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This work reports an analysis of the luminescent properties of 

Cerium oxide (IV) hollow sub-microspheres (CeO2-HS) as well as 

the effect of the presence of Au, AuPd and Pd NPs over the 

mentioned properties. CeO2-HS were synthesized via hydrothermal 

method, then the CeO2-HS were impregnated with the metal 

precursors and by a reduction process the metal nanoparticles (NPs) 

were obtained. CeO2-HS were characterized by XRD, Raman, UV-

Vis and TEM. The CeO2-HS with metal NPs deposited on them 

were analyzed using UV-Vis and TEM. All samples luminescent 

excitation and emission spectra were recorded. It was observed that 

the presence of metal NPs dramatically increases the emission 

intensity compared to the CeO2-HS without metal NPs. Finally, it 

was also observed a clear slight but evident displacement of the 

main emission peak between samples with and without metal NPs 

Keywords: Ceria, Hollow spheres, Metal enhanced 

luminescence, Noble metal NPs 

 

I.  INTRODUCTION 

Cerium oxide (IV) (CeO2) is a rare earth oxide that 

presents a considerable variety of applications. CeO2 can be 

used as adsorbent material for pollutant compounds (1), 

support for heterogeneous catalysts (2), antimicrobial (3–5), 

cancer treatment (6), magnetic material (7,8) and as a 

luminescent material (9–11). The interest on the CeO2 as a 

nanomaterial has recently increased due, not only to its 

remarkable properties, but also, to the variety of morphologies 

at the nanoscale such as cubes, rods, wires, particles and 

spheres (2,3,9,12); that can be obtained via relatively easy 

methods. Among these structures, hollow nanospheres 

(1,13,14) are a very promising material due to their possible 

application as nanoreactors (15), as drug delivery systems 

(16–18) and as drug carrier (19).  

 It has been previously reported that the luminescent 

intensity of the CeO2 is related with the content of Ce3+ 

species which is also associated with the corresponding crystal 

sizes (20), but even when the CeO2 presents photoluminescent 

properties, it does not present a high luminescence (9). 

Recently an interesting and useful strategy has been used for 

the enhancement of the luminescent properties of the 

lanthanides (21,22), which involves the addition of metal 

nanoparticles that presents a surface plasmon resonance which 

allows to increase the intensity of the photoemission. One of 

the most studied metal nanoparticle system is the gold 

nanoparticles (Au NPs). It is well known that the plasmonic 

resonance for the Au NPs depends on their shape and size as 

well as the nature of the media in which the Au NPs is 

dispersed. On the other hand, Palladium nanoparticles (Pd 

NPs) do not exhibit a plasmonic resonance in the visible 

spectrum. However, due to their similar atomic size and 

crystal structure it is possible to form bimetallic systems and, 

as a consequence, modify in a controlled manner the 

properties of such combination. 

It is proposed that the interaction between the CeO2 

hollow spheres and the metal nanoparticles depends directly 

on the nature of these nanoparticles and that, the luminescence 

properties of these systems will be also affected by their 

metallic composition. 

In the present work, we report the synthesis and 

characterization of cerium oxide (IV) hollow sub-

microspheres with and without Au, AuPd and Pd 

nanoparticles, as well as an analysis of their luminescent 

properties and the enhancement effect of the metal 

nanoparticles over the ceria sub-microspheres luminescence. 

 

II. MATERIALS AND METHODS 

A. Synthesis of materials 
 

Cerium chloride (CeCl3*7 H2O), urea (N2H4CO) and 

trisodium citrate anhydride (Na3C6H5O7) were purchased from 

Sigma Aldrich, hydrogen peroxide (H2O2 30%) was received 

from Fisher Chemical.  Trichloroauric acid 99% (HAuCl4) and 

Palladium Chloride (II) 99 % (PdCl2) were purchased from 

Alfa-Aesar. All reagents were used without further 

purification. 
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Cerium oxide (IV) hollow sub-microspheres (CeO2-HS) were 

prepared as reported by Qi et al. (23). In a typical synthesis 

0.52 g of urea was dissolved in 85.5 ml of deionized water and 

stirred until obtain a clear solution. Then 36 ml of a 10 mM 

solution of Na3C6H5O7 was added to the previous solution, the 

mixture was stirred for 10 minutes. Subsequently, 0.89 g of 

CeCl3*7H2O was added to the mixture under stirring for 15 

minutes. Then 5 ml of H2O2 30 % was added dropwise during 

30 minutes, turning the solution to a light-yellow color. The 

mixture was transferred to stainless steel autoclave. The 

system was heated to 100°C and maintained at this 

temperature for two hours; subsequently, the temperature was 

raised again up to 180°C and maintained for 18 h. The 

autoclave was cool down and a light-yellow powder was 

obtained. The powder was centrifuged and washed three times 

with deionized water, and finally dried at 80°C in air for 12 h. 

 

Noble metal supported on the CeO2-HS were synthesized as 

reported by (14) et al. In a typical synthesis, 0.2 g of the 

previous prepared CeO2-HS was dispersed in 10 ml of 

deionized water. Then, 3.0 ml of a 10 mM solution of HAuCl4 

was added to the previous dispersion. The mixture was 

magnetically stirred for 12 hours and the centrifuged at 4000 

rpm for 10 minutes. The precipitate was separated and re-

dispersed in 10 ml of deionized water. At that point, 10 ml of a 

0.1 M solution of NaBH4 was added to the mixture and 

vigorously stirred for 15 minutes. Finally, the previous 

suspension (light purple color) was centrifuged at 4000 rpm 

for 10 minutes and washed with deionized water by 

triplicated. The solid obtained was dried at 80oC for 12 hours, 

having a light purple powder as a final material (Au/CeO2-

HS). The procedure was repeated varying the metallic content 

(1.5 ml of HAuCl4 10 mM +1.5 ml of PdCl2 10 mM for the 

AuPd/CeO2-HS sample, and 3.0 ml of PdCl2 10 mM for the 

Pd/CeO2-HS sample). 

 

B. Materials characterization: 

 

Transmission electron microscopy (TEM) was used to analyze 

the structure of the CeO2-HS with and without noble metal 

nanoparticles, using a JEOL JEM-2010 microscope with 

XMAX OXFORD detector. Previous for the analysis the 

samples were dispersed in propan-2-ol and dropped on a 

copper grid coated with carbon film. The crystallographic 

phases of CeO2-HS were studied by X-Ray diffraction with a 

Philips X’pert MPD diffractometer, applying CuKa (0.154 

nm) radiation. Crystallite size and crystalline strain were 

estimated from the Williamson-Hall (W-H) plot as reported by 

(24). W-H plot was obtained from the equa tion 1. 

 

 
Where:  

  : The diffraction angle 

 hkl: The peak´s broadening 

 K: Shape’s factor (equal to 0.9) 

 D: Crystallite size 

 

 Noble metal content (Au and Pd) in the samples was 

estimated by inductively coupled plasma-optical emission 

spectroscopy (ICP-OES), using a Vista pro (varian) 

equipment. Three different pattern solutions (1, 5 and 10 ppm) 

were used to calibrate the analysis. 

 

Samples were prepared once as it follows. First, 20 mg of a 

sample was digested for 24 hours in an acid solution (1 ml of 

HNO3 70% and 1 ml of HCl 30 %). Then, 1 ml of the previous 

solution was diluted in deionized water at a volume ratio of 

1:25. Metal content was determined using the diluted solution.  

 

The optoelectronic properties of all samples were studied UV-

Vis spectroscopy in a diffuse reflectance mode. UV–visible 

spectra were collected using an Avaspec-2048 UV–visible 

spectrometer (Avantes) equipped with AvaLight-DHS light 

source and AvaSphere-30 integrating sphere. MgO was used 

as a reference. CeO2-HS at different thermal treatments were 

studied by Raman System AvaSpec-ULS2048LTEC-USB2 

(Avantes) equipped with two temperature-controlled diode 

lasers (power 500 mW, 785 nm excitation wavelength) were 

used. Luminescence analysis was performed using a Cary 

Eclipse Fluorescence Spectrometer, using an excitation 

wavelength of 510 nm and an emission wavelength of 254 nm, 

all samples were analyzed in aqueous media. The samples 

were dispersed in deionized water previous for the analysis 

(0.7 mg/ml).  

 

III. RESULTS AND DISCUSSION: 

 

The Cerium oxide (IV) hollow sub-microspheres (CeO2-HS) 

were successfully obtained. Figure 1 (a) shows the TEM 

images for de CeO2-HS (Fig. 1a), ceria spheres present a 

diameter around 250 nm. HR-TEM for all samples (Fig. 1e, f, 

g and h) shows an interplanar distance typical of the fluorite-

type ceria (JCPDS No. 34-0394), corresponding to the (2 0 0) 

plane (d= 0.271 nm) and (2 0 0) plane (d= 0.192 nm). Metal 

nanoparticles have a quasi-spherical shape and sizes between 

4.1 nm and 8.8 nm. 
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Figure 1 Typical TEM and HR-TEM images of CeO2-HS (a and e), Au/ CeO2-

HS (b and f), AuPd/ CeO2-HS (c and g) and Pd/ CeO2-HS (d and h). High 
resolution TEM images correspond to the areas selected by red box. 

 

The XRD pattern (Fig. 2 a) for the CeO2-HS presents 

diffraction peaks at 28.62, 33.13, 47.61, 56.46, 59.33, 69.60, 

76.90 and 79.06 values for the 2 angle. The diffraction 

pattern corresponds to the ceria fluorite-type crystal structure 

(JCPDS 34-0394). The Fig. 2 (b) presents the W-H plot for the 

CeO2-HS after thermal treatment at 500oC for 6 hours. The 

crystallite size and the crystalline strain were estimated by the 

intercept and the slope of the W-H plot respectively. The 

crystal size for the CeO2-HS sample was about 10.3 nm and 

the crystalline strain equal to 8.35*10-4. 
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Figure 2.-XRD pattern (a) and W-H plot for CeO2-HS (b). 

 

Raman spectroscopy allows analyzing the structural 

defects content on the material. Fig. 3 shows two Raman 

spectra for CeO2-HS before and after heat treatment.  Both 

spectra, presents a characteristic peak centered around 464 cm-

1 which corresponds to the symmetric mode F2g for the CeO2 

(25). Raman spectroscopy for CeO2-HS (Fig. 3) presents a 

typical F2g peak centered at 464 cm-1
 which is associated to the 

Ce-O bonding. The sample treated at 500o C has a remarkable 

higher intensity than the sample treated at 300o C, according to 

(26,27) the phase transition from Ce(OH)4 to CeO2 occurs 

about a temperature of 400o C which explains the increase in 

the intensity of the spectrum signal of the sample treated at 

500o C.  Also, there is a shoulder of the F2g peak at 602 cm-1. 

This shoulder is associated with oxygen vacancies in the 

material (3). The oxygen vacancies is commonly associated 

with the presence of Ce3+ species, that are usually linked to 

different properties such as compound adsorption (28), 

magnetic (29) and luminescent properties  (9). 
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Figure 3.-Raman spectra of CeO2-HS under different thermal 

treatments 

 

Chemical composition of samples loaded with metal 

nanoparticles (Table 1) presents very similar metal content in 

each of the sample analyzed. Most of the metal employed 

during the synthesis remained present in the samples. 

 
TABLE 1 

. CHEMICAL QUANTIFICATION OF METAL CONTENT IN SAMPLES WITH 

METAL NANOPARTICLES 

Sample Ce, % 
weight 

Au, % weight Pd, (% weight) 

Au@CeO2 80.80 0.73 - 

AuPd@CeO2 80.54 0.53 0.52 

Pd@CeO2 80.57 - 1.02 

 

The optoelectronic properties of the CeO2-HS were 

studied by diffuse reflectance UV-Vis spectroscopy (DR-UV-

Vis) (Fig. 4). The ceria spheres present a band gap around 3.1 

eV which is similar to the value reported by (8), also 

Bazhukova (9) reported the same band gap with CeO2 NPs 

suspension. The Ceria hollow spheres with Au NPs supported 

on it (Au/CeO2-HS) presents a plasmonic resonance centered 

on 550 nm, which is an evidence of the presence of Au NPs in 

the material. It has been reported that AuNPs with diameter 

about the size of our system presents a plasmonic resonance 

around 521 nm (30,31). Nevertheless, the plasmon position 

depends on the dielectric function of the media which is in 

direct contact with the nanoparticles (32), which indicates that 

the difference between the plasmon position in the Au/CeO2-

HS and the position reported by (30,31) is  associated with the 

electronic interaction between the cerium oxide (IV) and the 

Au NPs. 

 

On the other hand, the spectrum for the bimetallic 

system (AuPd/CeO2-HS) shows an evidently lower intensity 

on the gold’s plasmon in comparison with the one observed 

for the Au/CeO2-HS system.  Chen et al. (33) reported that, for 

bimetallic AuPd NPs, the coating of Au NPs with Pd causes a 

gradual decrease over the intensity of the plasmonic resonance 

for the gold; based on this is possible to conclude that the 

AuPd/CeO2-HS consists in bimetallic AuPd NPs instead of Au 

and Pd NPs. Finally, the Pd/CeO2-HS system doesn’t have any 

main features in the UV-Vis range that can be related to the 

presence of the Pd species, nevertheless there is a slightly 

change in the profile of the CeO2 in comparison with the 

CeO2-HS spectrum. Such difference might be associated with 

a modification of the semiconductor behavior of the CeO2 due 

to the interaction with the Pd NPs. 

 

300 400 500 600 700

 

Wavelength, nm

 CeO2-HS

 

A
b
s
o
rb

a
n
c
e
, 
a
.u

.

 Au/CeO2-HS

 

 AuPd/CeO2-HS

 

 

 Pd/CeO2-HS

Figure 4. DR UV-Vis for CeO2-HS (--), Au/CeO2-HS (--), AuPd/ CeO2-HS (--
) and Pd/ CeO2-HS (--). 

 
To improve the photoluminescence (PL) intensity for CeO2-

HS NPs, we used the strategy of metal-enhanced luminescence 

(MEL) [21] this technique is based on the localized plasma 

effect of precious metal NPs, such as Au-NPs or Ag-NPs. This 

phenomenon happens when luminescence material is placed 

near metal NPs, in this case, the phosphors bring a mirror 

dipole in the metal NPs and it radiates the coupled quanta high 

efficiency that produce enhanced luminescence. 

  

The PL spectra for CeO2-HS NPs, Au/CeO2-HS, AuPd/ CeO2-

HS and Pd/ CeO2-HS is shown in figure 6, the excitation 

wavelength was 510 nm, the emission spectra of the CeO2-HS 

NPs is 254 nm due to the electronic transition 2F5/2   –> 5d2 

with low intensity (figure 6A), as characteristic of nanoceria, 

with the addition of Au, Pd and Au/Pd the enhancement of the 

PL emission spectra is depicted. Au-NPs had the inherent 

ability to produce plasmonic resonance on the surface [34] and 

Pd tends to have more stability to bonds with surface oxygen 

atoms than surface metal atoms, this is correlated to the 

position of the d electron density center of Pd atom [35]. 

 

MEL phenomenon was explored by [21] with Ag@SiO2 

nanoparticles; they demonstrated that the luminescence 

intensity and quantum yield of the lanthanide complexes can 

be enormously enhanced by the Ag@SiO2 with optimized size 
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under proper excitation wavelength. In figure 6B the enhanced 

luminescence is shown for nanoceria NPs and Au with 

excitation at 510 nm wavelengths, the emission is at 253-254 

nm, the excitation spectra were measured and depicted in 

figure 7B at 508-510 nm. 
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Figure 6.-PL spectra (Emission) for CeO2-HS (A), Au/CeO2-HS 

(B), AuPd/ CeO2-HS (C) and Pd/ CeO2-HS (D). 

 

For Au-Pd/ CeO2-HS and Pd/ CeO2-HS NPs the emission 

spectra is shown in figures 6C and 6D, according to [34], they 

analyzed the binding energy for Au and Au/Pd core shell NPs 

and found a dependency of binding energies of Pd (3d5/2) and 

Au (4f7/2), with the increase of Pd content, the interaction 

between Au and Pd atoms gradually weakens and the 

dominant role of Pd atoms tend to determine the electronic 

structure. In figure 6D is observed that the enhanced 

luminescence is in the presence of Pd atoms into the nanoceria 

and in figure 6B it is observe that the combination of Au/Pd is 

similar to the Au-nanoceria NPs.  
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Figure 7.-PL spectra (Excitation) for CeO2-HS (A), Au/CeO2-HS 

(B), AuPd/ CeO2-HS (C) and Pd/ CeO2-HS (D). 

 
IV. CONCLUSION: 

The Cerium oxide (IV) hollow submicrospheres were 

successfully obtained via hydrothermal synthesis. CeO2-HS 

photoluminescence presents an enhancement by the addition 

of Au, AuPd and Pd NPs on their surface. It was also observed 

that, the excitation peak centered around 517 nm presents a 

blue shift to the presence of the metal NPs. The observed blue 

shifts varied depending on the nature of the metal NPs (Au 

NPs > AuPd > Pd), same behavior was observed for the 

emission spectra, were the system containing Pd NPs 

presented a blue shift from 254 nm to 251 nm. The NPs, with 

the addition of Au, Pd and Au/Pd, observed enhancement of 

the PL emission spectra. Au-NPs produce plasmonic 

resonance that produces this enhancement. Finally based on 

the previously reported, we may conclude that Metal NPs-

CeO2 are promising materials for biomedical applications such 

as cancer detection via photoluminescence and photo-thermal 

cancer treatment. 
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