
EasyChair Preprint

№ 1000

How Many Bits Does it Take to Quantize Your

Neural Network?

Mirco Giacobbe, Thomas A. Henzinger and Mathias Lechner

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 25, 2019

How Many Bits Does it Take
to Quantize Your Neural Network?

Mirco Giacobbe, Thomas A. Henzinger, and Mathias Lechner
IST Austria

Abstract—Quantization converts neural networks from tradi-
tional floating-point to low-bit fixed-point computations, which
can be carried out by efficient integer-only hardware. Quantiza-
tion is standard practice for the deployment of neural networks
on real-time embedded devices, as quantized networks use little
memory and yield low latency for classifying inputs. However,
like their real-number counterpart, quantized networks are not
immune to malicious misclassifications caused by adversarial
attacks. Our experiments show that the analysis of real-numbered
networks often derives false conclusions about their quantiza-
tions, both when determining robustness and when detecting
attacks. For this reason, we investigate how quantization affects
a network’s robustness to adversarial attacks, which is a formal
verification question. We introduce a verification method for
quantized neural networks which, using SMT solving over bit-
vectors, accounts for their exact, bit-precise semantics. We built a
tool and investigated the effect of quantization for multiple case
studies. First, we analyzed a classifier for the MNIST dataset,
answering the question as to how many bits are necessary
for quantization to achieve robustness to attacks. Second, we
examined a neural controller for the stabilization of an inverted
pendulum, measuring the behavioral differences between dif-
ferent precisions used in quantizations. Finally, we verified the
gender bias of a student performance predictor, assessing how
many bits are necessary in quantization for safety properties to
be satisfied.

I. INTRODUCTION

Deep Neural Networks are the standard among all machine
learning models, and are nowadays present in almost every
software we use. In the recent years, they have also pervaded
our lives: think about the language recognition system of a
voice assistant, the computer vision employed in face recog-
nition or self driving, not to talk about many decision-making
tasks that are hidden under the hood. However, this also
subjects them to the resource limits that real-time embedded
devices impose. Mainly, the requirements are low energy
consumption, as they often run on batteries, and low latency,
both to maintain user engagement and to effectively interact
with the physical world. This translates into specializing
our computation by reducing memory footprint and set of
instructions, to minimize cache misses avoid costly hardware
operations. For this purpose, quantization compresses tradi-
tional neural networks, which are run over 32- or 64-bit
floating-point arithmetic, into computations that only require
bit-wise and integer-only arithmetic over small words, e.g., 8
bits. Quantization is the standard technique for the deployment
of neural networks on mobile and embedded devices, and is
implemented in TensorFlow Lite [1], [2]. In this work, we
investigate the robustness of quantized networks to adversarial

attacks and, more generally, to formal verification questions,
including equivalence and safety.

Adversarial attacks are a well-known vulnerability of neural
networks [3]. For instance, a self-driving car can be tricked
into confusing a stop with a speed limit sign [4], or a
home automation system can be commanded to deactivate the
security camera by a voice reciting the opening of the Iliad [5].
The attack is carried out by superposing the innocuous input
with a crafted perturbation that is imperceptible to humans.
Formally, the attack lies within the neighborhood of a known-
to-be-innocuous input, according to some notion of distance.
The fraction of samples (from a large set of test inputs) that do
not admit attacks determines the robustness of the network. We
ask ourselves how quantization affects networks’ robustness
or, dually, how many bits it takes to keep robustness above
some specific threshold. This amounts to proving that, for a
set of given quantizations and inputs, there does not exists an
attack, which is a formal verification question.

The formal verification of neural networks has been ad-
dressed either by overapproximating—as it happens in abstract
interpretation—the space of outputs given a space of attacks,
or by searching—as it happens in SMT-solving—for a variable
assignment that witnesses an attack. The first category include
methods that relax the neural networks into computations
over interval arithmetic [6], treat them as hybrid automata
[7], or abstract them directly by using zonotopes, polyhedra
[8], or tailored abstract domains [9]. Overapproximation-
based methods are typically fast, but incomplete: they prove
robustness but do not produce attacks. On the other hand,
methods based on local gradient decent have turned out to
be effective in producing attacks in many cases [10], but
sacrifice formal completeness. Indeed, the search for adversar-
ial attack is NP-complete even for the simplest (i.e., ReLU)
networks [11], which motivates the rise of methods based on
Satisfiability Modulo Theory (SMT) and Mixed Integer Linear
Programming (MILP). SMT-solvers have been shown not to
scale beyond toy examples (20 hidden neurons) on monolithic
encodings [12], but today’s specialized techniques can handle
real-life benchmarks such as, e.g., neural networks for the
MNIST dataset [13]. Specialized tools include DLV [14],
which subdivides the problem into smaller SMT instances, and
Planet [15], which combines different SAT and LP relaxations.
Reluplex takes a step further augmenting LP-solving with a
custom calculus for ReLU networks [11]. On the other side of
the spectrum, a recent MILP formulation turned out effective
using off-the-shelf solvers [16]. Moreover, it posed the basis

for Sherlock [17], which couples local search and MILP, and
for a specialized branch and bound algorithm [18].

All techniques mentioned above reason about the real-
number relaxation of the network. While adversarial attacks
for the reals are likely to be also attacks in practice, namely
on floating-point architectures, it follows from our experiments
that this is not the case for quantized neural networks. In
fact, we observed that verifying the real-relaxation may (i)
conclude that samples are robust while they admit attacks
under quantization (false negative), but also may (ii) find
attacks for samples that are instead robust under quantization
(false positive). In addition, it may (iii) correctly identify
samples as vulnerable but provide invalid attacks, and all
three phenomena happen with statistical significance on our
benchmarks. For this reason, the verification of real-numbered
neural networks is inadequate for the analysis of quantized
networks, and their analysis needs techniques that account for
their exact semantics. Recently, a similar problem has been
addressed on binarized neural networks, through SAT-solving
[19]. Unfortunately, binarized networks amount to the special
case of 1-bit quantizations, therefore the method is unsuitable
for any many-bit quantization in TensorFlow Lite.

We introduce, for the first time, a method for the formal
verification of quantized neural networks. Our method ac-
counts for the bit-precise semantics of quantized networks by
leveraging the first-order theory of bit vectors without quanti-
fiers (QF BV) to exactly encode hardware operations such as
2’complementation, bit-shift, integer arithmetic with overflow.
On the technical side, we encode multiply-add operations in a
balanced fashion, which enabled the SMT-solver to scale up to
our benchmarks. As a result, we obtain a monolithic encoding
of the verification problem into a first-order logic formula,
amenable to modern bit-precise SMT-solving. We built a tool
based on the SMT-solver Boolector [20], which we used to
assess the effect of quantization for multiple networks and
verification questions.

First, we measured the robustness to attacks of multiple
quantizations of a neural network trained as a classifier for
handwritten digits, after the MNIST dataset. We observed that,
to achieve an acceptable level of robustness, it takes a higher
bit quantization than assessed by standard accuracy measures.
Besides, this experiment employed our largest benchmarks.
On one hand, it demonstrated the potential of our method
which, using an SMT-solver without custom optimizations,
could tackle 6- to 10-bits quantizations of a network involving
890 neurons; on the other, it showed the limits of current
solvers, with a median instance of 3h 41m and a hardest of
over 12 hours.

Second, we measured the behavioral equivalence between
various precisions in the quantization of a neural controller for
an inverted pendulum, trained by reinforcement learning. In
particular, we measured the discrepancy between the outputs
of every pair of networks, quantized using a 6- to 10-bits
precision. We observed that down- but also up-quantization
may have an effect upon the behavior of a neural controller.

Third, we checked the robustness of safety properties

+ =

Figure 1: Adversarial attack.1

against quantization. We estimated the gender bias emerging
from a predictor of student performance in exams, defined in
terms of maximum grade gap between any two student with
identical features but the gender. The experiment confirmed
that, in our network, a bias existed and was further enlarged
by quantization: the lower the precision the larger the gap.

We summarize our contribution in four points. First, we
show that the robustness of a neural network is independent
of the robustness of its quantizations. Second, we introduce the
first method for the verification of quantized neural networks.
Third, we build a tool and demonstrate that, for instances
with hundreds of neurons, quantized networks can be verified
using SMT-solving. Fourth, we show that quantization has an
effect upon the robustness of neural networks, not only with
respect to adversarial attack, but also with respect to general
verification questions, such as equivalence and safety.

II. REAL AND QUANTIZED NETWORKS ARE
INCOMPARABLE

A classifier for handwritten digits takes an image and
infers the digit it represents. Then, an adversarial attack is
a perturbations for a sample image

sample + perturbation = attack

that is indistinguishable from the original by the human eye,
but tricks the classifier into inferring an incorrect digit. An
attack commonly consists of the modification of a few pixels
and of small amounts, such as Fig. 1, which depicts an attack
for a neural network that realizes a classifier for the MNIST
library. In this particular example, the sample is correctly
classified as a 9, while the attack is misclassified as a 3.
Misclassification happens consistently, both on the floating-
point and on the 8-bits quantized neural network. This makes
a valid attack in both networks which, unfortunately, is not
always the case.

We want to estimate whether proving or rejecting the robust-
ness over the real relaxation concludes the same result about
the quantized network. To this end, we chose 244 test samples
from the dataset. Then, using our tool, we determined over the
quantized network whether each sample admits an adversarial
perturbation, which makes it vulnerable, or whether it does
not, which makes it robust. Finally, we used Reluplex to do
the same over the real-number relaxation.

Our experiments reported several spurious outcomes, which
we exemplify in Tab. I: for three test samples, we show
verification outcomes for the real-numbered and the 8-bit
quantized networks, attacks, and inference outcomes for the
floating-point and the 8-bit fixed-point implementations. In

1In all figures, perturbations are amplified to facilitate visualization.

Vulnerable Attack Inference
R 8-bits float 8-bits

No Yes + = 1 7 (i)

Yes No + = 2 3 (ii)

Yes Yes + = 7 5 (iii)

Table I: Spurious verification outcomes.

particular, these are examples where the real-number network
(i) determined samples robust while attacks existed in the
quantization, (ii) proved the existence of attacks for samples
that did not admit one, and (iii) concluded samples vulnerable
but identifying invalid attacks. Notably, none of these exam-

(i) (ii)
Correct False False Correct

Bits negatives negatives positives positives

6 66.4% 25.0% 3.3% 5.3%
7 84.8% 6.6% 1.6% 7.0%
8 88.5% 2.9% 0.4% 8.2%
9 91.0% 0.4% 0.4% 8.2%

10 91.0% 0.4% 0.4% 8.2%

(iii)
Invalid
attacks

8%
6%
10%
20%
20%

Table II: Frequency of verification outcomes.

ples were isolated cases: Tab. II shows that spurious outcomes
are not rare, especially at lower precisions. Moreover, while
false outcomes decrease with precision, the ratio of correct
positives that are invalid attacks, shown in the the rightmost
column, is significant through all quantizations.

Not only attacks can be invalid, but can also be non-
monotonic. In fact, as we illustrate in Tab. III, attacks that

Attack Inference
float 9-bits 8-bits 7-bits

+ = 3 7 3 3

+ = 0 5 0 5

Table III: Non-monotonic attacks.

induce misclassification to specific quantizations do not nec-
essarily induce misclassification using lower, neither higher,
precision.

In conclusion, verifying a quantized neural network is
incomparable to verifying its relaxation over the real numbers;
also, it is incomparable to verifying the same network under
different quantization precisions. For this reason, we introduce
a method for the bit-precise verification of quantized networks:
in Sec. III we give the preliminaries about neural networks and
their quantization, and in Sec. IV we present a translation of
the verification problem into SMT. Then, in Sec. V, we give
our experimental results.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

Figure 2: A feed-forward neural network.

III. QUANTIZATION OF FEED-FORWARD NETWORKS

A feed-forward neural network consists of a finite set of
neurons x1, . . . , xk partitioned into a sequence of layers: an
input layer with n neurons, followed by one or many hidden
layers, finally followed by an output layer with m neurons.
For instance, Fig. 2 depicts a neural network with k = 16,
n = 3 input neurons (x1, x2, x3), m = 2 output neurons
(x15, x16), and 11 hidden neurons partitioned in 3 layers, each
of which contains respectively 4, 4, and 3 neurons. Every pair
of neurons xj and xi in respectively subsequent layers, e.g., x1
and x4, are connected and associated with a weight coefficient
wij ∈ R (if they are not subsequent, e.g., x1 and x8, then
wij = 0) and every hidden or output neuron xi is associated
with a bias coefficient bi ∈ R. The semantics of the neural
network gives to each neuron a real value: upon a valuation
for the input layer, every other neuron xi assumes its value
according to the update rule

xi = ReLU-N(bi +

k∑
j=1

wijxj), (1)

where ReLU-N : R → R is the activation function. Alto-
gether, the neural network implements a function f : Rn →
Rm whose result corresponds to the valuation for the output
layer.

The activation function governs the firing logic of the
neurons, layer by layer, by introducing non-linearity in the
system. Among the most popular activation functions are
purely non-linear functions, such as the tangent hyperbolic and
the sigmoidal function, and piece-wise linear functions, better
known as Rectified Linear Units (ReLU) [21]. ReLU consists
of the function that takes the positive part of its argument,
i.e., ReLU(x) = max{x, 0}. We consider the variant of ReLU
that imposes a cap value N , known as ReLU-N [22], [23].
Precisely

ReLU-N(x) = min{max{x, 0}, N}, (2)

which can be alternatively seen as a concatenation of two
ReLU (see Eq. 11). As a consequence, our neural networks
will be also amenable to the precise verification over linear
real arithmetic, allowing the comparison of our method against
the real-valued verifier implemented in Reluplex [11]. Never-
theless, our method in principle applies to purely non-linear
functions too.

Quantization2 consists of converting a neural network over
real numbers, which is normally deployed on floating-point ar-
chitectures, into a neural network over integers, whose seman-
tics corresponds to a computation over fixed-point arithmetic
[1], [2]. Specifically, fixed-point arithmetic can be carried
out by integer-only architectures and possibly over small
words, e.g., 8 bits. Quantization represents all numbers in 2’s
complement over B bits words and reserves F bits to the
fractional part: we call the result a B-bits quantization in QF
arithmetic. More concretely, the conversion follows from the
rounding of weight and bias coefficients to the F -th digit,
namely b̄i = b2F bie and w̄ij = b2Fwije, where b·e stands
for rounding to the nearest integer. Therefore, the fundamental
relation between any quantized value ā and its real counterpart
a is

a ≈ 2−F ā. (3)

As a consequence, the semantics of a quantized neural network
corresponds to the update rule in Eq. 1 after substituting of x,
w, and b with the respective approximants 2−F x̄, 2−F w̄, and
2−F b̄. Namely, the semantics amounts to

x̄i = ReLU- (2FN)(b̄i + b2−F
k∑

j=1

w̄ij x̄jc), (4)

where truncation b·c enforces x̄i to represent the result in
QF arithmetic. In summary the update rule for the quantized
semantics consists of four parts. The first part

∑k
j=1 w̄ij x̄j

propagates all neurons values from the previous layer. The
second scales the result by 2−F truncating the fractional
part; in practice, it applies an arithmetic shift to the right
of F bits. Finally, the third applies the bias b̄ and the
fourth clamps the result between 0 and 2FN . Besides, none
of the operations above incur in overflow if B is chosen
properly. More precisely, this is the case when all words can
represent (in 2’s complement) the magnitude of weight and
bias coefficients, i.e., |w̄| < 2B−1 and |b̄| < 2B−1, and of
neurons, i.e., x̄ ≤ 2FN < 2B−1. In conclusion, quantization
realizes a function f : Zn → Zm, whose evaluation relies on
fixed-point operations only. It makes inference deployable on
efficient integer-only hardware, but requires care in choosing
the parameters (see Sec. IV and Sec. V).

In summary, the semantics of a quantized network involves
integer-only hardware operations which, in their turn, have
corresponding primitives in the SMT theory of bit-vectors.
Thanks to that, in Sec. IV we encode the verification problem
of quantized networks into SMT.

IV. VERIFICATION OF QUANTIZED NETWORKS USING
BIT-PRECISE SMT-SOLVING

Bit-precise SMT-solving comprises various technologies
for deciding the satisfiability of first-order logic formulae,
whose variables are interpreted as bit-vectors of fixed size.
In particular, it produces satisfying assignments (if any exist)

2Our quantization scheme is similar to the scheme in [2], for the parameters
Z = 0 and S = 2−F .

for formulae that include bitwise and arithmetic operators,
whose semantics corresponds to that of hardware architectures.
For instance, we can encode bit-shifts, 2’s complementation,
multiplication and addition with overflow, signed and unsigned
comparisons. More precisely, this is the quantifier-free first-
order theory of bit-vectors (i.e., QF BV), which we employ
to produce a monolithic encoding of the verification problem
for quantized neural networks.

A verification problem for the neural networks f1, . . . , fK
consists of checking the validity of a statement of the form

ϕ(~y1, . . . , ~yK) =⇒ ψ(f1(~y1), . . . , fK(~yK)), (5)

where ϕ is a predicate over the inputs and ψ over the outputs
of all networks. In other words, it consists of checking an
assume–guarantee contract, for the assumption ϕ and the
guarantee ψ; this generalizes various verification questions,
including robustness to adversarial attacks and all other ques-
tions we treat in Sec. V. For the purpose of SMT solving, we
encode the verification problem in Eq. 5, which is a validity
question, by its dual satisfiability question

ϕ(~y1, . . . , ~yK) ∧
K∧
i=1

fi(~yi) = ~zi ∧ ¬ψ(~z1, . . . , ~zK), (6)

whose satisfying assignments constitute counterexamples for
the contract. The formula consists of three conjuncts: the
rightmost constraints the input within the assumption, the
leftmost forces the output to violate the guarantee, while the
one in the middle relates inputs and outputs by the semantics
of the neural networks.

The semantics of the network consists of the bit-level
translation of the update rule in Eq. 4 over all neurons, which
we encode in the formula

k∧
i=1

xi = ReLU- (2FN)(x′i)

∧ x′i = b̄i + ashr(x′′i , F)

∧ x′′i =

k∑
j=1

w̄ijxj . (7)

Each conjunct in the formula employs three variables x, x′,
and x′′ and is made of three parts. The highermost part
accounts for the operation of clamping between 0 and 2FN ,
whose semantics is given by the formula

ReLU-M(x) = ite(sign(x), 0, ite(x ≥M,M,x)). (8)

Then, the central part accounts for the operations of scaling
and biasing. In particular, it encodes the operation of truncated
scaling, i.e., b2−Fxc, as an arithmetic shift to the right. Finally,
the lowermost part accounts for the propagation of values from
the previous layer, which, despite the obvious optimization
of pruning away all monomials with null coefficient, often
consists of long linear combinations, whose exact semantic
amounts to a sequence of multiply-add operations over an
accumulator; particularly, encoding it requires care in choosing
variables size and association layout.

+

wkxk +

wk−1xk−1

w2x2 w1x1

+

+

+ +

+

w1x1 w2x2 wkxk

Linear layout Balanced layout
(a) (b)

Figure 3: Abstract syntax trees for alternative encodings of a
long linear combination.

The size of the bit-vector variables determines whether
overflows can occur. In particular, since every monomial wijxj
consists of the multiplication of two B-bits variables, its result
requires 2B bits in the worst case; since summation increases
the value linearly, its result requires a logarithmic amount
of extra bits in the number of summands (regardless of the
layout). Provided that, we avoid overflow by using variables
of 2B + log k bits, where k is the number of summands.

The association layout is not unique and, more precisely,
varies with the order of construction of the long summation.
For instance, consistently associating to the right (or to the
left) produces a linear layout, as in Fig. 3a, while recursively
splitting the sum in two equal parts produces a balanced lay-
out, as in Fig. 3b. Linear and balanced layouts are semantically
equivalent; nevertheless, the first made the solver, Boolector
[20], timing-out on all benchmarks. Conversely, the balanced
layout made the solver scale up, yielding the results of Sec. V.
Besides, this suggests to us that the solver does not preprocess
long linear combinations in the same way.

V. EXPERIMENTAL RESULTS

We investigate the effect of quantization upon various
verification questions and, at the same time, we evaluate the
performance of our method. We verify three questions of the
assume–guarantee kind (i.e., as in Eq. 5): robustness against
adversarial attacks, equivalence, and finally general safety
properties. As for robustness against adversarial attacks, we
study how quantization statistically affects robustness over
different precision levels in the quantization of a classifier
for handwritten digits; also, we extend the analysis of Sec. II,
comparing bit-precise against real-numbered verification. In
more detail, we analyze a fully-connected network with 890
neurons in Sec. V-A, and, to take our method to its limit, we
analyze a Convolutional Neural Network (CNN) with over
2000 neurons in Sec. V-B. As for equivalence, in Sec. V-C
we compute the discrepancy induced by multiple quantization
precisions in a neural network for cyber-physical systems,
namely a neural controller for the stabilization of an inverted

pendulum. Finally, we study how networks, across multiple
quantization precisions, may fail satisfying a safety property:
we check, in Sec. V-D, for the gender fairness of a predictor
for students performance in math exams.

Our benchmarks are publicly available3. Our experiments
were run on a 2.50GHz Intel Xeon W-2175 CPU, with 64GB
memory. We employed TensorFlow Lite for training and
quantization, Boolector [20] for bit-precise SMT-solving, and
Reluplex [11] for real-numbered networks verification.

A. The effect of quantization upon the robustness against
adversarial attacks of a classifier for the MNIST dataset

The MNIST dataset consists of 70,000 handwritten digits
represented by 28-by-28 pixel images with a single 8-bit
grayscale channel [13]. Each sample belongs to exactly one
category {0, 1, . . . 9}, which a machine learning model must
predict from the raw pixel values. The MNIST set is split into
60,000 training and 10,000 test samples.

We train our neural network as a classifier. In general, a
classifier maps a n-dimensional input to one out of m classes
(n = 784 and m = 10, in this case). The chosen class is
identified by the output neuron with the largest value: given
the output values z1, . . . , zm, the choice is given by

class(z1, . . . , zm) = arg max
i

zi. (9)

The dataset pairs sample inputs s with their respective class c.
Training is performed after the training set; then, typically, the
quality of the classifier is measured by its standard accuracy:
the ratio of samples that are correctly classified out of the
testing set. Instead, robust accuracy, which we more simply
call robustness, measures the ratio of robust samples: a sample
s with class c is robust when, for some distance ε > 0, it holds
that for all perturbations y within that distance the classifier
class ◦ f chooses the correct class; in other words, s is robust
if the property

|s− ~y|∞ ≤ ε =⇒ c = class ◦ f(~y) (10)

holds for all ~y. Robustness is an assume–guarantee contract,
whose guarantee can be encoded as

∧m
j=1 zj ≤ zc, where

~z = f(~y) (we additionally assume zi 6= zj for all i 6= j).
A witness for the respective dual satisfiability question (see
Eq. 6) constitutes a perturbation for an adversarial attack.

We followed a post-training quantization scheme [1]. First,
we trained, with floating-point precision (using TensorFlow),
a network with 784 inputs, 2 hidden layers of size 64, 32
with ReLU-7 activation function and 10 outputs, for a total
of 890 neurons. Afterwards, we quantized the network with
5 to 12 bits and, respectively, in Q3 to Q8 arithmetic, with
the exception that we imposed the input layer to be always
quantized in 8 bits, the original precision of the samples. We
obtained 8 models, whose test (standard) accuracy is shown in
Tab. IV, together with that of the floating-point network. On
one side of the spectrum, the accuracy values indicate that at
least 7 bits are required to obtain an acceptable, i.e., > 90%,

3https://github.com/mlech26l/verification of quantized neural networks

Precision Std. accuracy

float 94.67%
12 bits 94.64%
11 bits 94.67%
10 bits 94.69%
9 bits 94.38%
8 bits 93.85%
7 bits 91.53%
6 bits 77.39%
5 bits 28.39%

Table IV: Test accuracy of the MNIST classifier.

performance; on the other, 10 bits are enough to match the
accuracy of the original network, hence there is no benefit from
employing a higher precision. For this reason, we focused our
study between the 6 and the 10 bits quantizations.

We checked the robustness of our selected networks on the
first 300 test samples of the dataset. To be precise, we checked
for the existence of adversarial perturbations within ε = 1
distance on the first 200 test samples and within ε = 2 distance
on the next 100. For the quantized networks, we encoded the
satisfiability problem (Eq. 6) including the property and the
semantics of the network (Eq. 7) and invoked Boolector; for
the original network, we invoked Reluplex. For every check,
namely for every pair sample–network, we limit the run-time
to 24 hours.

As for the bit-precise encoding, we choose all bit-vector
variables so to surely avoid overflows. For instance, with a
10 bits quantization each weight w, bias b, and neuron x
(except for the input layer) is expressed over 10 bits; moreover,
the largest summation involves 64 summands, that is the size
of the largest layer. As a result, the largest sum requires at
most 20 + log 64 = 28 bits; we guarantee this size, for every
intermediate variable.

As for the encoding over real-numbers, Reluplex accepts
only pure ReLU networks. For this reason, we translate our
ReLU-N networks into functionally equivalent ReLU net-
works, by translating each layer with

ReLU-N(W · ~x+~b) =

ReLU
(
− I · ReLU(−W · ~x−~b+N)

)
. (11)

Out of the 300 samples, at least one method timed out
on 56 samples, leaving us with 244 samples whose result
was computed over all networks. We show in Tab. V how

Model Std. Accuracy Robustness

float/reals 94.67% 91.39%
10 bits 95.49% 91.39%
9 bits 94.26% 91.39%
8 bits 92.21% 88.93%
7 bits 91.80% 86.48%
6 bits 73.36% 69.67%

Median
run-time

≈0
8h 58m
5h 34m
3h 41m
1h 29m

18m

Table V: Statistics for the robustness check of 244 MNIST
samples.

many of the 244 samples are classified correctly and how
many do not accept attacks. The data indicates a discrepancy

between standard accuracy and robustness; for real numbered
networks, a similar fact was already known in the literature
[24]: we empirically confirm that observation for our quantized
networks, whose discrepancy fluctuated between 3 and 4%
across all precision levels. Besides, while an acceptable, larger
than 90%, standard accuracy was achieved at 7 bits, an equally
acceptable robustness was achieved at 9 bits.

To obtain all verification results, we spent a total amount
of 8009.4 CPU hours (i.e., 334 CPU days). In Fig. 4 we

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h 12h >12h
Runtime [hours]

0

20

40

60

80

100

So
lv

ed
 in

st
an

ce
s [

%
] Reluplex

BV 6-bits
BV 7-bits
BV 8-bits
BV 9-bits
BV 10-bits

Figure 4: Frequency of run-times for the verification of real
and quantized MNIST classifiers.

show the distribution of how long the SMT-solvers took
to check the respective robustness properties (values are in
percentage and misclassified samples, whose run-time amounts
to zero, are not shown). Boolector could tackle—without
further optimizations—networks which involved 890 neurons,
each; these are already challenging benchmarks for the formal
verification task: in the real-numbered world, off-the-shelf
solvers could initially tackle up to 20 neurons [6], and mod-
ern techniques, while faster, are also evaluated on networks
below 1000 neurons, e.g., Reluplex’s case study consists of
300 neurons [11], the branch-and-bound’s biggest network
894 neurons [18]. On the other hand, Reluplex solved most
instanced almost instantly, while Boolector took a median time
of 3h 41m and largest time of over 12h. To conclude, it
is surprising that the general-purpose solver Boolector, just
off-the-shelf, could solve these instances; nevertheless, the
performance is not comparable to that of a state-of-the-art
specialized solver such as Reluplex. Also, the run-time roughly
doubled at every increase in the quantization precision.

B. Convolutional neural networks: computing the robustness
of networks beyond thousand neurons

We refined the setup of our previous experiment on MNIST,
replacing the two fully-connected layers with a convolutional
network architecture consisting of two convolution layers and
one fully-connected layer. In particular, we layer 1 made of 8
6x6 filters with 2x2 stride, layer 2 made of 18 6x6 filters with
2x2 stride, and layer 3 made of 64 units, for a total of 2238
neurons; again, the activation functions was a Relu-7.

We train our network according to the quantization-aware
scheme [2], namely we model the effects of 6-bit quantization
during the learning phase. First, we obtained a standard ac-
curacy of 98.56% for the floating-point network, considerably

higher of that of Sec. V-A, that was 94.6%. More importantly,
we obtained 98.47% standard accuracy for the 6-bit quantized
network (against 77.39% of Sec. V-A), practically matching
that of its floating-point counterpart. As a result, we expect
the network to be also highly robust.

We check the first 400 samples of the test set for adversarial
perturbation, both on the real-numbered network and the
network quantized with 6 bits. Analogously to Sec. V-A, we
translate the first into a pure Relu networks, and give it to
Reluplex; we encode the second into a QF BV formula, and
give it to Boolector. We set ε = 1 for the first 200 samples,
ε = 2 for the next 200, and check for attacks only the samples
that are originally classified correctly; we time-out each check
after 24 hours.

Well-classified Median
ε samples Attacks run-time Timeouts

1 198 3 3h 39m 2
2 195 2 5h 31m 34

Table VI: Statistics for the 6-bits quantized CNN.

The results of Tab. VI show that, for the 6-bits networks,
we could prove robustness (or compute attacks) for most
of the samples. However, the median performance degraded
of 10 to 20 times with respect to the 18m of Sec. V-A.
Moreover, we could not verify the 7-bits version, as most
samples were timing-out; hence, unfortunately, for the current
solver these large convolutional networks are out of reach.
Notably, Reluplex also failed on the real-numbered version,
reporting numerical instability.

C. Functional equivalence of a neural controller with different
quantization levels

The verification of cyber-physical system is an important
and challenging field of study. However, when neural networks
are in the loop, new challenges arise, for which specialized
techniques are necessary [25]. Thanks to reinforcement learn-
ing, neural networks have been employed in CPS not only for
their typical applications such as, e.g., image recognition, but
also for automatic control. In this experiment, we analyze a
neural controller for the stabilization of an inverted pendulum:
we investigate the effect of up- and down-quantization from a
reference quantization-aware model.

The goal of an automatic controller for the inverted pen-
dulum is to balance a pole mounted on a cart in an upright
position by moving the cart right or left. We train the neural
controller in a quantization-aware fashion, optimizing for the
8-bits quantization. We obtain a network, which we call f8,
with 4 input neurons, two hidden layers with respectively 32
and 16 neurons, which altogether feeds to one output neuron;
the whole network consists of 53 neurons.

Then, we re-quantize f8: we down-quantize it to 6- and 7-
bits precisions and up-quantize it to 9- and 10-bits precisions,
obtaining respectively f6, f7, f9, and f10. To verify equiv-
alence between two networks fi and fj , we prove that, for
every input ~y constrained within a box (given by the lower

and upper bounds ~l and ~u), the distance between the outputs
is within some ε > 0; this amounts to the validity of

(
∧n

i=1 li ≤ yi ≤ ui) =⇒ |fi(~y)− fj(~y)| ≤ ε. (12)

For every pair of networks, we measure the tightest of such
ε, the discrepancy, by binary search over a precision of 0.1.

Our hypothesis is that down-quantized networks differ from
f8, while up-quantized networks are functionally identical
to f8. First of all, we evaluated the performance of all
quantizations according to the standard measure (mean return,
for N = 10). As we show in Tab. VII, all networks quantized

6 bits 7 bits 8 bits 9 bits 10 bits

Mean return 17.5 67.8 1000.0 1000.0 1000.0

Table VII: Mean return of the quantized neural controllers.

with 8 or more bits solved the task with the top score, while the
less precise network failed to do so. At a glance, this confirms
our hypothesis. Nevertheless, we need formal analysis to have
a definitive answer.

The input space of the inverted pendulum task consists
of four variables providing position and velocity of the cart,
angle and angular velocity of the pendulum. We construct a
set of initial states Sinit representing the initial position for
the problem: the cart is placed in the center, the pendulum is
non-deterministically displaced. As for down-quantization, the

6 bits 7 bits 8 bits 9 bits 10 bits
6 bits 0
7 bits 0.3 0
8 bits 1.1 0.9 0
9 bits 1.1 0.9 0.1 0

10 bits 1.6 0.9 0.1 0.1 0

Table VIII: Pairwise discrepancies, for the initial set Sinit.

results of Tab. VIII confirmed our hypothesis. However, up-
quantized networks presented small discrepancies both with
respect to f8 and with respect to each other.

We performed the same experiment, but constructing an
initial set Sobs using bounds derived from 20 simulated runs,
plus some small margin; notably, Sobs ⊃ Sinit. The results of

6 bits 7 bits 8 bits 9 bits 10 bits
6 bits 0
7 bits 0.4 0
8 bits 1.3 1.0 0
9 bits 1.3 1.0 < 1 (oot) 0

10 bits > 1 (oot) > 0.5 (oot) oot oot 0

Table IX: Pairwise discrepancies, for the initial set Sobs.

Tab. IX did not change our previous observations, when we
could measure the discrepancy: as several instances timed-out
(after 24h), we could either compute upper or lower bounds
for the discrepancy, or nothing at all.

In conclusion, we showed the applicability or our method in
equivalence checking, but also its sensitivity to the init set in
terms of performance. Besides, our experiment demonstrated
that up-quantization does not necessarily preserve functional
equivalence, question for which formal analysis was necessary.

D. Fairness in machine learning: quantifying the bias of a
neural network

In recent years, machine learning systems have become
standard in predicting behavior from large scale historic data
such as ranking job candidates, and giving customer recom-
mendations from personalized data. A concern has been raised
that decisions of a ML system could discriminate towards
certain groups due to a bias in the training data. Consequently,
the fairness concern has emerged as a research topic in
machine learning [26]. A key issue in quantifying fairness is
that neural networks are black-boxes, that is that one cannot
explain why neural networks take certain decisions.

We trained a network after a publicly available dataset con-
sisting of 1000 students’ personal information and academic
test scores [27]. The personal features include gender, ethnic
group, parental level of education, reduced vs. standard meal,
whether the student took a preparation course for the test, all
of which are discrete categorical variables. The scores consist
of reading, writing, and math scores, ranging from 0 to 100 in
integer values. We train a predictor for students’ math scores.
Notably, the dataset contains a potential source for gender bias:
the mean math score among females is 63.63, among males
is 68.73.

The network we trained is composed of 11 input variables,
2 hidden layers with respectively 64 and 32 units, and 1 output
variable, for 108 neurons in total. We use an 8-bit quantization-
aware training scheme, achieving a 0.45 mean absolute error,
i.e., the difference between predicted and actual grade, on the
test set.

A fair network is a network for which the grade bias is
always within some acceptable bias β; in other words, we
verify that∧
i 6=gender

si = ti∧sgender 6= tgender =⇒ |f(~s)−f(~t)| ≤ β, (13)

is valid over the variables ~s and ~t, which respectively model
two students for which gender differs but all other features
are identical—we call them twin students. When we encode
the dual formula, we encode two copies of the semantics of
same network: to one copy we give one student ~s and take
the respective grade g, to the other we give its twin ~t and take
grade h; precisely, we check for the satisfiability of∧

i 6=gender

si = ti ∧ sgender 6= tgender

∧ f(~s) = g ∧ f(~t) = h ∧ |g − h| > β. (14)

Then, we compute a tight upper bound for the bias, that is
the maximum possible change in predicted score for any two
twin. To compute the tightest bias, we progressively increase
β until the formula in Eq. 14 becomes unsatisfiable. In a way,
we search for the most adversarial attack, in terms of the set
of students’ features that induce the largest bias.

We measure mean test error and gender bias of the 6- to the
10-bits quantization of the networks. We show the results in
Tab. X. The test error was stable between 4 and 4.5% among

Quantization Mean Tightest bias
level test error upper bound

6 bits 4.48 21
7 bits 4.16 21
8 bits 4.32 16
9 bits 4.32 15
10 bits 4.64 15

Table X: Results for the formal analysis of the gender bias of
a students’ grade predictor.

all quantizations, showing that the change in precision did not
affect the quality of the network in a way that was perceivable
by standard measures. However, our formal analysis confirmed
a gender bias in the network, producing pairs of twins with
a 15 to 21 bias (across quantizations), out of a score span
of 100. Surprisingly, the bias monotonically increased as the
precision level in quantization lowered, indicating to us that
quantization may play a role in determining a bias.

VI. CONCLUSION

We introduced the first verification method for quantized
neural networks which, by SMT solving over bit vectors,
accounts for their bit-precise semantics. We showed that bit-
precise reasoning is necessary for assessing robustness to
adversarial attacks, since verifying the real network can derive
false conclusions, both regarding the absence and presence
of attacks. We built a tool based on Boolector and evaluated
the effect of quantization upon neural networks, computing
a networks’ robustness against adversarial attacks, but also
studying behavioral equivalence between quantized networks
and checking the effect upon the validity of safety properties.
As for adversarial attacks, we examined several quantizations
of a classifier for the MNIST dataset and observed that, sta-
tistically, robustness suffers from quantization, proportionally
to standard accuracy. Concerning equivalence, we compared
different quantizations of a neural controller for an inverted
pendulum, confirming the expected large effect of down-
quantization, but also discovering a small effect induced by up-
quantization. Regarding safety, we measured the gender bias
emerging from a predictor for student grades in math exams:
not only did we confirm the phenomenon, but also found
that it is monotonically enlarged by quantization. Besides,
we verified quantized networks up to hundreds of neurons
using an off-the-shelf solver. Our run-times were orders of
magnitudes larger than those of Reluplex for similar, but real-
numbered problems. This poses a limit for current solvers, but
also an encouraging baseline for future research.

ACKNOWLEDGMENTS

This research was supported in part by the Austrian Science
Fund (FWF) under grants S11402-N23(RiSE/SHiNE) and
Z211-N23 (Wittgenstein Award).

REFERENCES

[1] Post-training quantization. [Online]. Available:
https://www.tensorflow.org/lite/performance/post training quantization

[2] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in CVPR. IEEE Computer
Society, 2018, pp. 2704–2713.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
CoRR, vol. abs/1312.6199, 2013.

[4] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash,
A. Rahmati, and D. Song, “Robust physical-world attacks on deep
learning models,” arXiv preprint arXiv:1707.08945, vol. 1, 2017.

[5] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Adversarial
attacks against automatic speech recognition systems via psychoacoustic
hiding,” in accepted for Publication, NDSS, 2019.

[6] L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in CAV, ser. Lecture Notes
in Computer Science, vol. 6174. Springer, 2010, pp. 243–257.

[7] W. Xiang, H. Tran, and T. T. Johnson, “Output reachable set estimation
and verification for multilayer neural networks,” IEEE Trans. Neural
Netw. Learning Syst., vol. 29, no. 11, pp. 5777–5783, 2018.

[8] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. T. Vechev, “AI2: safety and robustness certification of neural
networks with abstract interpretation,” in IEEE Symposium on Security
and Privacy. IEEE, 2018, pp. 3–18.

[9] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev, “An abstract domain
for certifying neural networks,” in POPL. ACM, 2019.

[10] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in CVPR. IEEE
Computer Society, 2016, pp. 2574–2582.

[11] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in CAV (1), ser. Lecture Notes in Computer Science, vol. 10426.
Springer, 2017, pp. 97–117.

[12] L. Pulina and A. Tacchella, “Challenging SMT solvers to verify neural
networks,” AI Commun., vol. 25, no. 2, pp. 117–135, 2012.

[13] The MNIST database. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[14] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in CAV (1), ser. Lecture Notes in Computer
Science, vol. 10426. Springer, 2017, pp. 3–29.

[15] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in ATVA, ser. Lecture Notes in Computer Science, vol. 10482.
Springer, 2017, pp. 269–286.

[16] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” 2018.

[17] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NFM, ser. Lecture
Notes in Computer Science, vol. 10811. Springer, 2018, pp. 121–138.

[18] R. R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and P. K. Mudigonda,
“A unified view of piecewise linear neural network verification,” in
NeurIPS, 2018, pp. 4795–4804.

[19] N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and
T. Walsh, “Verifying properties of binarized deep neural networks,” in
AAAI. AAAI Press, 2018, pp. 6615–6624.

[20] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” JSAT, vol. 9,
pp. 53–58, 2014.

[21] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML. Omnipress, 2010, pp. 807–814.

[22] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on
cifar-10,” Unpublished manuscript, vol. 40, no. 7, 2010.

[23] ReLU-6. [Online]. Available:
https://www.tensorflow.org/api docs/python/tf/nn/relu6

[24] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” in International Conference
on Learning Representations, 2019.

[25] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification
of cyber-physical systems with machine learning components,” in NFM,
ser. Lecture Notes in Computer Science, vol. 10227, 2017, pp. 357–372.

[26] S. Barocas, M. Hardt, and A. Narayanan, “Fairness in machine learning,”
in Proceeding of NIPS, 2017.

[27] Students performance in exams. [Online]. Available:
https://www.kaggle.com/spscientist/students-performance-in-exams

