
EasyChair Preprint

№ 669

MINT: A Tool to Explore Themes in High

Velocity Social Media Data

Nishant Agarwal, Subhasis Dasgupta and Amarnath Gupta

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 6, 2018

MINT: A Tool to Explore Themes in High
Velocity Social Media Data

Nishant Agarwal1, Subhasis Dasgupta1, and Amarnath Gupta1

University of California San Diego, La Jolla, California, USA
{niagarwa,sudasgupta, a1gupta}@ucsd.edu

Abstract. An important aspect of social media analytics is understand-
ing themes, i.e., popular discussion topics, as they evolve in time. Tech-
niques like topic models, which assume a generative model of theme
distribution over documents, often suffer from three problems – they
are expensive to compute in real-time, they usually limit the number
of topics, and they do not consider the continuous change in the topic
proportions, emergence and noise that occurs in social media. To ad-
dress these problems, we have developed MINT, a framework that uses
a non-uniform stochastic model of term occurrence to identify themes as
they evolve in real-time, and periodically stores the identified themes in
a semi-structured database. MINT therefore supports both theme detec-
tion and evolution queries on social media. Themes encode useful infor-
mation like their rate of growth, changing user communities around them,
links to related real-world events, their representative topic-handles, etc.,
that can be queried upon. We experimentally show that our extracted
themes compare well with more traditional methods but performs well
in real-time.

Keywords: Social Media Monitoring · High Velocity Data · Trend anal-
ysis.

1 Introduction

Understanding social phenomena[8] ranging from political events to impacts of
natural disasters, is a fundamental scientific goal that is undertaken by different
professional groups. Sociologists, political scientists, journalists, social behav-
ioral psychologists, and legal researchers are only a few of the many different
professions who observe the behavior of individuals and groups to characterize,
interpret and predict social phenomena of the past, present and future. Social
media channels, including social networking sites, microblogs, responses to online
news and many other social outlets have become a significant source of informa-
tion that today’s researchers can effectively use as a huge observatory toward
the shared goal of understanding the public mind and in some cases, as a pre-
dictor of impending events [12]. While social media information sources are all
different from each other, they share a few common characteristics independent
of the source or nature of the media they come from.

2 N. Agarwal et al.

– Social data is text centric, containing dynamic vocabulary, and often avail-
able as a real-time stream of posts.

– The text may contain entity and theme references. Twitter, for instance,
uses hashtags to designate the central theme of a tweet; both Twitter and
Facebook allow explicit references to members of the network

– There is a wide variety of themes, opinions and viewpoints within the popu-
lation of social media content at any given time interval, or under any given
context (e.g., a newspaper article, or a real-world event that triggers a social
media response).

– There is often a non-stationary temporal variation in the theme of any con-
versation, which sometimes shows crests and troughs in terms of the degree
of social interest and volume of conversation. We call newly developing so-
cial phenomena as emergence, slower variations as drifts, sudden increases
in intensity as bursts, and the decrease in public interest decays.

– We often find that the contributors to social media conversations cluster into
groups that interact and often reinforce one another, creating a sustained
community, at least over a reasonable interval of time.

1.1 A Motivating Example

With the above characteristics in mind, let us consider a journalist who would like
to analyze the nature of public opinions from Twitter on the new administration
of USA and their policy priorities. She creates a set of keywords to suit her needs
and starts collecting from 1% tweet stream with the intention of understanding
the following:

1. What is the diversity of themes in the continuously collected tweets? Here
diversity is related to topics as in the topic modeling literature, and refers
to a collection of terms that statistically occur together within any given
window of observation. However, to belong to a theme, a term needs to be
non-transient, i.e., it cannot appear and disappear in seconds, because a
fleeting term does not contribute to the journalist’s insight and it is likely
to be noise.

2. Is there a significant burst on a topic? If so, what real world event does it
relate to?

3. What are the top k topics in the last 30 min, hour, day, week on the theme
“affordable care act”?

4. Which theme(s) overshadowed the public discussions on the theme “military
budget”?

5. Can we predict if a theme observed in social media is going to become a
news item in the next few hours?

6. Which user groups are discussing “Obamacare” and “Trumpcare”, and how
are they evolving with time? This query identifies different user groups dis-
cussing the two topics and analyzing the time trends of the group size.

7. Can we assign a theme reference (hashtag in the case of Twitter) to a whole
discussion in real-time?

MINT: A Tool to Explore Themes in High Velocity Social Media Data 3

The first query asks for an “aggregate snapshot view” of the world. The remain-
ing queries inquire about the “evolution” i.e., the changing nature of themes.
The goal of this paper is to make the case for MINT (Monitor and INterrogate
Themes), an information exploration tool that answers snapshot and evolution-
ary queries over streaming social media and provide deeper insight to day the
data so that researcher can build there research strategy through the exploration
on data.

2 Prior Work

Prior research in this are can be summarized along two axes [16]. The first con-
siders the way themes are defined, which leads us to Clustering vs. Topic Model
Based approaches. The second axis is based on data processing techniques, which
leads to batch-based vs. online/real-time processing discussion. Clustering vs.
Topic Modeling. Most clustering based systems define a topic as a collection of
related documents. Using some distance measures, they compute the proximity
of documents with one another to construct clusters. Yang et al. [17] use refined
hierarchical and online document clustering algorithms to detect events from
a news stream. In [1] each document is represented as a TF-IDF vector. How-
ever, this approach has many drawbacks. Finding k-nearest neighbors is costly
for real-time loads. Often a topic is defined as a coherent set (or cluster) of
keywords [7], [11] or hashtags [3], [9]. LDA[6] is the basic topic models initially
designed for static document corpora. Algorithms like [4] for microblogs tried to
increase the length of documents by aggregating tweets in conversation groups
for effective application of topic models on short-texts. To prevent assignment
of a tweet to a topic distribution, Twitter-LDA algorithm [19] assigns one topic
per tweet. However, it cannot be extended to do online topic inference [5].

We construct a similar dynamic topic model with stochastic Gibbs sampling to
compare our results later. In other related work, many researchers [15][16] build
topic model to find correlated bursty topics from text streams. However, most of
the work can’t be extended to perform evolutionary queries in real time or near
real time. On the other hand, Yang et al. [17] propose methods for both batch
and online event detection.

3 Formulating the Problem

The premises of our approach are (i) most social media and themes can be
computed and described by a generic data model (Section 3.1) and (ii) the
key behind real-time theme finding is to consider the temporal arrival pattern
of message tokens rather than the distribution of topics over documents and
the distribution of terms, since they change over time. We hold that while it is
possible to estimate word/topic distribution models for already collected data, we
cannot really make the assumption that the next chunk of data that will adhere
to a pre-determined or recently estimated data distribution. Instead, we would

4 N. Agarwal et al.

like to assume that the distribution of content terms will keep changing with
time. But, if we consider related terms in social media as tokens, the temporal
distribution of tokens arrival is a variant of the Poisson distribution together
with an excitatory process. The excitatory process accounts for the common
observation that if a token picks up public interest, it will “invite” more social
media data in a short amount of time. We further assume that this “pattern of
excitement” is itself ephemeral and is likely to wane out within a finite time.
Our goal therefore is to find themes in a way to reflect this excitatory arrival
behavior, and after a time window of observation, store this data with sufficient
parameters to enable us capture the evolutionary nature of the data.

3.1 Data Model

For the purposes of this paper, social media can be viewed as an infinite, time-
indexed collection of messages

M = {ts, cr,−→ti ,−→rec,
−→
ref, con}

where ts is a timestamp of a media object m ∈ M , cr is the creator of m,
−→
ti

is a list of topic indicators, −→rec is a set of message receivers,
−→
ref is a set of

entity references and con is the textual content of the message. Using Tweets
as our prototypical example, ti corresponds to a hashtag, rec to a “mention”
indicated by the @ symbol, and ref to items like URLs or images. Often a ref
has the form {ref−type, ref−pointer}, to distinguish between different referred
entities. Although we use Tweets as our running example throughout, the model
generalizes to other forms of social media. Let M [t1, t2] be a sub-collection of
messages with ts in the time-interval [t1, t2]. We define a theme as a vector

ω[t1, t2] = {f1(ref [t1, t2]), f2(rec[t1, t2]), f3(kw(con[t1, t2]))}

where kw(con) is a key-term extraction function operating on the textual con-
tent of messages, and f1(ref) (resp. f2(rec) and f3(kw(con))) is a summarizing
function that selects a subset of M [t1, t2].ref elements together their count. We
refer to each component of ω as a theme component. Since theme components are
temporal objects themselves, one can compute a set of time-varying properties
of these components. For example, section 4.3 describes how the temporal prop-
erty theme velocity is computed by the MINT system. A theme set T[t1, t2] is
a set of n themes ω1..n[t1, t2] such that ω[i][t1, t2] is sufficiently different from
ω[j][t1, t2] – this is called the diversity property of a theme set. The theme
extraction algorithm in Section 4.5 creates a theme set, which is subsequently
checked to ensurer adequate diversity. Finally, a theme history is a structure
Ω that records for each component of every theme of a theme set and in each
time interval, the theme value (e.g., the hashtags or key-terms), its count and a
list of its temporal properties.

MINT: A Tool to Explore Themes in High Velocity Social Media Data 5

4 Our Approach to Solution

Considering the temporal nature of events in social networks data, we borrowed
Hawkes process[14]. The Hawkes process is a statistical process over a list of
discrete events localized in time, {ti}, with ti ∈ R+. It can be represented as a
counting process, N(t), which records the number of events before time t. Let
the history τ be the list of times at which events take place, {t1, t2, t3, t4,tn}
upto but excluding time t. Then in a small time window dt between [0, t), the
number of observed event is

dN(t) =
∑
ti∈τ

δ(t− ti)dt, (1)

and hence N(t) =
∫ t
0
dN(s), where δ(t) is a Dirac delta function. We assume

that the window of size dt is small enough so that only one event can happen in
that interval, and hence dN(t) ∈ {0, 1}

A conditional intensity function is the stochastic model for the next event
time given all previous events. Within a small window [t, t + dt), λ(t)dt is the
probability for the occurrence of a new event given the history τ :

λ(t)dt = P{event ∈ [t, t+ dt)|τ} (2)

A homogeneous Poisson process assumes the intensity to be independent of
the history τ and constant over time, i.e., λ(t) = λ0 ≥ 0. However, in an inho-
mogeneous Poisson process , the intensity is also assumed to be independent
of the history τ but it can be a function varying over time, i.e., λ(t) = g(t) ≥ 0.
In both case, we will use notation Poisson(λ(t)) to denote a Poisson process.
Hawkes formulation captures the mutual excitation phenomena between events,
and its intensity is defined as

λ(t) = γ0 + α
∑
ti∈τ

γ(t, ti) (3)

where γ(t, ti) ≥ 0 is the triggering kernel capturing temporal dependencies ,
γ0 ≥ 0 is a baseline intensity independent of the history and the summation of
kernel terms is history dependent and a stochastic process by itself. The kernel
function can be chosen in advance, e.g., γ(t, ti) = exp(−|t− ti|) or learned from
data.

4.1 Noise Tolerance

Social media data is polluted with noise (i.e., uninformative messages). For in-
stance, tweets that contain only emoticons, single word tweets, tweets with only
hashtags that are not picked up by subsequent tweets are considered uninfor-
mative in terms of theme finding. Our scheme must be tolerant to these low-
frequency random events. Therefore, ephemeral terms that only show up rarely,
must be penalized early to evict them from the theme detection process. While

6 N. Agarwal et al.

our technique does not directly address this more systematic form of noise, we
make the empirical observation that these pseudo-messages tend to occur in
small bursts whose peak count is far lower than informative tweets. Further,
if we consider small time windows, the likelihood of their occurrence has a low
uniform probability. This observation is utilized in configuring our cache flushing
policy (Section 4.7).

4.2 MINT Architecture

The architecture of the MINT system is shown in Figure 1.

1. The data acquisition module acquires media objects by applying a set
of seed filtering predicates. For Twitter, the predicates may restrict the geo-
graphic boundaries of a tweet’s location or a list of keywords, one of which
a tweet must contain to qualify for theme analysis. The seed filter ensures
that the data acquired fits within the general analysis goal of the end user.

2. The data filter module applies a set of constraints on the data. The con-
straints are filter conditions that are deemed appropriate for a specific appli-
cation domain. Commonly used are size filters (e.g., minimal word count of
a tweet), content filters (e.g., stop words, emoticon filters), and time filters
(e.g., only work hour tweets).

3. The data preprocessor module performs a series of operations to prepare
the data for the detection algorithm. These operations include punctuation
removal, mapping to lower-case, and word lemmatization.

4. The primary processing element of the architecture is the theme detection
module which accepts the preprocessed data at real-time and computes
theme sets (Section 3). The theme sets are continuously updated in memory
and are periodically checked for diversity. Themes that are found to be very
close are merged.

5. The data management module ingests the flushed-out JSON objects,
transforms them and pushes them into a JSON store (AsterixDB) [2]. Suit-
able inidices are developed for the stored theme history (Section 3.1) to
answer evolutionary queries like the examples given in Section 1.1.

6. Somewhat orthogonal to the data management module, the data monitor-
ing module have a set of continually running queries on the theme sets.
These queries, primarily in the form of top-k theme components, are out-
put at real-time. These results are used by applications like Event Finder to
confirm that the topics identified are indeed found in external sources like
Google News.

4.3 Theme Representation

As described in the data model, a theme is defined as

ω = {f1(ref), f2(rec), f3(kw(con))}

MINT: A Tool to Explore Themes in High Velocity Social Media Data 7

Fig. 1. The MINT Processing Architecture

computed over a time interval, together with a list attribute-value pairs for each
theme component. The attribute represents the string value of the feature (e.g.,
#IamWithHer) and the value represents the number of occurrences of this at-
tribute within this feature within this theme. In the algorithm, we define a theme
as a class with the following attributes:

– Theme Size: This attribute stores the number of tweets that have been as-
signed to this theme.

– Least Recently Used(LRU) caches : We have 3 LRU caches for hashtags,
user-mentions and important tokens receptively – each stores key-value pairs
where a key is an entity and value, their frequency. Therefore, the order in
which the items are placed in the cache give us a notion of how old that
token is in that theme. This helps to compute the recency factor in the
affinity function defined later.

Whenever a tweet is assigned to a theme, the size attribute is incremented by 1.
Other useful metadata like geolocation of the tweet, links shared in the tweet,
etc are also stored as a part of the theme, to facilitate advanced queries on them.
A cache is better than a fixed word vector because in a cache, any new word can
be added as a key value pair. Before describing the details of the algorithm, let
us define an important factor, affinity function (Figure 2), which governs theme
development.

4.4 Affinity function

The affinity function computes the force with which a theme ωi attracts a tweet t
towards itself. Three factors govern the magnitude of this function- the recency
of a similar tweet assigned to the theme in the past(contributes to the point
process), the contextual similarity of the incoming tweet to the theme ωi and
finally, the hashtag co-occurrence factor. The tweet t is assigned to the theme
with which it has a maximum affinity. If there is no match with any of the current
themes(affinity is 0), we create a new theme for this tweet. It is defined as:

A(t, ωi) = λ1H + λ2U + λ3W + c (4)

8 N. Agarwal et al.

Fig. 2. A flowchart outlining the theme generation process

where λi are the weights proportional to the recency of the overlapping members
of the attribute. Let Ktj∩ωij be the set of common keys between tweet t’s jth
list(e.g., hashtag list, users list etc.) and corresponding cache j in Theme ωi, j ∈
{1, 2, 3}. Let Idx(K,ωij) be the sum of indices of keys K in cache ωij , the index

of more recent key being higher than the older one. Hence λj =
Idx(Ktj∩ωij

,ωij)

length(ωij)
.

Let V alue(k, ωij) be the frequency value of a key k in the cache ωij . Also,
let Csm(j) be the contextual similarity of an incoming tweet with an entity
j(Hashtags, users and words) in the Theme ωi. We define it as

Csm(j) =

∑
k∈Ktj∩ωij

V alue(k, ωij)∑
k∈Keyset(ωij)

V alue(k, ωij)
(5)

where, H = Csm(j = 1), U = Csm(j = 2) and W = Csm(j = 3). Hence, the
similarity function is a normalized weighted measure of the degree of overlap
between each tweet attribute with a corresponding theme. λj gets a high value
if all the matching keys are recent in that cache. The underlying assumption is,
in a short time interval, if a tweet is recently assigned to a theme, then another
similar tweet coming shortly after it might be assigned to the same theme. The
term c denotes the hashtag co-occurrence bias which is given by the formula
ci = hmatched(i) − 1. hmatched(i) is the number of common hashtags between the
incoming tweet and the theme ωi. So if there is only 1 hashtag that has matched,
then c = 0, and there is no co-occurrence bias, and the similarity is calculated
based on other terms. If more than one hashtags are common between the tweet
and the theme, then c is non-zero and there is a greater probability of the tweet
being assigned to the theme with more hashtag matches. This is done under the
assumption that a hashtag is a key descriptor of a theme, and a tweet having a

MINT: A Tool to Explore Themes in High Velocity Social Media Data 9

greater overlap of hashtags with a theme, belongs to that theme. If the overlap
is same, then other factors govern the assignment.

4.5 Theme Extraction Algorithm

Algorithm 1 Theme Extraction algorithm

1: procedure Construct Model(tweet, themes)
2: for ωi in themes do
3: affinityi ← A(t, ωi)
4: maxa ← max(maxa, affinityi)
5: end for
6: if maxa = 0 then
7: ωj ← newTheme()
8: themes← themes.append(ωj)
9: idx← themes.length

10: else
11: idx← argmax(affinity)
12: end if
13: themes← themes.assign(idx, tweet)
14: return idx . return the index of theme
15: end procedure

The Construct Model method is invoked every time a new tweet arrives.
We find the similarity of every tweet with current themes based on the affinity
function. If the maximum affinity(maxa) from all current themes is zero, then
we create a new theme and assign the tweet to it, else we assign it to the most
“attractive” theme. Assignment here refers to updating individual caches of the
theme based on the keys in the tweet. Here, idx is the index of the theme where
assignment should take place.

Whenever a tweet is assigned to a theme, we update its size count. Its meta-
data is also stored in a list/cache to construct heatmaps for events, etc. Let
counta be the counts vector containing size of each theme at time=a. We define
a velocity vector as:

velocitya = counta − counta−1 (6)

accelerationa = velocitya − velocitya−1 (7)

where the velocity at time=a is the difference of the count vectors between
current and previous time slice. After fixed time intervals, the slowest growing
themes are removed, to prevent an outburst of total number of themes. In the
actual implementation, we limit the maximum number of themes to a constant.
Space for new evolving themes is continuously created by the evacuation scheme
described later.Note in the theme creation algorithm that our model is com-
pletely data driven and makes no assumption about the distributions from which

10 N. Agarwal et al.

the themes arise. In Section 6, we show one example of how this non-assumption
helps the quality and speed of our results.

4.6 Computations and Lightweight Cache

As mentioned, we borrowed Hawkes process, however, instead of building costly
temporal probabilistic mode, we use temporal excitation to compute the best
fit for a tweet among current set of themes in real time, using a determinis-
tic approach. We also claim that our cache-based scheme is as a light-weight
implementation of the temporal point process.

In Equation 3 the mutual excitation intensity function, γ0 is a constant while
γ(t, ti) is a kernel function non-increasing in |t − ti|. Thus, γ(t, ti) ≥ γ(t, tj)
if eventi is more recent than eventj . If we only record the last occurrence of
an event, instead of considering its last n occurrences, then mutual excitation
formula becomes

λ(t) = γ0 + α.γ(t, ti) (8)

where ti is the last occurrence of the event before time t.

In our approach, an event is the assignment of a token to its respective
cache. In the affinity function, observe the contribution from a single cache, say
the Hashtag cache. the Affinity contribution for this will be A(t, Ti)H = c+λ1H.
The λ1 term is a normalized sum of the indexes of matching tokens in the LRU
cache, with more recent index having a higher value. These indexes denote the
last time that token was assigned to the particular cache. Therefore, between
eventi and eventj , if eventi attributes to more recent tokens in the cache, the
value of λ1i > λ1j. This is the exact behavior shown by the γ(t, ti) term in the
mutual excitation equation.

The c term in the similarity expression can be assumed to be similar to
the γ0 term in Equation 5.6. The Hawkes process treats α to be a constant.
However, in our method, we multiply the temporal term (triggering kernel),
with the contextual similarity H. Thus, our similarity method can be seen as a
superimposition of mutual excitation intensities of different features incorporated
in the calculation. In the case of tweets, the features are hashtags, user-names,
and string tokens. This is a better design than using a single sliding window to
store multiple tweets or a Least Frequently Used(LFU) caches because of the
following reasons.

– Since tweets follow a mixed model of stochastic temporal process [18], hash-
tags, user-mentions and tokens, despite their co-temporality, have very dif-
ferent arrival rates. Decoupling them allow them to update independently
and store past information proportional to the length of the individual LRU
caches.

– An LRU scheme helps calculate the weights for the recency of overlapping
terms between the cache and incoming tweet, in the similarity function. A
LFU cache does not store this information.

MINT: A Tool to Explore Themes in High Velocity Social Media Data 11

– A LFU strategy might hinder the detection of theme evolution. Suppose a
particular term was very frequent in the past but currently it is not popular.
It will still continue to remain at the top of the cache until all other members
attain a frequency higher than it, which might take a long time. Thus it
reduces the effective utilizable length of the cache. On the other hand, in
an LRU strategy, it will be removed if it is not observed for some time, as
elements are arranged in the order of their recency, thus allowing themes to
evolve into new ones.

– An LRU cache stores information as key value pairs. Saving individual tweets
with a sliding window requires more space. Thus, an LRU cache provides
efficient utilization of memory which is required for real-time evaluation.

4.7 Runtime Analysis

Let the number of terms in a tweet be n and let K be the number of themes
present in the system. The ConstructModel method is invoked for each tweet as
it arrives. The affinity function A(t, Ti) compares the tweet t with a theme ωi
to compute an affinity value. The denominator term, in Contextual Similarity
Csm(j), the running sum of all values in the cache j is updated everytime the
matching keys are updated in cache j. The update and insert operations on
the cache take O(1) time. As the affinity computation is done for each term in
the tweet t, it takes O(n) time to compute the Contextual Similarity between a
tweet and a theme, n being number of terms in a tweet. Similarly, to compute
λi terms, which determine the indices of each matching term in tweet t in its
respective cache, take O(n) time. If there are K themes in the system, the total
time to compute the affinity values against all themes, and finding the maximum
similarity is O(nK).

The length of each cache is fixed, which makes the model scalable. As new
keys arrive in the cache, older ones are removed, limiting the size of the data
which is stored as themes. At regular intervals, the theme caches are flushed to
avoid overflow of frequency values.

4.8 Theme Recovery

As topics are incrementally added if incoming tweets are not similar to the
existing ones, we cannot allow total number of themes to arbitrarily increase in
number. Hence there are two ways which we use to limit the number of themes.

– Velocity Check: To detect stale events, we monitor the slowest growing
clusters based on their velocities and acceleration. After fixed intervals (some
k times the polling intervals), such themes are removed so that new ones can
be allocated in that space.

– Inter-cluster distance: Theme discovery on temporal data leads to in-
stances where many such themes start as different, but eventually evolve into
similar ones. To retain diversity among themes, we use Spearman’s footrule
as a distance function and at regular intervals, cluster similar themes into

12 N. Agarwal et al.

one, thus limiting the total number of themes in the system. Spearman’s
footrule is applicable on ranked lists, as is defined as follows: Spearman’s
footrule: Consider two ranked lists L1 and L2. Let idx1(i) and idx2(i) be
the positions of an element i in lists L1 and L2 respectively. The displacement
of an element i is defined as σi = |idx1(i)− idx2(i)|. Spearmans’s footrule is
defined as F (σ) =

∑
i σi, where F (σ) is the distance function.

5 Answering Evolution Queries

As the theme cache is periodically flushed on to disk it is converted to a JSON-
like structure:

theme-history: [

theme: { id : long,

timeInterval: {

startTime: dateTime,

endTime: dateTime

},

objectSet: [<ObjectID>],

hashtags: [(<HashTag>,<count>)],

users: [(<User IDs>,<count>)],

keywords: [(<strings>,<count>)],

URLs: [(<URLs>,<count>)],

hashtag_velocity : float,

hashtag_acceleration: float,...}

]

and stored in AsterixDB. The theme components like hashtag are ordered lists,
sorted by count. Each theme in the array represents one time interval; AsterixDB
supports time interval as a valid data type, which allows us to natively support
Allen’s interval operations.The keyword list is indexed as n-grams in AsterixDB,
while hashtags and users are indexed as plain strings. The objectSet attribute is
an unordered set and contains the IDs of objects (e.g., tweet IDs) whose hashtags,
user mentions or keywords are represented in the LRU cache. This representation
does not maintain the mapping between the objectID and the theme values like
individual keywords. In order to support diversity and evolution queries on this
structure, we define a number of operations on this structure. We illustrate these
operations using some of the example queries from Section 1.1. Q1. Find k most
diverse hashtag themes in the time interval [tx, ty].
To measure diversity between theme vectors, we need to define a theme distance
operator δth between them.
While the theme vectors represent histograms, we treat them as ranked lists
(the vectors are sorted) and use Spearman’s footrule as the distance metric.
Since the query time interval [tx, ty] may not align with the intervals captured
from the data. Our approximation strategy is to select data intervals that max-
imize the overlap between the data and query boundaries using the operation

MINT: A Tool to Explore Themes in High Velocity Social Media Data 13

matchIntervals(tlow, thigh). Then, pairwise theme distances dij are computed
and a maxDiversity(D) operation is used. This operation applies heuristic di-
versity maximization algorithm [10] and has complexity O(kn) where n is the
cardinality of the distance matrix.

Q2. Find time intervals in the last 3 hours where a bursting behavior over a ∆
interval is observed on hashtags..

The query seeks all time intervals such that the acceleration of a theme is posi-
tive and stays above a threshold θa at least for a ∆ time period; simultaneously
the total count over all hashtags in that interval remains larger than threshold
θc. Once the set of intervals are retrieved by simple selection (and count) op-
erations over the themes in every time interval, consecutive intervals in this set
must be stitched together using a condense(set(intervals)) operation.
To set thresholds θc and θa in an adaptive manner, we maintain a number of
system-level statistics, including mean of the average values of total count, veloc-
ity and acceleration over different theme components over the last n observations
(pragmatically over a day).

Q3. Which themes overshadowed discussion on “military budget”?
To answer this query, we first identify themes where the key phrase “military
budget” occurs dominantly. This is obtained by selecting themes for which the
phrase occurs in the keyword component or if the hashtag #militarybudget
occurs in the hashtag component of a theme, and if their count is above the
average count of other keywords (or hashtags) within the same theme. Once
these themes are identified, their time intervals are condensed as in Q2. We in-
terpret “overshadowed” as follows. Let ωmb be the theme associated with “mil-
iatry budget”, the total count of all keywords (resp. hastags) in that bucket be
cnt(ωmb), and [tx, ty] be time interval(ωmb). The result of the query is a theme
ωres such that cnt(ωres) > cnt(ωmb) and time interval(ωres) meets ∧ overlaps
time interval(ωmb) overlaps where meets, overlaps are Allen’s interval operations
and capture intervals that immediately succeed time interval(ωmb).

Q4. Which user groups are discussing “Obamacare” and “Trumpcare”, and how
are they evolving with time?
The first part of the query is similar to Q3, and identifies themes where the two
theme keywords are used to retrieve two sets of themes ωoc and ωtc. From these
themes we extract the corresponding users (who are mentioned in discussions)
using operations users(ωoc) (resp. ωtc). Since the time intervals associated with
the themes are non-overlapping, the user-sets are ordered using time-order(ω)
operation.

To characterize the nature of evolution of the two time-ordered sets S1, S2, sev-
eral correlation and evolution functions are applied.

1. The composite operations count(intersection-interval(S1, S2)), count(union-
interval(S1, S2)) compute an interval-wise interesection (resp. union) opera-
tion of these ordered sets and return the number of total and common users
involved in discussions.

14 N. Agarwal et al.

2. The operations autocorrelation-interval(S1, S2) [13] computes the autocor-
relation of the two sets across successive time-intervals using the function

C(t) =
Si(ti) ∩ Si(ti+1)

Si(ti) ∪ Si(ti+1)

. This determines whether any group continues to participate in the discus-
sion over time. Similarly, crosscorrelation-interval(S1, S2) computes

C(t) =
Si(ti) ∩ Sj(ti+1)

Si(ti) ∪ Sj(ti+1)

yielding the degree of cross talk across the groups over time.
3. The stationarity function [13]

ξ
Σtmax−1
t0 C(t, t+ 1)

tmax − t0 − 1

Intuitively, 1− ξ represents the average ratio of users changing in a group in
one observation window.

6 Conclusions and Future Work

In this paper, we propose an improved method to compute themes from tweets
in real-time. Our technique is more straightforward to compute in real-time and
provides a useful summary of theme dynamics that can be fruitfully used for
evolution queries. The system also allows for new themes to be discovered and it
slowly removes the obsolete ones. The underlying algorithm can be extended to
various other applications like event and community detection. We are measuring
performances of the algorithm using various streaming data set. The future work
will lead to an exploratory data analyzer infrastructure. We are considering
multiple data modeling features like aggregate calculations, theme and topic
detection, graph modeling of the data.

References

1. Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking.
In: Proc. of the 21st Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval. pp. 37–45 (1998)

2. Alsubaiee, S., Altowim, Y., Altwaijry, H., Behm, A., Borkar, V., Bu, Y., Carey, M.,
Cetindil, I., Cheelangi, M., Faraaz, K., et al.: Asterixdb: A scalable, open source
bdms. Proc. of the VLDB Endowment 7(14), 1905–1916 (2014)

3. Alvanaki, F., Michel, S., Ramamritham, K., Weikum, G.: See what’s enblogue: real-
time emergent topic identification in social media. In: 15th Int. Conf. on Extending
Database Technology (EDBT). pp. 336–347 (2012)

4. Alvarez-Melis, D., Saveski, M.: Topic modeling in twitter: Aggregating tweets by
conversations. In: Proc. of 10th Int. AAAI Conf. on Web and Social Media (2016)

MINT: A Tool to Explore Themes in High Velocity Social Media Data 15

5. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proc. of the 23rd Int. Conf.
on Machine Learning. pp. 113–120. ACM (2006)

6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (Mar 2003)

7. Cataldi, M., Caro, L.D., Schifanella, C.: Personalized emerging topic detection
based on a term aging model. ACM TIST 5(1), 7:1–7:27 (2013)

8. Dasgupta, S., Gupta, A.: Analyzing community dynamics in social media. In: Proc.
of the 1st VLDB Workshop on Social Data Analytics and Management (SODAM)
(2016)

9. Feng, W., Zhang, C., Zhang, W., Han, J., Wang, J., Aggarwal, C., Huang, J.:
STREAMCUBE: hierarchical spatio-temporal hashtag clustering for event ex-
ploration over the twitter stream. In: Proc. of 31st IEEE Int. Conf. on Data
Engg.(ICDE). pp. 1561–1572 (2015)

10. Glover, F., Kuo, C.C., Dhir, K.S.: Heuristic algorithms for the maximum diversity
problem. Journal of information and Optimization Sciences 19(1), 109–132 (1998)

11. He, D., Jr., D.S.P.: Topic dynamics: an alternative model of bursts in streams of
topics. In: Proc. of the 16th ACM SIGKDD Int. Conf. on Knowl. Discovery and
Data Mining. pp. 443–452 (2010)

12. Lin, Y.R.: Event-related crowd activities on social media. In: Social Phenomena,
pp. 235–250. Springer (2015)

13. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature
446(7136), 664–667 (2007)

14. Rizoiu, M.A., Xie, L., Sanner, S., Cebrián, M., Yu, H., Hentenryck, P.V.: Expecting
to be hip: Hawkes intensity processes for social media popularity. In: Barrett,
R., Cummings, R., Agichtein, E., Gabrilovich, E. (eds.) Proceedings of the 26th
International Conference on World Wide Web, WWW 2017, Perth, Australia, April
3-7, 2017. pp. 735–744. ACM (2017), http://doi.acm.org/10.1145/3038912

15. Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated bursty topic patterns
from coordinated text streams. In: Proc. of the 13th Int. Conf. on Knowl. Discov.
and Data Mining. pp. 784–793 (2007)

16. Xie, W., Zhu, F., Jiang, J., Lim, E., Wang, K.: Topicsketch: Real-time bursty topic
detection from twitter. IEEE Trans. Knowl. Data Eng. 28(8), 2216–2229 (2016)

17. Yang, Y., Pierce, T., Carbonell, J.G.: A study of retrospective and on-line event de-
tection. In: Proc. of the 21st Int. ACM SIGIR Conf. on Research and Development
in Information Retrieval. pp. 28–36 (1998)

18. Zadeh, A.H., Sharda, R.: Modeling brand post popularity dynamics in online social
networks. Decision Support Systems 65, 59–68 (2014)

19. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.P., Yan, H., Li, X.: Comparing
twitter and traditional media using topic models. In: Proc. of Euro. Conf. on Info.
Retrieval (ECIR). pp. 338–349. Springer (2011)

