{3}, 28,-1,10,3\right)$ and initial condition $\left(x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, x_{4_{0}}, x_{5_{0}}, x_{6_{0}}\right)$ $=(0.1,0.1,0.1,0.1,0.1,0.1)$.

III. PROPOSED 6D-HMAC

Network users must verify that messages have not been altered, accidentally or maliciously. The recommended method to protect against undetected alterations is to develop a keybased message authentication code (HMAC). The flowchart, in the graph 2, effectively captures the essential steps in generating an HMAC, highlighting the importance of message padding, key preparation, and a hash function to ensure message authenticity and integrity.

Fig. 2. HMAC Process

A. Initial Mask Generating Process

A MASK [5] functions as an alias to ensure the anonymity of real sub-messages. This is achieved by applying a MASK to each sub-message (using XOR with the initial MASK) before creating the sub-MACs. These sub-MACs are then XORed together to produce the final message authentication code. User can employ his secret initial points $x_{1_{0}}, x_{2_{0}}, x_{3_{0}}$,

Fig. 3. Initial MASK Generation Process
$x_{4_{0}}, x_{5_{0}}, x_{6_{0}}$ and N in the 6 D map equation to calculate the initial MASK in the figure 3 as follows :
$x_{1_{n}}=x_{1_{0}}, x_{2_{n}}=x_{2_{0}}, x_{3_{n}}=x_{3_{0}}, x_{4_{n}}=x_{4_{0}}, x_{5_{n}}=$
$x_{5_{0}}, x_{6_{n}}=x_{6_{0}}$
For $\mathrm{i}=1$ to R Do
$x_{1_{(n+1)}}=x_{1_{n}}+h *\left(a\left(x_{2}-x_{1}\right)+x_{4}-x_{5}-x_{6}\right)$
$x_{2_{(n+1)}}=x_{1_{n}}+h *\left(c x_{1}-x_{2}-x_{1} x_{3}\right)$
$x_{3_{(n+1)}}=x_{3_{n}}+h *\left(-b x_{3}+x_{1} x_{2}\right)$
$x_{4_{(n+1)}}=x_{4_{n}}+h *\left(d x_{4}-x_{2} x_{3}\right)$
$x_{5_{(n+1)}}=x_{5_{n}}+h *\left(e x_{6}+x_{3} x_{2}\right)$
$x_{6_{(n+1)}}=x_{6_{n}}+h *\left(r x_{1}\right)$
Change $x_{1_{n}}, x_{2_{n}}, x_{3_{n}}, x_{4_{n}}, x_{5_{n}}$ and $x_{6_{n}}$ to binary strings
Concatenate $x_{1_{n}}, x_{2_{n}}, x_{3_{n}}, x_{4_{n}}, x_{5_{n}}$ and $x_{6_{n}}$ binary strings
into Y binary characters string, held in Buffer.
Change the Buffer into Y bits initial MASK.
Where

- (a,b,c,d,e,r) are control parameters ($10, \frac{8}{3}, 28,-1,10,3$)
- N is the number of the iterations of the 6 D map.
- Y is the MAC lengths (160 bits).
- Buffer is a one-dimensional array with Y bit lengths.

B. HMAC Generating Process

According to the figure 2, the HMAC generating process can be done as follows:

1) N_{1} bits message is produced, after the padding process on the N bits plain-text message,
2) N_{1} bits message is divided into n_{k} sub-message, each with Y bits length where
a) $Y=160$ bits
b) $\mathrm{K}=N_{1} / \mathrm{Y}$
3) For $I=1$ to K Do
4) Each sub-message n_{i} is masked by XORing it with the initial MASK.
5) By using the same steps as in figure 3, we can find the sub-MACs $C_{O_{i}}$
6) $M A C=C_{O_{1}} \oplus C_{O_{2}} \oplus \ldots \oplus C_{O_{k}}$

The MAC generation process can be conducted concurrently with encryption, following which the MAC bits are appended to the end of the encrypted text and transmitted to the receiver as a complete encrypted message. Upon reception, Y MAC bits are retrieved, and the encrypted text is decrypted to obtain the plaintext message. Subsequently, the MAC is recomputed and compared to the received MAC. Upon equality, the recipient is assured that the received message has not undergone any inadvertent or malicious corruption.

IV. 6D-HMAC ANALYSIS

In the 6D-HMAC analysis, three types of analyses were conducted on the generated MAC:

1) Key-ciphertext avalanche effect: This analysis evaluates the sensitivity of the MAC to changes in the key and ciphertext, measuring how small modifications in the key or ciphertext lead to significant changes in the MAC output.
2) Plaintext-ciphertext avalanche effect: This analysis examines the MAC's ability to conceal changes in the
plaintext by producing substantially different outputs for slightly different plaintexts. It measures the effect of changes in plaintext on ciphertext.
3) Strength Analysis: This analysis will be based on calculating the key length and the time (Tbreak) required to break the encryption by brute force.

A. Key-ciphertext avalanche effect

The concept of the ciphertext key avalanche effect revolves around modifying the key value and examining its effect on the encrypted text. In 6D-HMAC, the key comprises six distinct initial points of the hyperchaotic system: $x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, x_{4_{0}}$, $x_{5_{0}}$, and $x_{6_{0}}$.

The tables (II to VII) display the outcomes of the avalanche effect analysis on encrypted text with variations in $x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, x_{4_{0}}, x_{5_{0}}$, and $x_{6_{0}}$. In this investigation, a fixed message "Testing our new HMAC based on hyperchaotic systems" is employed, with control parameters $\mathrm{a}=10, \mathrm{~b}=$ $\frac{8}{3}, \mathrm{c}=28, \mathrm{~d}=-1, \mathrm{e}=10$, and $\mathrm{r}=3$, and iteration count $\mathrm{N}=250$.

B. Plaintext-ciphertext avalanche effect

The data indicates that even slight alterations in the initial conditions values lead to significant variations in encryption techniques.
This reformulation clarifies the purpose of analyzing how changes in the original message (input) affect the encrypted message (output). It avoids mentioning the "avalanche effect" directly, focusing on the core concept of input sensitivity.

Table VIII presents the results of the avalanche effect between plaintext and ciphertext with different variable message lengths. This analysis utilizes the following initial values: $x_{1_{0}}$ $=0.10000000000001, x_{2_{0}}=0.1, x_{4_{0}}=0.11111111111111$, $x_{5_{0}}=0.145635778, x_{6_{0}}=0.2035777777777$ and $\mathrm{N}=250$.
The 6D-HMAC algorithm demonstrates remarkable sensitivity to even minor alterations within the message. This is elucidated by Table VIII, which offers insightful examples. For instance, removing just one letter, such as 's', yields a drastically different outcome, underscoring the algorithm's acute responsiveness to textual modifications.

C. Strength Analysis

The 6D-HMAC secret relies on six distinct initial points $x_{1_{0}}$, $x_{2_{0}}, x_{3_{0}}, x_{4_{0}}, x_{5_{0}}$, and $x_{6_{0}}$. Depending on the data type used (embedded REAL) and the chosen precision, there are $2^{64} \mathrm{x}$ $2^{64} \times 2^{64} \times 2^{64} \times 2^{64} \times 2^{64}$ possible combinations for $x_{1_{0}}, x_{2_{0}}$, $x_{3_{0}}, x_{4_{0}}, x_{5_{0}}$, and $x_{6_{0}}$. This corresponds to a key length of 384 bits. Considering that the variable ' h ' in the 6D hyperchaotic system is a randomly selected double value, the key length will increase to 512 bits. Assuming that the computing power of computers is 10^{20} operations per second.The value of Tbreak, the time required to break the encryption by brute force. It

TABLE II
$\operatorname{KEY}\left(x_{1_{0}}\right)$-CIPHERTEXT AVALANCHE EFFECT (WHERE $\left(x_{2_{0}}, x_{3_{0}}, x_{4_{0}}, x_{5_{0}}, x_{6_{0}}\right)=(0.1,0.1,0.1,0.1,0.1$,$\left.) AND \mathrm{N}=250\right)$

$x_{1_{0}}$	MAC in Hex	MASK in Hex
0.1	012HJD2358674JHVBXSD3FF77HJKKTRED8A8D01B4HJY	7EDXCV2251B9F962KLN93VBLM1547FKLMO21F5D1E7MLK8
0.11	8F3D6E7B12A9C5F044B6A71E29D8C3A5F1B7E6D9YTEG4	F8J7N4D5W6L3B9C0K5V8N9G4M1T3R6F4L2J82H9B5N4M7C3
0.111	A6B713F0C4E4FAD46C27UFEEE0B7C4D4KLO9644E534F0	37C9B2E4D20139A4E5F5928F5A7E6C13AAD4970QSAZERTKB
0.1111	F7B1D2CH93B50ADBF405F0B1TRDSC59E3BDFAC1750E98	449F01122A61FA6175915AC3B62D236EABDC8D9CJHJFERTTB
0.11111	A5063C3E89KJXAD0B59BA8HJGFDDA0CE079HGF1395B68	6BAE213D5E9B0F31C8A5DCB45F6E79BCA8D3E12JGRXVBV5
0.111111	5A7426DAD480AHJ3E9F5F75A7B10JD4HHJYT63AA89250A	2C8B3F6E117C6A0B5ED8E79H23A02B86CF2B857BDHYBF254
0.1111111	91A4A26A9BCF542HS0U1A6A9C544B6F1AAB4ML621495C	7B16E3B537AD8D8C91E5A37B49C6B28503DE4A7QSZVBL3H

TABLE III
$\operatorname{KEY}\left(x_{2_{0}}\right)$-CIPHERTEXT AVALANCHE EFFECT (WHERE $\left(x_{1_{0}}, x_{3_{0}}, x_{4_{0}}, x_{5_{0}}, x_{6_{0}}\right)=(0.1,0.10000000001,0.1,0.1,0.1$,$) AND N=250)$

$x_{2_{0}}$	MAC in Hex	MASK in Hex
0.1	012HJD2358674JHVBXSD3FF77HJKKTRED8A8D01B4HJY	7EDXCV2251B9F962KLN93VBLM1547FKLMO21F5D1E7MLK8
0.11	8F3D6E7B12A9C5F044B6A71E29D8C3A5F1B7E6D9YTEG4	F8J7N4D5W6L3B9C0K5V8N9G4M1T3R6F4L2J82H9B5N4M7C3
0.111	A6B713F0C4E4FAD46C27UFEEE0B7C4D4KLO9644E534F0	37C9B2E4D20139A4E5F5928F5A7E6C13AAD4970QSAZERTKB
0.1111	F7B1D2CH93B50ADBF405F0B1TRDSC59E3BDFAC1750E98	449F01122A61FA6175915AC3B62D236EABDC8D9CJHJFERTTB
0.11111	A5063C3E89KJXAD0B59BA8HJGFDDA0CE079HGF1395B68	6BAE213D5E9B0F31C8A5DCB45F6E79BCA8D3E12JGRXVBV5
0.111111	5A7426DAD480AHJ3E9F5F75A7B10JD4HHJYT63AA89250A	2C8B3F6E117C6A0B5ED8E79H23A02B86CF2B857BDHYBF254
0.111111	91A4A26A9BCF542HS0U1A6A9C544B6F1AAB4ML621495C	7B16E3B537AD8D8C91E5A37B49C6B28503DE4A7QSZVBL3H

TABLE IV
$\operatorname{KEY}\left(x_{3_{0}}\right)$-CIPHERTEXT AVALANCHE EFFECT (WHERE $\left(x_{1_{0}}, x_{2_{0}}, x_{4_{0}}, x_{5_{0}}, x_{6_{0}}\right)=(0.100000000000001,0.1,0.111111111111111,0.145635778$, 0.2035777777777,) AND $\mathrm{N}=250$)

$x_{3_{0}}$	MAC in Hex	MASK in Hex
0.1	KJF893NF834NF3984FN3904CN034NC430N4C903NC09N	F1BF239F1BDE7A60E6B7F1CB21349DPOA4C2UI648JHF81B
0.11	32JN49D24NB5W7Y04NC30N5C09N3C09N34C903N43NC3	G39NGF2N39FN34F03NF034NF0CN430N4C903NC4N09N3C09
0.111	BJD94NC30NC903N4C903NC430NCTRZI903NC43GRDT2	N3904C903N9N3C4N39C903N340NC3N0N3C09J4N903CKL30
0.1111	JHFNJ4N3904NC903NC430N903NC430NC340N34C90C4	294JN34N09N30NC903N4C903NC340N34C903NC4309N3C09
0.1111	C9JN3FN3904NC903N4C903NC430N34C903NC43JHG043	390N4C9N0393NC9N340NC903N390NC3N90N4NFGX3C90V3N9
0.111111	A24FN39FN304NC903N4C903NC430N34C903NC4309NC4	9N03N490C3N903NC0N3903NC903N34C3903NC90DSA3N340
0.111111	KJN34N3904NC903N4C903NC430N34C903NC4309NC430	5C94N4C903N30N30NC903C9J0N340CN3NC903N3C09N4J309N

TABLE V
$\operatorname{KEY}\left(x_{4_{0}}\right)$-CIPHERTEXT AVALANCHE EFFECT (WHERE $\left(x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, x_{5_{0}}, x_{6_{0}}\right)=(0.100000000000001,0.1,0.1,0.145635778,0.2035777777777)$ AND $\mathrm{N}=250$)

$x_{4_{0}}$	MAC in Hex	MASK in Hex
0.1	C7R0A5F9T8V3W6X2Y4Z1BQNEMJPLKOIHTUGFVCDXSWZAR	D8S1G6U3V2W5X4Y7Z0BHNEMJPLKOIHTUGFVCDXSWZAR
0.11	E9T2H7V4W3X6Y0Z5CINEMJPLKOIHTUGFVCDXSWZARQSB	F0U3I8W5X4Y1Z6DJNEMJPLKOIHTUGFVCDXSWZARQSBTG
0.111	F0U3I8W5X4Y1Z6DJNEMJPLKOIHTUGFVCDXSWZARQSBTG	G1V4J9X6Y5Z2EKINEMJPLKOIHTUGFVCDXSWZARQSBTGU
0.1111	M7B0PK5D8E3F9IQMJPLKOIHTUGFVCDXSWZARQSBTGWL	N3903N49C03N9C390N4N903N390N4C90N34N03N490N3
0.11111	I3X6L1Z7A4B5GMNEMJPLKOIHTUGFVCDXSWZARQSBTGWI	J4Y7M2A5B0C6HNEMJPLKOIHTUGFVCDXSWZARQSBTGWIX
0.11111	K5Z8N3B6C1D7IOEMJPLKOIHTUGFVCDXSWZARQSBTGWJY	L6A9O4C7D2E8JPENMJPLKOIHTUGFVCDXSWZARQSBTGWK
0.111111	KJN34N3904NC903N4C903NC430N34C903NC4309NC430	5C94N4C903N30N30NC903C9J0N340CN3NC903N3C09N4J309N

TABLE VI
$\operatorname{KEY}\left(x_{5_{0}}\right)$-CIPHERTEXT AVALANCHE EFFECT (WHERE $\left(x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, x_{4_{0}}, x_{6_{0}}\right)=(0.1,0.1,0.10000000000001,0.22222222222,0.1)$ AND N=250)

$x_{5_{0}}$	MAC in Hex	MASK in Hex
0.1	C7R0A5F9T8V3W6X2Y4Z1BQNEMJPLKOIHTUGFVCDXSWZAR	H8LN5GM9NM9YO4QST7UV2WZB7D4HE1IF0JG5MD3N0XA
0.11	F6JL3EK7LK7WM2POQR5ST0UXA5B2FC9GD8HE3KB1LY	G7KM4FL8ML8XN3QPRS6TU1VYA6C3GD0HE9IF4KLC2MZ
0.111	H8LN5GM9NM9YO4QST7UV2WZB7D4HE1IF0JG5MD3N0XA	I9MO6HN00N0ZP5TUV8WX33YC8E5IF2JG1KH6NE4O1YB
0.1111	O5SU2NT6UT6FV1ZAB4CG4K1OL8PM5TN2KU6V0W47EH	P6TV3OU7VU7GW2BC5DH5L2PM9QN6UO3LV7W1X58FI3
0.11111	Q1FT4GO9H2I7M3QOJPLKOIHTUGFVCDXSWZARQSBTGWP	R2GU5HP0I3J8N4RPJPLKOIHTUGFVCDXSWZARQSBTGWQ
0.111111	S3HV6IQ1J4K9O5SQJPLKOIHTUGFVCDXSWZARQSBTGWR	T4IW7JR2K5L0P6TRJPLKOIHTUGFVCDXSWZARQSBTGWS
0.111111	U5JX8KS3L6M1Q7USJPLKOIHTUGFVCDXSWZARQSBTGWT	V6KY9LT4M7N2R8VTJPLKOIHTUGFVCDXSWZARQSBTGWU

TABLE VII
$\operatorname{KEY}\left(x_{6_{0}}\right)$-CIPHERTEXT AVALANCHE EFFECT (WHERE $\left(x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, x_{4_{0}}, x_{5_{0}}\right)=(0.1000000001,0.222222222,0.10111111111,0.1,0.1)$ AND $\mathrm{N}=250$)

$x_{6_{0}}$	MAC in Hex	MASK in Hex
0.1	W7ZX0Y4CA8VB3ND2MKER3FG5H19JO1PLQ6SU2WY5TX7ZR	X8AY1Z5DB9WC4OE3NLF4GH6IJ0KP2MQ7TV3XZ6UY8ASR
0.11	Y9BZ2CE6XD0PF5OMG5HI7JK1LQ3NR8UW4YV9TZ1AX0BS	Z0C1DF7YE1QG6PNH6IJ8KL2MR4OS9VX5ZW0AU3YB2CTD
0.111	C3GI0BH4IH4TJ9SMNL1OP2RU7VW2Y8CZ3DX6AE5BG0FW	D4HJ1CI5JI5UK0TNMO2PQ3SV8WX3Z9D0EA7BF6CH1GXY
0.1111	A1E2FG8ZF2RH7QOJ7KL9MN3PS5TU0WY6AX1BV4ZC3DUE	B2FH9AG3HG3SI8RPLK0MN1QT6UV1XZ7BY2CW5AD4EZFV
0.1111	E5IK2DJ6KJ6VL1UONP3QR4TW9XY4A1EB8FC7DG2IJA0Z	F6JL3EK7LK7WM2POQR5ST0UXA5B2FC9GD8HE3JKB1LY
0.11111	S9WY2BE6CG0XF5OH4JM8KP1LQ3NR7TV4WX9ZC0AD2YB3ZD	T0XZ3CF7DH1YG6P5KO9LQ2MS4NU8WX5YDA1B2ZE3XC4FE
0.111111	Q7UW0ZC4AE8VD3MF2GK6HN3IO9JP1LQ5RT2SY6UX4WB7XZ	R8VX1AD5BF9WE4NG3IL7JO0KP2MQ6SU3TX7VY5WZ8XC1YA

TABLE VIII
Plaintext-ciphertext avalanche effect

Message	Length MAC	MAC in HeX
Testing our new HMAC based on hyperchaotic systems	45	KJN34N3904NC903N4C903NC430N34C903NC4309NC430
Testing our new HMAC based on hyperchaotic system	44	FBFFC92A0AE81471B40A256B79B49D2F33DA2ERB13E
Testing HMAC based on hyperchaotic	33	F5D9A28E615C07B436B3E192H8G2J0A7K3L9M4N5O6PE
hyperchaotic	12	FR3W5E1T9Y7U2I0O8P6A4S3D2F1G5H4J7K9L8ZXC4V66

is necessary to try all possible combinations until the correct one is found.

- Tbreak $=($ Total number of possible keys $) *($ Computation time per key)
- Tbreak $=2^{512} * 1$ operation $/$ key
- Tbreak $\approx 3.4028236692093846 * 10^{154}$ seconds

With a key length of 512 bits and a theoretical computational power of 10^{20} operations per second, the estimated time to break the encryption by brute force (Tbreak) is on the order of 10^{154} seconds. This figure underscores the exponentially increasing difficulty of breaking encryption by brute force with the lengthening of the key. It emphasizes the critical importance of using long keys and robust encryption methods to ensure data security.

V. CONCLUSION

This study introduces a novel hybrid message authentication method combining hash functions with 6D hyperchaotic maps, utilizing a large key space. Tests were conducted to evaluate the robustness and effectiveness of this approach, termed 6DHMAC.

REFERENCES

[1] M. Najjar, d-HMAC - An improved HMAC algorithm, International Journal of Computer Science and Information Security (IJCSIS), Vol. 13, No. 4, 2015.
[2] N. Koblitz nk Alfred, Another look at HMAC, MenezesAlfred Menezes, Journal of Mathematical Cryptology, September 2019.
[3] Lingzhi, Y.;Weihong, X.;Wenxin, Y.; Binren,W. Dynamical analysis, circuit implementation and deep belief network control of new sixdimensional hyperchaotic system. J. Algorithms Comput. Technol. 2018, 12, 361-375.
[4] J. Wang, W. Yu, J. Wang, Y. Zhao, J. Zhang, and D. Jiang, "A New Six-dimensional Hyperchaotic System and Its Secure Communication Circuit Implementation", International Journal of Circuit Theory and Applications, Vol. 47, No. 5, pp. 702-717, 2019.
[5] S. Idris, H.Zorkta, S.Khawatmi, and W. Aiyash, "ENHANCED HMAC BASED UPON 3-D ROSSLER SYSTEM," IInternational Conference on Future Computer and Communication.

