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Abstract—Deep learning (DL) methods have recently
gained popularity. Training this class of models is,
however, computing-intensive, and frequently GPUs
are used to boost performance. Although the costs
of GPU-based systems are gradually reducing due to
the high demand, they are still prohibitive: in public
clouds, GPU-powered virtual machines (VMs) time
unit price is 5-8x higher than CPU-only VMs. While
the cloud remains the most cost-effective and flexible
deployment, operation costs can be reduced, in large
settings, by rightsizing and sharing resources among
multiple processes. This work addresses the online joint
capacity planning and job scheduling with due dates
problem and proposes alternative matheuristic solution
methods. Our objective is to optimize operation costs
by: i) rightsizing the VM capacities at each node, ii)
partitioning the set of GPUs among multiple concur-
rent jobs on the same VM, and iii) determining a due-
date-aware job schedule. The effectiveness of the pro-
posed hierarchical approach, coupled with an appropri-
ate Mixed Integer Linear Programming formulation, is
validated against first-principle methods by relying on
simulation. The experiments prove that the efficiency of
GPU-based systems evaluated in terms of costs can be
improved by 50-70%. Finally, scalability analyses show
that the proposed approach enables to solve problem
instances with up to 100 nodes in less than one minute
on average, making it suitable for practical scenarios.

Index Terms—On-demandGPUs, Cloud, Scheduling,
Optimization.

I. Introduction
The introduction of the General Purpose computation

on Graphic Processing Units (GPGPU), providing an
interface to massive parallelism, has significantly extended
the set of previously intractable problems that can be
solved within a reasonable time. However, the opportu-
nities offered by these platforms and development frame-
works, which made an unprecedented computing capabil-
ity accessible, have sparked a gold rush that generates
an unrelenting demand for computational power. Conse-
quently, GPU as a service market, worth over 700 million
USD in 2019, is expected to grow with a compound annual
rate of over 38% up to 2024 [7].

A field that has markedly benefited from the continuous
evolution of GPUs (along with the libraries that harness
their power) is Deep Learning (DL) on Neural Networks
(NNs), which nowadays fuels a plethora of applications like
voice and face recognition, or self-driving cars [23], [26].
The importance of DL training jobs is evidenced by the

fact that the latest hardware generations provide purpose-
built components (e.g., Nvidia Tensor cores) that further
reduce training time. However, despite hardware improve-
ments, constant efforts to enhance the efficiency of neural
models, and the performance boost due to the transition
to GPU as AI accelerator (5 to 40 times faster than using
the CPU alone [2], [14]), DL applications training is still
computationally burdensome.
Despite all the benefits mentioned above [5], the adop-

tion of GPU acceleration on a large scale is still limited by
their high cost [4], which is only affordable for large organi-
zations. Indeed, high-end GPU-based servers like NVIDIA
DGX-2 cost up to 500 thousand USD [15], whereas in
public clouds, GPU-based Virtual Machines (VMs) time
unit cost is 5-8x higher than high-end CPU-only VMs [16].
Given the relevance that DL applications are acquiring and
the significant training costs involved, the efficient use of
GPUs is, therefore, especially important and challenging
and calls for an integrated solution that fosters resource
sharing and virtualization as major enablers. In particular,
we envision a scenario where multiple DL training jobs
are continuously submitted for execution on a cluster
of virtual machines (in this work, the terms VM and
node are used interchangeably). Individual nodes can be
configured from a variety of VM types available from the
cloud provider’s catalog and each type features, possibly,
several GPUs. More than one job can run on the same
node, and, in this case, available resources are partitioned
and statically allotted to avoid interference. Each job
is characterized by a due date, a tardiness cost, i.e., a
penalty cost proportional to the difference between the job
completion time and the due date, and its priority. The
set of jobs to be scheduled is not known in advance: new



jobs are submitted with different characteristics, deadlines,
and tardiness without any repetition scheme resulting in
an online problem. Finally, job preemption is allowed to
manage higher priority submissions. The resulting online
resource allocation and scheduling problem aims at min-
imizing the overall job execution costs (the sum of the
costs incurred to run the VMs plus the tardiness penalty
costs) over the considered time horizon. Online decisions
concerns the selection of the VM type for each node, the
order in which the jobs are executed, and how resources
are partitioned and assigned to each job.

This paper extends our previous work [10] which pro-
posed a preliminary formulation and a solution applicable,
due to scalability issues, only to problem instances with a
small number of nodes and jobs. In this paper, we propose
a hierarchical approach coupled with a novel Mixed Integer
Linear Programming (MILP) formulation to overcome
such limitations. The experiments show that the efficiency
of GPU-based systems, evaluated in terms of costs, can be
improved by 50-70% compared to first-principle methods
(i.e., first-in-first-out, earliest-deadline-first, and priority).
Scalability results assess the feasibility to the novel ap-
proach for practical scenarios, since instances with up to
100 nodes are handled in less than one minute on average.

The rest of the paper is organized as follows. Sec-
tion II reviews the related work. Section III describes
the proposed novel hierarchical framework whose MILP
formulation is detailed in Section IV. Section V presents
the experimental setup and the results of comparing the
proposed method against first-principle approaches and
our previous solution [10]. Section VI draws conclusions
and outlines future works.

II. Related work
Considering the relatively slow increase of per-core com-

putation power witnessed in the last decade, the natural
way to get a substantial computation speed up is to resort
to a higher degree of parallelism like the one achievable by
using one or more GPUs. Yet, while the use of GPU farms
delivers unprecedented computing power, such potential
is still difficult to harness [21] and new challenges arise
in GPU resource management. Among others, in this
context, the job scheduling problem on multiple GPUs in
virtualized environments calls for both a robust theoretical
framework and viable practical solutions [22]. To the best
of our knowledge, our work represents the first attempt
to tackle the problem of online DL job scheduling on
multiple virtualized GPUs. Therefore, we briefly review
previous work on the GPU scheduling problem in cloud
computing, High-Performance Computing (HPC) as well
as in virtualized environments.

Considerable attention has been devoted to GPU
scheduling in HPC systems to improve load balance and
performance of CPU and GPUs (see e.g. [24]) but there
are a handful of solutions targeting specifically DL training
applications. A scheduling algorithm based on collocating

CPU-only jobs with GPU-assisted jobs is presented in [24].
GPU scheduling in HPC is also considered in [19] where
the utilization is improved using an optimized scheduling
algorithm allowing multiple applications to share the same
GPU.
Scheduling problems are often tackled by defining poli-

cies concerning the allocation of a resource budget to
tasks. The common budget is time budget: in [12], different
time budgets are assigned to GPU tasks with different
priorities. A resource budget-based policy is implemented
in [11] where GPU processing cores are assigned only to
high priority tasks. Bag of tasks scheduling is considered in
[3] which proposed a deadline-aware greedy method that
minimizes the resource renting costs estimating the real
task execution time. In [27] the authors explore a scenario
where there exists a linear dependency between compute-
intensive, stochastic, and deadline-constrained multi-stage
jobs. The problem is addressed considering three objective
functions, namely the number, the usage, and utilization
of rented VMs.
A scheduling technique for GPU as a service is proposed

in [9] where full management of cloudified GPUs in a
public cloud environment is provided. GPUs virtualization
can lead to a significant increase in utilization [9], which
can be further improved by providing remote GPU access
to applications that are executed on different cluster nodes
with reduced overhead [18]. A successful middleware to
implement this approach is rCUDA [20], which enables
the concurrent remote usage of CUDA-enabled devices
transparently. See [8] for an extensive survey for GPU
virtualization techniques and scheduling methods.
As regards the DL training, the work in [25] proposes

Gandiva, a scheduling framework able to improve latency
in training DL models on a GPUs cluster by exploiting
heterogeneity and recurrent behaviors of DL jobs while
running mini-batch iterations. A seminal work on schedul-
ing multi-GPUs among competing jobs on high-end servers
is [1]. The paper proposes a topology-aware scheduling
policy for DL jobs in cloud environments, which provides a
placement strategy able to satisfy workload requirements
preventing also application interference. Finally, Optimus,
a Kubernetes scheduler especially designed to manage DL
jobs on a shared distributed containerized environment,
is presented in [17]. The proposed approach aims at
minimizing job training time exploiting online resource-
performance models to estimate job execution times.

III. Proposed framework
This paper proposes a hierarchical framework and a

new MILP formulation for the management of DL training
jobs on a GPU-based virtual machine cluster. The same
problem was addressed in our previous work [10] in a
centralized framework, which however presented scalabil-
ity limitations that prevented its usage for instances with
more than 40 nodes. The hierarchical approach proposed
here aims to overcome these scalability issues, enabling the



method to tackle real-world larger instances. The efficient
GPU use, the right VM type selection and jobs scheduling
are the main issues in this context. We consider a system
where multiple jobs are submitted and run concurrently.
Each job is associated with a due date and a penalty is
incurred in case it is exceeded. Each job can be allocated
on a single node, which in turn can execute different jobs
at once. Several types of GPU-powered VMs are available
and the number of nodes simultaneously in use in the
cluster is bounded. Moreover, jobs can be preempted.

Incoming jobs (see Figure 1) are submitted to a central
queue, that forwards them to local queues associated with
cluster partitions according to a Round Robin (RR) policy
in open loop. Each local queue is managed by a local
controller, which can also boot up and power down VMs of
its partition. Each VM can be configured according to dif-
ferent VM types, which feature, possibly, multiple GPUs.
Each local controller k has three main goals: i) selecting,
from the provider catalog, the most suitable VM type for
each node, ii) determining which jobs must be executed
and which must wait in the queue, iii) partitioning, at
node level, the available GPUs among the running jobs.

Each local controller solves, therefore, a joint Capacity
Allocation (CA) and Jobs Scheduling (JS) problem in an
online setting. This problem is solved both periodically
and every time a new job is submitted or one of the run-
ning jobs completes. Moreover, since training operations
are long-running batch applications, when a job ends, or
a new one enters the local queue, the running jobs: i)
can continue their execution with the same or a different
number of GPUs on the same VM, on another VM already
running, or on a newly instantiated VM that replaces one
among the previously running; ii) can be preempted and
pushed back in the local queue to be resumed at one of
the following decision points.

The reference system is shown in Figure 1: we assume
that up to N nodes can be started and can be individually
configured with a VM type v from the provider’s catalog
V. Overall,K controllers manage one local queue and node
partition with N/K VM instances possibly of different
types. Each VM type v ∈ V has distinctive characteristics
such as the number of GPUs Gv, and time unit cost cv. At
each decision point the system needs to run a collection
of available jobs J . Each job j ∈ J is characterized by
a submission time, a due date dj and a tardiness weight
ωj . Jobs are never rejected and can be delayed. The job
tardiness is denoted by τj .
Job execution time, across different VM types and num-

ber of GPUs g assigned, can be reliably estimated (e.g.,
our previous work [6] proposed machine learning models
to predict the training time of DL applications with an
average percentage error below 11%). In the following, tjvg

denotes the execution time of job j when it is running on
a node of VM type v with g GPUs. Moreover, to take into
account performance prediction variations, the problem is
also solved periodically every H time unit.

Figure 1 shows a driving example featuring six DL train-
ing jobs (j1-j6). The N nodes (n1-nN ) can be configured
with VMs of three types. Two types (v1 and v2) have four
GPUs while v3 has eight GPUs. Each VM type has its own
time unit cost (0.2, 0.3, 0.5) $/h. Execution time estimates
are reported in the blue box and are obtained by relying
on machine learning models [6], whose main inputs are the
number of iterations to run and the job batch size. The
local controller k schedules jobs j2 and j5 to run on the
same node of VM type v2, with 4 GPUs. Job j5 ends first;
the problem is solved again by the local controller: job j2
can be preempted or can continue in the next time slot,
either with the same configuration (same VM type but
possibly changed number of GPUs) or with a different VM
type, or can be pushed back to the queue to be resumed
in a future time slot. The same happens when a new job
joins the local queue.
Each local controller k solves a MILP to minimize

the total operation costs of its node partition taking
into account leasing and tardiness related costs. The new
proposed model is described in detail in the next section.

IV. Problem formulation

The novel MILP formulation we propose in this paper
extends our previous work [10]. A challenging aspect of the
problem that was not satisfactorily dealt with in [10] is the
evaluation of the deployment costs, trying to capture the
online nature of the problem. In an online context, the
MILP is solved every time a job is completed or a new
job is submitted, but no information about the next sub-
missions are available, so that the completion of already
running jobs is the only predictable event determining a
rescheduling. Therefore, here we bind the execution costs
to those of the first-ending job on each node. Although
this approach might seem short sighted, as it optimizes
the resources allocated to the shortest job while the others
receive a best-effort assignment, we shall see in Section V
that it turns out to be effective, since the joint CA and JS
problem is repeatedly solved and resources are reallocated
every time a job terminates. In particular, the novel MILP
formulation we propose in this paper not only overcomes
the scalability issues of the model in [10] but also achieves
a slight improvement in the total cost.
We consider four input sets: the set of candidate jobs
J , the set of nodes N (|N | = N), the set of VM types
V, and the set of GPU partitions for each VM type
v, denoted by Gv. In particular, assuming homogeneous
GPUs ∀v ∈ V, Gv = {1, . . . , Gv}, where Gv is the total
number of GPUs available on VM type v. Since a single
VM type can be selected for each node, the set N is often
referred to, in the following, as set of assignable VMs. Jobs
are partitioned across the local controllers according to
the RR policy. The index sets for job and node partitions
assigned to the local controller k are denoted by Jk and
Nk, respectively. The notation is summarized in Table I.
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Figure 1: Reference framework.

For each job j ∈ J , Mj denotes its maximum execution
time, i.e., Mj = max

v,g
tjvg, over every possible VM type

v and GPU partition g ∈ Gv, while M̂j denotes its
maximum execution cost, i.e., M̂j = max

v,g
tjvgcv. The

constant parameter H represents the periodic scheduling
time interval.

The proposed MILP formulation for the local controller
k is as follows:

min
∑

j∈Jk

ωj

(
τk

j + ρτ̂k
j

)
+µ

∑
n∈Nk
v∈V

(Gvy
k
nv−

∑
j∈Jk
g∈Gv

gxk
jnvg)+

∑
j∈Jk
n∈Nk

αk
jnπ

k
jn

(P1a)
subject to:∑

v∈V

yk
nv = wk

n ∀n ∈ Nk (P1b)

xk
jnvg ≤ y

k
nv ∀j ∈ Jk ∀n ∈ Nk ∀v ∈ V ∀g ∈ Gv (P1c)

xk
jnvg ≤ z

k
jn ∀j ∈ Jk ∀n ∈ Nk ∀v ∈ V ∀g ∈ Gv (P1d)∑

v∈V

∑
g∈Gv

xk
jnvg ≤ w

k
n ∀j ∈ Jk ∀n ∈ Nk (P1e)∑

n∈Nk

∑
v∈V

∑
g∈Gv

xk
jnvg =

∑
n∈Nk

zk
jn ∀j ∈ Jk (P1f)

∑
j∈Jk

∑
g∈Gv

gxk
jnvg ≤ Gv ∀n ∈ Nk ∀v ∈ V (P1g)∑

n∈Nk

∑
v∈V

∑
g∈Gv

tjvgx
k
jnvg ≤ dj + τk

j ∀j ∈ Jk (P1h)

(H +Mj)(1−
∑

n∈Nk

zk
jn) ≤ dj + τ̂k

j ∀j ∈ Jk (P1i)∑
v∈V

∑
g∈Gv

tjvgcvx
k
jnvg ≤ π

k
jn ∀j ∈ Jk ∀n ∈ Nk (P1j)∑

j∈Jk

αk
jn = wk

n ∀n ∈ Nk (P1k)

αk
jn ≤ z

k
jn ∀j ∈ Jk ∀n ∈ Nk (P1l)∑

n∈Nk

zk
jn ≤ 1 ∀j ∈ Jk (P1m)∑

n∈Nk

wk
n = min{|Nk|, |Jk|} (P1n)

yk
nv ∈ {0, 1} , zk

jn ∈ {0, 1} , α
k
jn ∈ {0, 1} ∀n ∈ Nk ∀v ∈ V

(P1o)
xk

jnvg ∈ {0, 1} ∀j ∈ Jk ∀n ∈ Nk ∀v ∈ V ∀g ∈ Gv (P1p)

τk
j ≥ 0, τ̂k

j ≥ 0 ∀j ∈ Jk (P1q)

πk
jn ≥ 0 ∀j ∈ Jk ∀n ∈ Nk. (P1r)



Table I: Notation of the MILP model
Problem parameters
cv time unit cost of a type v VM
dj due date of job j
ωj tardiness weight of job j
Mj maximum execution time of job j
tjvg execution time of job j when running on type v VM

with g GPUs
M̂j maximum possible execution cost for job j
H scheduling time interval
µ a penalty coefficient for unused GPUs
ρ a penalty coefficient for postponed job
Local controller k variables
wk

n 1 if node n ∈ Nk is allocated and 0 otherwise
yk

nv 1 if node n ∈ Nk is of type v and 0 otherwise
zk

jn 1 if job j ∈ Jk is executed on node n ∈ Nk and 0
otherwise

xk
jnvg 1 if job j ∈ Jk is executed on node n ∈ Nk of type v

on g GPUs, and 0 otherwise
τk

j tardiness of job j ∈ Jk

τ̂k
j worst-case tardiness of job j ∈ Jk if it is postponed
πk

jn cost of node n to execute job j ∈ Jk

αk
jn 1 if job j ∈ Jk is the first ending job on node n ∈ Nk,

and 0 otherwise

Constraints (P1b) enforce that, for each selected node
n ∈ Nk, exactly one VM type v is chosen. Con-
straints (P1c) ensure that only deployments on the cho-
sen node are feasible, while Constraints (P1d) ensure
that only jobs that will be executed will be deployed.
Constraints (P1e) bind the allocation of jobs to selected
nodes. Moreover, Constraints (P1f) enforce the association
of exactly one deployment choice to every executed job.
Constraints (P1g) bind the number of allocated GPUs to
the available capacity of the selected node: g is the number
of GPUs selected by variable xk

jnvg for each job, thus their
sum must not exceed the number of available GPUs (Gv)
of the selected VM. Constraints (P1h) try to enforce every
job due date and define the tardiness τj in case of violation.
Constraints (P1i) define the worst-case tardiness τ̂j for
postponed jobs (characterized by

∑
n∈Nk

zk
jn = 0). The

worst-case tardiness will be equal to zero for executed jobs
(with

∑
n∈Nk

zk
jn = 1) and will be equal to (H +Mj − dj)

otherwise. Constraints (P1j) compute the VM cost for
executing each job. Constraints (P1k) enforce that, for
each node n ∈ Nk, only one job on VM n will have
αk

jn = 1, while the others will have αk
jn = 0. As discussed

later, because of the objective function, αk
jn = 1 if and

only if job j is the first to finish on node n. In this way,
constraints (P1l) link the αk

jn and zk
jn variables and for

each node the cost of execution will be limited to consider
the the first ended job on the node. Constraints (P1m)
ensure that each job is allocated to at most one node.
Constraints (P1n) ensure that the number of selected
nodes is equal to the minimum between the number of
available nodes and of available jobs. This enforces the
execution of jobs as soon as resources are available. If
there are idle resources, not running the jobs in the
current time slot and postponing them to the next one

cannot reduce their execution cost. Instead, since jobs
can be preempted, postponing their execution will only
make their due dates stricter, possibly requiring additional
resources and imposing higher costs. Constraints (P1o)-
(P1r) define the decision variables domain.
Concerning the objective function (P1a), in the first

term,
∑

j∈Jk
ωjτ

k
j corresponds to the weighted tardiness

of all running jobs, while
∑

j∈Jk
ρωj τ̂j to the worst-case

weighted tardiness of the jobs that are postponed. The
ρ > 1 term increments the penalty of the postponed jobs
forcing the system to not put off jobs that would violate
their due date.
The second term of the objective function corresponds

to the difference between the number of used GPUs and
the number of available GPUs from each selected VM type.
Since the objective function is minimized, all available
resources tend to be used (in this way multi-GPU VMs
do not have idle resources, µ is a positive constant acting
as a Lagrange multiplier). The third term of the objective
function

∑
j∈Jk

∑
n∈Nk

αk
jnπ

k
jn corresponds to the total

execution costs. For each node n ∈ Nk, the execution
cost is given by the time unit cost of its chosen VM
type multiplied by the execution time of the first job
that will complete on it. Due to the objective function
minimization, only the first job to complete on each node
will have αk

jn = 1 while the other jobs will be characterized
by αk

jn = 0 as the fastest job has the smallest πk
jn.

Finally, note that we are neglecting re-configuration costs
of running nodes since this would require a few minutes
while DL training jobs run for several hours (or days).
The formulation (P1) is clearly non-linear because of the

bilinear terms αk
jnπ

k
jn in the objective function. Since cur-

rent non-linear optimization solvers that support integer
variables are much less effective than MILP solvers, the
model (P1) is linearized at the end of this section. The
linearized version is denoted in the following as (P2).
As pointed out at the beginning of this section, (P1)

focuses on identifying the best resources for the first job
to complete on each node while the remaining jobs receive
a best effort assignment. Since this approach might seem
short sighted, we investigated also other variants. We
developed a second MILP model which focuses on earliness
rather than on tardiness and tries to allocate the right
amount of resources to jobs so that they end as close
as possible to their due dates. This second formulation
includes some approximations since the execution of a full
set of jobs is considered in the objective function conserva-
tively, while the re-optimization performed after the first
job ends on any node will possibly provide a different GPU
assignment. We obtained a third MILP model through
a convex combination between the objective function of
the second model and the one of (P2), trying to identify
the right balance between a selfish assignment to jobs
ending first and the cost upper bound provided by the
second model earliness formulation. However, experiments
demonstrated that in general such variants provide worse



results than those obtained with (P2).
Finally, it is worth noticing that our previous MILP

formulation in [10] was based on an approximated eval-
uation of (P1) costs, assuming that the time unit costs
of VMs with the same type of GPUs are linear in the
GPUs number. Indeed, the costs of the allocated GPUs
are computed without considering that the GPUs come
in lots. This is in line with the current cloud providers
pricing models since the economy of scale does not provide
any real benefit. Such an approximation was adopted to
reduce the number of variables and constraints as well as
to keep the model linear. Here, however, the scalability
issues are fully overcame by the adoption of a hierar-
chical framework; moreover, since each local controller
solves an instance with limited size, the high number of
variables and constraints in the MILP formulation is less
challenging than in [10]. In Section V, we will show that
the hierarchical approach combined with the new MILP
formulation enables us to improve our previous work [10]
by not only reducing the computing time significantly but
also decreasing the total costs by 3% on average..

As mentioned above, the optimization problem (P1) is
non-linear because of the bi-linear terms αk

jnπ
k
jn in the

objective function. To have a linear formulation, we replace
them with new variables ξk

n that account for the minimum
deployment cost across all jobs using six new constraints.
Moreover, for each job, we introduce an auxiliary non-
negative variable γk

jn that corresponds to the deployment
cost to execute job j completely.

The linearized formulation (P2) is as follows:

min
∑

j∈Jk

ωj

(
τk

j + ρτ̂k
j

)
+µ

∑
n∈Nk
v∈V

(Gvy
k
nv −

∑
j∈Jk
g∈Gv

gxk
jnvg) +

∑
n∈Nk

ξk
n,

(P2a)
subject to:

(P1b) - (P1r) and:

ξk
n ≥

∑
j∈Jk

γk
jn ∀n ∈ Nk (P2b)

γk
jn ≤ π

k
jn ∀j ∈ Jk ∀n ∈ Nk (P2c)

γk
jn ≤ M̂jα

k
jn ∀j ∈ Jk ∀n ∈ Nk (P2d)

πk
jn − M̂j(1− αk

jn) ≤ γk
jn ∀j ∈ Jk ∀n ∈ Nk (P2e)

ξk
n ≥ 0 ∀n ∈ Nk (P2f)
γk

jn ≥ 0 ∀j ∈ Jk ∀n ∈ Nk. (P2g)

Given the constraints (P2b)-(P2g), it is easy to verify
that if αk

jn = 1, then ξk
n equals the deployment cost of the

first jobs j ∈ Jk that will end under the selected GPUs
assignment. Indeed:
• If αk

jn = 1, then the corresponding constraint (P2c) is
more restrictive than the constraints (P2d) γk

jn ≤ M̂j

since πk
jn ≤ M̂j . Moreover, from the corresponding

constraint (P2e) γk
jn ≥ πk

jn, we get γk
jn = πk

jn. Finally,
since we have a minimization problem also constraints

(P2b) hold as equalities and γk
jn is equal to the cost

due to execute job j ∈ Jk completely under the
selected GPUs assignment.

• If αk
jn = 0, then constraint (P2d) entails γk

jn ≤ 0. By
constraint (P2g) we get γk

jn = 0. Moreover, constraint
(P2e) becomes γk

jn ≥ πk
jn−M̂j , which is a non-positive

number and hence is always satisfied.
Since we have a minimization problem also constraints

(P2b) hold as equalities and ξk
n is equal to the only γk

jn

corresponding to αk
jn = 1, i.e., it equals the cost to execute

completely the first job j ∈ Jk that will end under the
selected GPUs assignment on node n ∈ Nk.

It is worth noticing that all the decision variables of
problems (P1) and (P2) are boolean variables, while the
real-valued variables τk

j , τ̂k
j and ξk

n are all dependent
variables. Thus, (P1) and its linearized version (P2) can
be classified as Pseudo-Boolean problems.

V. Experimental results
We have evaluated the proposed approach in a large

set of randomly generated scenarios as described in Sec-
tion V-A. Two aspects are assessed in Section V-B: the
quality of results, and the efficiency. For what concerns
the quality of results, the approach proposed in this paper
is compared against first-principle methods and our pre-
vious work [10]. On the other side, for what concerns the
efficiency aspects, a scalability analysis is presented. The
proposed approach has also been evaluated in a prototype
system deployed on Microsoft Azure, achieving a deviation
between the expected and real costs (including VMs and
tardiness costs) below 7%. Details can be found in [10].

A. Experimental setup
As representatives of long-running DL training jobs,

we selected the training of some neural networks (i.e.,
Alexnet, Resnet, VGG, and DeepSpeech) implemented
with different deep learning frameworks (i.e., PyTorch
and Tensorflow) with a significant heterogeneity in terms
of resource usage. Indeed, while VGG performance is
heavily related to available computational power, Alexnet
and DeepSpeech performance are mainly determined by
disk-access efficiency and by the GPU memory size and
speed. Finally, Resnet is characterized by a balanced type
of workload. For each pair network-framework, several
application instances have been created varying the epochs
number and the batch size.
The considered VM catalog (reported in Table II) is

composed of 9 different types. Six of them (NC6, NC12,
NC24, NV6, NV12, NV24) are based on Nvidia K80 and
M60 and are available on Microsoft Azure. The others are
based on in-house servers (Quadro P600 and GTX 1080Ti)
and they have been added to increase the complexity of
the problems by enlarging the set of possible candidates.
To verify the effectiveness and generality of the proposed

approach, several random problem instances are generated
using the parameters described in the following. We varied



Table II: Characteristics of the Target Nodes
Cost

VM type GPU type # GPU [$/h]
NC6 K80 1 0.56
NC12 K80 2 1.13
NC24 K80 4 2.25
NV6 M60 1 0.62
NV12 M60 2 1.24
NV24 M60 4 2.48
Custom1 Quadro P600 2 0.11
Custom2 GTX 1080Ti 8 1.13
Custom3 Quadro P600 8 0.44

the number N of available nodes in the cluster from 5
to 100. The number of submitted jobs in each instance
is set to J = 10N . The number of controllers K has
been set to N/5, i.e., each local controller has to manage
5 VMs. As in other literature proposals, the jobs inter-
arrival times have been generated according to a Poisson
distribution [1] whose mean is equal to 45, 000s. This value
is smaller than the execution time of shortest jobs, so that
multiple jobs are loaded in the system at each time slot.
For each value of the cluster size, three problem instances
are built by changing the seed of the random distribution.
The remaining parameters are set as follows. The periodic
scheduling time interval H is set to one hour. The due
date dj for each job is randomly generated according to a
uniform distribution in the range [min(tjvg), 2 ·max(tjvg)].
The tardiness weights ωj are randomly generated in the
interval [0.36, 1.08] $/hour with a uniform distribution. In
this way, for any tardy job, the average time unit delay
is almost ten times larger than the time unit execution
cost. The postponed job penalty ρ is set to 100 while the
µ parameter is set equal to 1 (given the objective function
adopted in the problem formulation, any positive value
forces the use of all available GPUs).

The results of the proposed approach have been com-
pared against those obtained with first principle methods
such as First-in-First-out (FIFO), Earliest Deadline First
(EDF), Priority Scheduling (PS), and the centralized ap-
proach described in [10]. All the methods in comparison
have been implemented in Python and rely on Gurobi
Optimizer 8.0. The relative mixed integer programming
gap (the difference between the current upper and lower
bounds of the MILP solver) has been set to 5%. All the
results have been collected by running the implementation
on a VM running on top of a server based on Intel Xeon
E5-2640 exploiting 32 cores and 32 GB of memory. The
collection of all the results for all methods and all instances
required more than 60 days.

B. Comparative analysis
Figure 2 compares the average computation time re-

quired to solve the single instances in the centralized
approach (which solves the MILP model presented in [10])
and the one proposed in this paper. The main difference
is attributable to the different number of variables in the
two MILP models, which are also reported in Figure 2.

Figure 2: Average computation time and number of vari-
ables of the centralized and the hierarchical MILP models
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Figure 3: Fraction of the proposed approach and central-
ized MILP model cost w.r.t the best heuristic

In the centralized model, instances with 40 nodes lead
to MILP models with more than 300,000 variables, leading
Gurobi to memory failures. However, in the hierarchical
framework, each local controller tackles an instance whose
size is fixed, thus considering a MILP model involving
about 5,000 variables on average, with a required compu-
tation time of approximately 40s. Small variations of the
k sub-problem computation time are due to the varying
number of jobs in the local controller queues, but this did
not introduce any significant increment in the computation
time, making the approach scalable for very large problem
instances including hundreds of jobs to be scheduled.
It is worth noticing that the new MILP formulation pre-

sented in this paper includes a larger number of variables
and constraints than the one presented in [10], so that it
can be exploited only in a hierarchical framework, where
the dimension of the instances is fixed, while it would be
infeasible in a centralized framework.
The results of the analyzed approaches are compared

in Figure 3. The results of different experiments with the
same number of nodes have been averaged and normalized
with respect to the best heuristic. Despite the distributed
hierarchical approach, the proposed method not only does
not produce worse results than the centralized one, but it



slightly improves centralized solutions by 3% on average.
Finally, to determine the minimum number of servers

needed to support the optimization runs by the K con-
trollers without introducing any delay to computation
time, we modeled the optimization server running Gurobi
as a M/G/1 queue [13]. The execution time required by
the single optimizer is reported in Figure 2 and varies
from about 40s to 48s. For what concerns the frequency
of execution of the optimization process, we observed
that our simulations can be split into three parts: in the
first part only job submissions happen in the system, in
the second part job submissions are interleaved with job
completions and in the third part every job has been
already submitted and we observe only job completions.
However, in any step the completion rate is much lower
than the submission rate (DL jobs are long-running), so
as a first conservative approximation, to determine the
number of optimization servers required, we considered
only the second part of the job submission trace. On
average, the rate of the optimization is equal to the rate
of submission plus the rate of ending jobs: this sum can
be approximated to two times the job submission rate. In
the largest simulation setting, with 100 nodes and 1,000
jobs, characterized by an average inter-arrival time of 450s,
results have shown that a single server allows computing
the optimal solution requested by all local controllers in
about 47.6s. Hence, a single optimization server is enough
to handle a system with 100 nodes and 20 controllers.

VI. Concluding remarks
In this paper, we propose a hierarchical framework and

a novel MILP formulation for the online joint capac-
ity planning of on-demand VMs and DL training jobs
scheduling in cloud deployments. The effectiveness of our
approach has been assessed by performing an extensive
simulation campaign. Results show how our approach
achieves savings in the 45-80% range with respect to
first principle scheduling methods and the framework can
support systems including up to 100 nodes in less than one
minute on average. Future work will investigate the impact
of other policies besides the round-robin and will identify a
criterion to right-size the number of local controllers given
the incoming jobs load.
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