
EasyChair Preprint

№ 1180

An Experimental Study on Capsule Networks

Nitin Kumar and Shruti Jadon

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 12, 2019

An Experimental Study on Capsule Networks

Nitin Kumar
University of Massachusetts

Amherst
nitinkumar@umass.edu

Shruti Jadon
University of Massachusetts

Amherst
sjadon@umass.edu

Abstract

In this work we perform experiments with the recently
published work on Capsule Networks. Capsule Networks
have been shown to deliver state of the art performance
for MNIST and claim to have greater discriminative power
than Convolutional Neural Networks for special tasks, such
as recognizing overlapping digits. The authors of Capsule
Networks have evaluated datasets with low number of cat-
egories, viz. MNIST, CIFAR-10, SVHN among others. We
evaluate capsule networks on two datasets viz. Traffic Sig-
nals, Food101, and CIFAR10 with less number of iterations,
making changes to the architecture to account for RGB im-
ages. Traditional techniques like dropout, batch normal-
ization were applied to capsule networks for performance
evaluation.

Keywords: Convolutional Neural Networks; Capsule
Networks; Routing-by-agreement; Dropout

1. Introduction
The invention of Convolutional Neural Networks led

to a drastic change in the vision community. CNN’s were
able to learn transition invariant features with far less
parameters as compared to Fully Connected Networks.
CNN’s however lack the ability to learn relative spatial
relationships between components in an image and hence
do not generalize well to different viewpoints for images.
This serves as one of the motivations behind the recent
research in [1].

The main component of a CNN is a convolutional
layer.It detects important features in the image pixels.
Layers that are deeper (closer to the input) will learn to
detect simple features such as edges and color gradients,
whereas higher layers will combine simple features into
more complex features. Finally, dense layers at the top
of the network will combine very high level features and
produce classification predictions. Nowhere in this setup
there is pose (translational and rotational) relationship be-

tween simpler features that make up a higher level feature.
CNNs approach to solve this issue is to use max pooling or
successive convolutional layers that reduce spatial size of
the data flowing through the network. This increases the
field of view of higher layers neurons, thus allowing them
to detect higher order features in a larger region of the input
image. Max pooling help convolutional networks work
surprisingly well, but leads to loss of positional information
among features.

Capsule networks aim to overcome the shortcomings
of CNNs by explicitly modelling spatial relationships
among different components of an image. Capsule net-
works encode various properties (pose, velocity, hue,
texture etc.) of a particular entity in an image by means of
a “capsule”. A layer in a Capsule network is a collection of
such capsules. A novel routing-by-agreement algorithm is
employed using which capsules in a lower layer propagates
its output selectively to capsules in higher layers. This
iterative routing process enable higher level capsules to
perform the job of assembling lower level features of enti-
ties into higher level features of entities while preserving
entity spatial information.

2. Capsule Networks
The authors of [1] subscribe to the notion that the human

visual system assimilates visual stimuli by means of per-
forming the inverse of image rendering; visual information
received by the eyes is deconstructed into a hierarchical
representation of the world (like a parse tree). Visual
recognition is then a process of matching this parse-tree
structure with learned representations stored in the brain.
In the human brain, learned representations are viewpoint
invariant. Hence humans are very good are recognizing
objects presented from different viewpoints.

It is difficult to perform viewpoint invariant object de-
tection with CNN’s. This is because CNNs do not
inherently model relative spatial relationships between
components in an image. For CNN’s to perform viewpoint

41

invariant object detection, an large number of spatial
features (very deep networks) and large number of labelled
examples are required. Capsule Networks explicitly model
these spatial relationships by means of capsules and
routing-by-agreement.

Capsules are groupings of neurons within a traditional
neural network layer. Contrasting with a typical convolu-
tional layer, a capsule network layer is essentially several
convolutional layers nested in a single layer. Each nested
convolutional layer is equivalent to a capsule. Capsules
thus replace the scalar-output feature detectors of CNNs
by vector-outputs. This enables capsules to encode various
properties of particular entities in an image such as pose
(translation and rotation), velocity, deformation, hue,
texture etc. In [1], the authors implement capsules so that
the magnitude of each capsule’s output calculates the prob-
ability of existence of the entity that the capsule represents.
This is achieved by a novel ”squashing” non-linearity that
scales down low magnitude vectors closer to 0 and high
magnitude vectors closer to 1.

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||2

(1)

where vj is the vector output of capsule j and sj is its
total input.

sj =
∑

cij ûj|i

The total input sj to a capsule is a weighted sum over all
prediction vectors ûj|i, from capsules in the lower layer
and is produced by multiplying the output ui of a lower
level capsule by a weight matrix Wij . The weight matrix
Wij encodes part-whole relationships among entities
detected by lower level capsules. For example, the Wij

corresponding to a capsule that detects the digit 7, learns
the length of the horizontal and vertical edges that compose
a 7 and the angle between them.

ûj|i =Wijui

The routing-by-agreement algorithm dictates the propa-
gation of outputs from a child capsule to a parent capsule.
This is done by computing the coupling coefficient cij be-
tween every child and parent capsule pair (i, j) in an itera-
tive fashion. The coupling coefficients are updated by com-
puting the scalar product bij of the prediction vector with
the output of a possible parent vj . The coupling coefficients
are updated by simple adding its value to its corresponding
bij

bij = vj · ûj|i

cij = cij + bij

Figure 1. Architecture of Capsule Networks

For prediction vectors ûj|i that “strongly agree” with
each other (vectors having similar orientation and high mag-
nitudes), the corresponding sj and vj for parent capsule j
will have large magnitudes. This in turn boosts the cou-
pling coefficients cij of child and parent capsule pair (i, j).
The routing algorithm thus establishes strong connections
between children and parent capsules such that the orienta-
tion of ui of children capsules help explain the orientation
of vj of a parent capsule.

The loss used by the authors in [1] is a combination of
margin loss and reconstruction loss. The reconstruction loss
is used as a regularizer. The margin loss (for MNIST) is
defined by

Lk = Tkmax(0,m
+−||vk||)2+λ(1−Tk)max(0, ||vk||−m−)2

where Lk is the loss for each digit class k. Tk is 1 iff
a digit of class k is present. m+ = 0.9 and m− = 0.1
enforce margins for correct class probabilities; λ = 0.5 is
the penalty constant. The total loss is the sum of the loss of
all digit capsules.

The authors of [1] employ a reconstruction loss as a
regularization technique. During training, only the activity
vector of the correct digit capsule is fed into a decoder
consisting of 3 fully connected layers that model pixel
intensities. The sum of squared differences between the
output of the decoder and the input image pixel intensities
is used as the regularization loss. This loss is scaled down
by 0.0005 so that it does not dominate the margin loss
during training.

Figure 2. Decoder network for digit reconstruction

42

Figure 3. Routing Algorithm

3. Datasets
Capsule networks were evaluated on the following

datasets.

• Traffic Signals: It consists of 50,000 images and 43
categories. The training data was divided into training,
test and validation sets having the following propor-
tions 50%, 33%, and 17% respectively.

• Food 101 Dataset: This data set consists of 101 food
categories, with 10,099 images. For each class, 250
manually reviewed test images are provided as well as
750 training images.

• CIFAR10 Dataset : This data set consists of consists of
60000 32x32 colour images in 10 classes, with 6000
images per class. There are 50000 training images and
10000 test images.

Figure 4. Sample images from Traffic Signals and Food101

4. Experiments
The following architecture was used for evaluating cap-

sule networks

4.1. Main network

• Convolutional Layer: 9x9 kernel, stride 1, filters 256,
activation RELU

• Optional dropout layer

• Primary Capsule Layer: 5x5 kernel, stride 2, capsules
16, capsule dimensions 16D, activation RELU

• Final Capsule Layer: capsules 43, capsule dimensions
32D

• Loss: Margin Loss

4.2. Decoder network

• Final Capsule Layer: capsules 43, capsule dimensions
32D

• FC layer: input neurons 43, output neurons 400, ac-
tivation RELU, resize output to 5x5x16, upsample to
8x8 image

• Convolutional Layer: 4x4 kernel, stride 3, filters 4, ac-
tivation RELU, upsample to 16x16 image

• Convolutional Layer: 8x8 kernel, stride 3, filters 8, ac-
tivation RELU, upsample to 32x32 image

• Convolutional Layer: 3x3 kernel, stride 3, filters 3

• Loss: Reconstruction loss

The learning rate was set to 0.0001 and dropout rate to
0.7. We performed 1 iteration of routing-by-agreement. For
the Food101 dataset, the Final Capsule Layer had 101 cap-
sules instead of 43.

The loss convergence and accuracy graph for the Traffic
Signal dataset are listed below.

Figure 5. Accuracy (Orange-Training, Blue-Validation)

Figure 6. Margin Loss (Orange-Training, Blue-Validation)

Figure 7. Reconstruction Loss (Orange-Training, Blue-Validation)

43

Figure 8. Total Loss (Orange-Training, Blue-Validation)

Later, we trained the same architecture for CIFAR-10,
with only 60 epochs to check the convergence and accuracy
for less number of epochs. The loss convergence and accu-
racy graph looks for CIFAR 10 dataset is listed below.

Figure 9. Loss and Accuracy Curve

4.3. Results

Results for both dataset are documented below

Table 1. Reported accuracy for different datasets
Dataset Dropout Train Acc Test Acc Iterations

Traffic Signal - 100% 90.57% 16K
0.7 100% 96.76% 16K

Food 101 - 41.7% 10.53% 10K
0.7 33% 5.49% 10K

CIFAR10 - 94.58% 77.34% 600

The reconstructed images for the Traffic Signal dataset
and CIFAR10 are displayed below. Although reconstruc-
tions are a little hazy, the network was able to learn features
well enough to get good accuracy on the dataset. When we
tried batch normalization, it was facing issue similar to van-
ishing gradient, as the architecture itself was normalizing
outputs of capsules using squashing function. So, we can
conclude that, unless we intend to use multiple CNN layers
inside one capsule, it is not necessary to use Batch Normal-
ization. We also tested the application of dropout, it boosted
the performance of the model by almost 7.0%.

Figure 10. Reconstructed Images of Traffic Signal Dataset

Figure 11. Reconstructed Images of CIFAR10

Above are the Reconstruction images obtained of CI-
FAR10. For CIFAR10, we tested the same model men-
tioned in paper, with two dimensional (black& white) im-
ages. When we tested Food 101 dataset with more deep
capsule network, it failed with memory error. It is due to
large number of categories, which made the matrix multi-
plication for backward pass more complex. Later, we tested
for very simple network with less number of examples, but
performance with it was extremely poor. The model under-
fit to the data with or without the application of dropout.
This can be attributed to the low and varying number of ex-
amples per category.

44

Figure 12. Sample Probability output for Traffic Signal Dataset

5. Discussion
Our study of capsule networks brought to light the some

points of consideration. In order for higher level capsules to
capture part-whole relationships from lower level capsules,
[1] suggests increasing capsule dimensions as one move up
the layers of the network. For our experiments we increased
capsule dimensions from 16D to 32D (by a factor of 2, sim-
ilar to [1]). This increase in dimensionality caused a chok-
ing of computational resources when performing classifica-
tion on Food101 dataset. [1] does not discuss methods of
estimating capsule dimensions and the rate at which their
dimensionality should grow. Also, training time is contin-
gent on the number of iterations used for the routing-by-
agreement process. A large number of iterations would lead
to slower training times. This was a great challenge given
that our model with just 1 iteration of dynamic routing took
close to 20 hours to converge. Capsule Networks can be re-
ally helpful in terms of image segmentation, as they are able
to capture the exact spatial features, as they capture the ex-
act spatial position of each element inside image, thus can
be used in to various applications including Object Recog-
nition in Image Segmentation, and Automatic Driving Cars.

6. Conclusion
Capsule networks performed very well for the Traffic

Signal dataset with 43 categories. More variations of the
architecture need to be explored in order to scale to datasets
with large number of categories like ImageNet. What is

interesting about capsule networks is, that it has directed
neurons for each of the features to be considered. we were
able to get better accuracy with drop outs, which says that
ensembles of the capsule networks was giving the best re-
sult. Ensembles work because there might be a lot of values
on which global optima is based on, but those doesn’t play
role in loss minimal value. In future research, we can look
in to analysis of dropouts in capsule networks, so as to un-
derstand the loss graph minima’s, as the structure of capsule
network is comparatively small and simple, it will help us
understand properly about loss convergance.

References
[1] Dynamic Routing Between Capsules, Sara Sabour,

Nicholas Frost, Geoffery E. Hinton, arXiv:1710.09829

[2] Understanding Hintons Capsule Networks. Part I:
Intuition: ”https://medium.com/ai%C2%B3-theory-
practice-business/understanding-hintons-capsule-
networks-part-i-intuition-b4b559d1159b”

45

