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Abstract—Combining dead reckoning and Ultra-Wideband
(UWB) ranging information to achieve relative localization (RL)
becomes prevalent in recent years. However, two main problems,
i.e., pose initialization and distributed implementation, are rarely
investigated in practical multi-robot systems. In this paper, a novel
two-stage RL method is proposed to fill this gap, wherein an ini-
tialization strategy, using robot-to-robot measurements acquired
at different vantage points during robot motion to determine
initial pose, and a consensus-based distributed particle filter
(DPF), fusing statistics from local robot and neighbors to realize
RL, are designed. In our system, by computing the pairwise
relative pose between all robots in a team, the initialization
strategy can determine an estimate of the initial pose of all robots
with respect to a common reference frame and the corresponding
covariance. The consensus-based DPF allows determining the
relative pose of all robots with significantly reduced computing
costs. Experiments results on a team of differentially driven
mobile robots show the effectiveness of the initialization strategy
and highlight the low computation cost of the proposed approach.

I. INTRODUCTION

Relative localization (RL), which refers to detect and
locate relative configurations of mobile agents with respect
to other agents or landmark, is critically important in multi-
robot systems since it is the pre-requisite for robot teaming
and swarming [1]. Many applications, such as formational
control, cooperative transportation, perimeter surveillance, area
coverage and situational awareness, are often faced with RL
problem, and they are widely investigated in [2]-[5].

Global Positioning System (GPS) is a typical system which
is frequently used to address RL problem, where each robot
can determine its position in a globally-shared frame and trans-
mit this information to its neighbors [6]. However, equipping
each robot with a GPS may not be practical due to volume
restrictions and expensive costs, let alone the environments
where GPS does not work such as under water deployments
[7]. Another convenient method, i.e., extracting range and/or
bearing measurements from cameras and visual-makers, suffer-
s from the disadvantages of limited field-of-view, short range,
occlusion by other objects and possible demanding computing
power capabilities [8]. Alternatively, taking advantage of the
distance measurement from sensing devices such us radars,
lidars and Ultra-wideband (UWB) to realize RL gains more
attention recently. In particular, UWB technology stands out in
accurate ranging due to its ability to alleviate multi-path effects
[9]-[11]. Nevertheless, UWB does not provide any bearing
information and the communication range is limited, thus
UWB alone cannot determine the robot localization without

any ambiguity. Dead reckoning (DR) determines one’s location
based on its previous position and speed, which is measured
by an IMU sensor or wheel encoder in the case of a mobile
robot. If the initial localizations of the robots are known, one
can use DR to determine the relative position of a group of
users. However, DR may not be accurate due to accumulative
error, which must be corrected or eliminated by other sources
or information.

In recent years, combining the information from dead
reckoning and UWB ranging to achieve RL has been widely
studied in [6]-[15], which can be a very promising solution
since it has excellent performance in situations that without
any given infrastructure (e.g., RL system with fixed anchor).
Unfortunately, to the best knowledge of author, existing works
rarely considered the initialization (determine the initial robot-
to-robot pose without any prior information) and distributed
implementation problems in a practical multi-robot system. In
[14]-[18], numerous initialization solutions have been investi-
gated, where the basic idea is to compute a coarse estimate for
relative pose firstly, and some techniques, such as iterative/non-
iterative weighted least square (WLS) are employed for further
refinement. In these studies, both noise corrupted distance
measurements and noise-free cases are comprehensively con-
sidered. While we adopt the same idea, further derivations of
[16] is presented in this paper, which makes the coarse estimate
can be easily obtained with the linear system we built. Addi-
tionally, in most studies, the fusion of DR and UWB ranging
information is implemented with a centralized architecture and
the fusion center requires strong computational capability.

In this paper, to address the initialization and distributed
implementation problems, a novel RL method is developed.
Generally, our method includes two main stages, pose initial-
ization and distributed filtering. At the first stage, we use robot-
to-robot measurements acquired at different vantage points
during robot motion to determine initial pose, where we solve
a linear equation to compute a coarse estimate for relative
pose firstly, and then we employ an iterative WLS method
for further refinement. Secondly, we developed a consensus-
based distributed particle filter (DPF) to fuse the data from
local robot and neighbors to realize RL. In our system, by
computing the pairwise relative pose between all robots in a
team, the initialization strategy can determine an estimate of
the initial pose of all robots with respect to a common reference
frame and the corresponding covariance. The consensus-based
DPF allows to determine the relative pose of all robots with
significantly reduced computing cost. Experiments results on a



team of differentially driven mobile robots show initialization
strategy is able to obtain an accurate estimation of relative
pose and highlighted that the proposed method has lower
computation cost than the centralized approach at each local
robot.

II. MODELS AND PROBLEM STATEMENT

Consider a multi-robot system comprising of M moving
robots (M is not known and may vary during operation)
and they are denoted by R1,Re, ..., Rys. Each robot R;, i €
{1,2,..., M} has its own sensing, communication and local
information processing capabilities. Without losing generality,
we define R;,j =1,..., M, j # i as the remaining robots. As
shown in Fig. 1, an illustration of the considered localization
setup is given.

A. System Model

We place an IMU sensor and a wheel encoder on each
robot for DR, the motion of R; is described by the following
equation

Xik = Xik—1 1T Wik

T k—1 (D)
= | Yik-1 | T Uk
0ik—1

where X; 1 = [Tk, Yik,0:k]T denotes the pose of robot i at
time instant k, x; ;, and y; , denote the position of R; at time
k, Oy is the oritentation, uy is the displacement of robot i
between k£ — 1 and k, and we model

wp=d; i +w;p

A ;g 2)
= | AYik | + Wik,

A Q@k
where d; ; denotes the actual displacement of R;, w; is a
(by assumption) white error of u; with covariance P; ;. At
time k, the measurements of UWB are used for robot-to-robot
ranging (see Fig. 1), and the measurement of R;, i.e., z%, is
produced according to the measurement model'

20 =l g(xjk) — Xk 2 +ox

= \/(%k — 2] )2+ (Yik — Y )% + vk

3)

where z.J represents the measured distance between R; and
R;, (") is a transformation function, which is used to ensure
x;, and x;j are expressed with respect to a common frame
of reference, (x;{k,y}jk) denotes the transformed coordinate
of R;, vy is the measurement noise of UWB, we assume it
follows a Gaussian distribution with mean zero and covariance
07> and we define Ry, = diag(a7 5, ..., 03/ )-

B. Problem Statement

As shown in Fig. 1, for each robot R;, our goal is to obtain
the relative configuration of its neighboring robots R ; at each
time instant k, i.e.,

xﬁe =g(Xj k) — Xi k-

INote that the variation of orientation is not used.

X, u,
by k 5
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Fig. 1. TIllustration of the considered localization setup. Two of the multiple
robots are localizing cooperatively in two dimensions by means of DR and
ranging to other robots.

To achieve this, efficient algorithm should be developed to
make full use the information of DR and the measurements of
UWB. We first define

Wik = g(W,x) — Wik, 4)

then write M = {My,.., My}, M; = {1, ..., 1},
2 = {Z,.,2u} and Z; = {z7],..,z%}. From a
probabilistic-based framework, our goal 1s to obtain

p(xi,lw,ngqM,Z)

We assume target motion and ranging measurements are in-
dependent. Based on the Bayesian theory and the assump-
tion that target state follows a first order Markov process,
p(xij,lC7 ,xz£4|/\/l, Z) can be factorized into [12]

P MM, 2)
M o
~ [ pxitMy, 25)

j=1

M
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Dead Reckoning
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where p(xj’ﬂxz’i_l,uij_,k) represents the prediction process
in Bayesian filtering, which is given by
X% = 8(Xjk) — Xik
=g(Xj5-1) +8(Wj k) — Xip—1 — Wik (6)
= X%+ Wik,
and p(zi“xzi) denotes the updating process, which can be
obtained from (3), i.e., the ranging model of UWB measure-
ment, which represents the likelihood of receiving a ranging
measurement z.’, given the states of two robots x; j and X; k.



Fig. 2. Illustration of the considered localization setup. Multiple robots are
localizing cooperatively in two dimensions by means of dead reckoning and
ranging to other robots.

However, to implement (5) in a practical application, two
main problems have to be addressed.

Problem 1: As we see in (5), it is easy to infer that the prior
information p(x;7) should be given at & = 0. Additionally,
each robot R; only knows its position x; ; and displacements
u; ; in its global frame F;. According to this, the transition
and rotation of two arbitrary frame should be given, i.e., the
function g(-) should be obtained at the initialization stage.

Problem 2: We intend to implement (5) with a consensus-
based DPE. Therefore, further derivation of (5) should be
given, and the details of DPF implementation should be
presented.

Remark 1: In (5), it is worthy to point out that xiz = X; k-
Since robot 7 will not produce any measurement when j = %,
the term p(x;77.| M, Z;) in (5) can be simplified to

p(XZﬂMj, Z5) = p(Xik|Xi k-1, Wi k),

which means that only prediction step will be executed in R;.

III. RELATIVE LOCALIZATION SCHEME

In this section, to address the two problems mentioned
in Section II, a two-stage RL scheme is proposed. In the
first stage, we address the initialization problem by utilizing
the measurements of wheel encoder and UWB as they travel
though a sequence of poses. In the second stage, a consensus-
based DPF is developed to implement the Bayesian filter,
i.e., equation (5), where a least square strategy is used to
approximate likelihood function to reduce the communication
cost between robots.

A. Initialization

Consider two arbitrary robots R; and R; whose initial
poses are indicated by the frames of reference F; and F; (see
Fig. 2), respectively. The two robots acquire N robot-to-robot
distance measurements d;,! = 1, ..., N while moving in a 2D

plane, as shown in Fig. 2. According to the geometric relations,
we define that

g(q;:) = p+ Cqjy, (7

where q;; and q;;,! = 1,..., N denote their positions of R;
and R; in their respective global frames at initialization stage,
N denotes the moving step, p is the transition vector, and C
is the rotation matrix, and we define C as

pimdo| 5oy | ®)
| cosp —sing
C:= { sing  cos¢ } ’ ©)

where ¢ is the relative orientation of robot ¢ and j at [ = 0.
Then, the robot-to-robot distance d; can be expressed as the
length of vector p;, connecting the two robots at the time of

measurement:
di = ||ptll2 = /Wi wy, (10)

wy = g(q;,1) —qi =P+ Caji — qiy.

where

Next, by squaring two sides of the equation (10), we get

(P+Caj; —qi))" (p+Caju—aqiy) =d;.  (11)

Rearranging the terms in (11) after squaring both sides yields

(@is—p)"Cajy+a,p=e, [=1,.,N, (12

where
1
€ = 5((13 + q;{qu',l + q;{l%,z —d?).

Note that €; on the left-hand side of (12) are known (from the
measurements of DR information and UWB ranging), while
the unknown variable # and ¢, embedded in p and C, appear
only on the right-hand side expressions. To solve (12) with the
constraints

sin(#)? 4 cos(h)? = 1
sin(¢)? + cos(¢)? =1,

we use the homotopy continuation (PHCpack) method in [19]
to obtain a coarse result. However, in practice, the robot-to-
robot distances d; will have to be replaced by noisy measure-
ments z;, which is produced according to (3), i.e.,

ZZZdl—F’Uk:\/W;TWl—F’Uk. (14)

Therefore, to correctly account for the measurement noise,
the results obtained from the algebraic method requires fur-
ther processing. Typically, a WLS problem is formulated for
further refinement. Specifically, solving the weighted normal
equations [18]

13)

min %GTW‘l(z —2), (15)

)

"Note that q;,; has the same definition as x; p, we use a new variable q
here just for clarity. That is, q;; is specially used for the initialization step.
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Fig. 3.  The UWB module is consist of a DWM1000 module and the
STM32F103 Discovery board, which is used to get the range information,
with up to 30 meters ranging capability and programmed to send the ranging
measurements every second. STM32F103 discovery board serves as host
controllers to the DWM1000 to record and process the ranging information;
We placed IMU sensor and wheel encoder on the bottom of each robot for
dead reckoning.

where G = [Gyp, ,,Gp, |, and W is given by

W =Gy, ,PisGl  +Gp PG +Ry,  (16)
and the parameters can be obtained by using the chain rule,

we compute the Jacobians as

azi 8Zi
GpZ%; G¢=a—¢; (17)
0z; 0z;
@i =5 Gg =5t (18)
T 0qiy 7 0qyy

Now, an iterative WLS can be employed to address (15), and
the final covariance of the estimate is given by

FIET o

<, (20)

and p¢ and ¢¢ denote the estimate transition and orientation
at the (th iteration of the WLS algorithm.

Pll’ll - E

where

p=pt —p P =0T -

B. Consensus-Based Distributed Particle Filter

Particle filter is a useful tool for implementing a recursive
Bayesian filter. Considering it has an excellent performance in
nonlinear systems, an implementation of the exact Bayesian
solution, i.e., equation (5), using particle filter is developed
here. Then, motivated by the numerous advantages of distribut-
ed architecture, especially computational sharing, a consensus-
based DPF approach is proposed.

As we see in (5), the posterior pdf of each robot R; actually
can be calculated independently, thus we write

PO IMG, Z5) o p(xip g s i) HP @D

We assume a sample-based approximation of the posterior pdf
p(x;7.| M, Z;) is expressed as

p(xyIM;, 25) wa;f,lﬁ X —xr ), @)

where ¢ = 1,2...,Q is the index of the particle x,(cq)

k, @ is the particle number size, w,(cq“)C is the particle weight of

the gth particle. Substituting (22) into (21), yields

at time

Wmewlﬂp x 7@y, 23)

Take the logarithm form, we can obtain

1og(w§€‘|1,)€) o log( ,i“z,l + Zlog ’J’(Q))). (24)

In the distributed implementation, robot 4 has restricted access
limited to its local measurement zz’k and can, therefore,

6,55 q))

only evaluate its local likelihood p(z’ |x based on its

vector particle x; ’{C’(q) The likelihoods of other robots are not

available at robot ¢ and need to be communicated for updating
the weights. Obviously, equation (25) for updating the weights
can be iteratively implemented using an average consensus
algorithm. Therefore, we define

= Zlog

The average consensus algorithm considered in this manuscript
is represented by
672U

JEN;

aj (q) )) (25)

g6ty = e (26)

where 51(68) is the consensus state variables at robot i, s is
the consensus iteration index, and A represents the set of
neighboring robots for robot ¢, choices of weights Ui(j) can
be found in [20], and we use the Metropolis weights in this

paper.

IV. EXPERIMENTAL RESULTS

In this section, real world RL experiments are designed to
demonstrate the effectiveness of the initialization strategy, and
the influence of the number of UWB ranging measurements is
analysed. Besides, the advantage of the proposed consensus-
based DPF is highlighted since we can obtain a good RL result
with significantly reduced computation cost.

A. Experiment setup

The proposed RL algorithm has been tested on a team of
robots moving in 9m x 2m wide arena, each robot traveled
with an average velocity of around 0.6m/s. As shown in
Fig. 3, UWB module (DWM1000) is used to get the range
information, with up to 30 meters’ ranging capability and
programmed to send the ranging measurements with 1Hz
frequency. The STM32F103 discovery board serves as host
controllers to the DWM1000. Meantime, we placed an IMU
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Fig. 4. Two robots move according to the predefined trajectories.
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Fig. 5. [Illustration of the setup of a preliminary test: the accuracy of UWB

ranging and and DR, ground truth is provided as a benchmark

sensor and a wheel encoder on the bottom of each robot for DR
(see 3). Additionally, to obtain a ground truth against which
to evaluate the performance of the proposed RL algorithm,
a manual calibration of our experiment was made in advance,
where the distance angle and errors are limited less than 0.05m
and 5°, respectively. Finally, the recorded data (DR and UWB
ranging information) is further processed in Matlab2013a on
a Intel core 17 with a 3.6-GHz processer.

Considering that our following experiments are largely
dependent on the information of UWB ranging and DR, we
provid a test result of their accuracy in Fig. 4 for preliminary
evaluation, where one robot moves in a straight line, and
displaces 9m in 15 frame (seconds). As we see, while it is
true that DR can determines each robot’s location, it may not
be accurate due to accumulative error, and the error approaches
to 30cm at the last frame. Besides, we see that UWB module
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Fig. 6. Different NV versus estimation result of 6 and ¢.

has a measurement error around 20cm Within the 9m range.

B. Effectiveness of Initialization

To show the effectiveness of our initialization strategy, we
designed an experiment that two robots move according to
the predefined trajectories (see Fig. 5, the ground true are
provided as a benchmark.), and the trajectories and distance
measurements were generated as follows: i) the two robots
start at initial positions 2m apart from each other, robot 2
is located at the vertical direction of robot 1, i.e., 6 = 90°.
Besides, the two robots has a relative orientation ¢ = —14.6°;
ii) each robot moves with the velocity of 0.6m/s; and iii)
the robots record DR and UWB ranging information at their
new positions. Steps ii) and iii) are repeated until 15 distance
measurements are collected.

In our algorithm, seven distance measurements are capable
to get a unique solution of initial pose. To evaluate the
influence of N, N = 7,...,13 measurements are all tested
in our algorithm. As we see in Fig. 7, we compared different
N versus estimation result of 6 and ¢. When N = 7, it has the
capability to provide an accurate estimation of initial relative
pose. Besides, we can see that there is a small improvement
of the estimation result with the increase of the number of
measurements before N = 10.

C. Low Computation Cost

In this subsection, the main advantage of our consensus-
based DPF, i.e., computation sharing, is highlighted by a three
robot RL experiment. As shown in Fig. 8, we add another robot
on the basis of the experiment in the last subsection, where
the third robot moves from a position of p = [9,2] position
with respect to robot 1 and ¢ = 180°. Note that the third robot
also moves with the velocity of 0.6m/s.

With respect to the initialization step, we choose N = 9
to ensure a good estimation of initial relative pose. For the
consensus-based DPF, we choose the number of particles
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Fig. 7. Three mobile robots RL scenario: another robot is added on the basis
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(PNS) @ = 200, and we execute consensus process only one
time in this experiment, i.e., S = 1. The estimation accuracy
is evaluated by

Error = \/(wi,k — i)+ (i — Gix)s

where [Z; k, Ui k] denotes the estimation result of relative
position.

In Fig. 8, the RL result of robot 1 is provided. As we
see, the RL error curve of each robot is much lower than
the DR line, which means that there is an improvement of
RL accuracy by using our method. Besiedes, the RL error
line of each robot also approaches to the benchmark line
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Fig. 9. The comparison of execution time of the posed consensus-based DPF
and centralized approach with different PNS.

(Ground truth), which further demonstrates the effectiveness
of our method. Note that, due to the estimation accuracy of
the other two robots ¢ and j are almost the same as robot 1,
the RL error graph of robot 2 and 3 are not provided. Finally,
we compared the execution time of each robot, which indicates
the computation cost of each robot used to obtain the RL result
of the other two robots. As shown in Fig. 9. It can be seen that
our consensus-based DPF has much lower computational cost
than the centralized approach with different PNS. Specifically,
with regard to our 3 robots RL scenario, the execution time is
exactly reduced about 3 times.

V. CONCLUSION

In this paper, combining DR and UWB ranging information
to achieve RL is considered. Generally, a novel two-stage RL
method was proposed to address two main problems, i.e., pose
initialization and distributed implementation, in a practical
multi-robot system. At the first stage, we use robot-to-robot
measurements acquired at different vantage points during robot
motion to determine initial pose, where we built a linear system
to compute a coarse estimate for relative pose firstly, and then
we employed an iterative WLS method for further refinement.
Secondly, we developed a consensus-based DPF to fuse the
data from local robot and neighbors to realize RL. Experiments
results on a team of differentially driven mobile robots show
initialization strategy is able to obtain an accurate estimation
of relative pose and highlighted that the proposed approach has
much lower computation cost than the centralized approach at
each local robot.
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