
EasyChair Preprint

№ 1409

TraV: an Interactive Trajectory Exploration

System for Massive Data Sets

Jieliang Ang, Tianyuan Fu, Johns Paul, Shuhao Zhang,
Bingsheng He, Teddy Sison David Wenceslao and Sienyi Tan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 24, 2019



TraV: AN INTERACTIVE TRAJECTORY EXPLORATION SYSTEM FOR MASSIVE DATA
SETS

Jieliang Ang, Tianyuan Fu, Johns Paul, Shuhao Zhang, Bingsheng He

Teddy Sison David Wenceslao, Sien Yi Tan

Grab-NUS AI Lab

ABSTRACT

The proliferation of modern GPS-enabled devices like smart-
phones have led to significant research interest in large-scale
trajectory exploration, which aims to identify all nearby tra-
jectories of a given input trajectory. Trajectory exploration
is useful in many scenarios, for example, in identifying in-
correct road network information or in assisting users when
traveling in unfamiliar geographical regions as it can reveal
the popularity of certain routes/trajectories. In this study, we
develop an interactive trajectory exploration system, named
TraV. TraV allows users to easily plot and explore trajecto-
ries using an interactive Graphical User Interface (GUI) con-
taining a map of the geographical region. TraV applies the
Hidden Markov Model to calibrate the user input trajectory
and then makes use of the massively parallel execution capa-
bilities of modern hardware to quickly identify nearby trajec-
tories to the input provided by the user. In order to ensure a
seamless user experience, TraV adopts a progressive execu-
tion model that contrasts to the conventional “query-before-
process” model. Demonstration participants will gain expe-
rience with TraV and its ability to calibrate user input and
analyze billions of trajectories obtained from Grab drivers in
Singapore.

1. INTRODUCTION

Due to the widespread usage of GPS-enabled devices like
smartphones, massive amounts of trajectory data is being gen-
erated in real time. Analysing such trajectory data is critical
to a number of domains including transport analysis, animal
movement study etc. In this work, we study the problem of
large scale trajectory exploration, which aims to identify all
nearby trajectories of a given input trajectory.

Such a query is fundamentally different from related
works on trajectory similarity search [12] or trajectory sim-
ilarity joins [11] as the nearby trajectories are not necessarily
similar to the input trajectory as a whole but they may par-
tially pass by the same area of interest. In Grab [3], we have
found this query to be especially beneficial. For example,
it can help identify incorrect road network information (e.g.

Jieliang Ang and Tianyuan Fu contribute equally to this work. The cor-
responding authors are Johns Paul and Shuhao Zhang.

missing roads) and assist users travelling to unfamiliar geo-
graphical regions (e.g., identify popular nearby trajectories).
However in-spite of its usefulness, supporting such a query is
challenging due to the following reasons.

First, composing an input trajectory itself is often a te-
dious task. We found that data scientists often spend consid-
erable amounts of time in expressing their trajectory queries
as precise geographical coordinates, either through SQL or
other general purpose programming languages (e.g., Java,
Python). Second, the high computational complexity makes
the naive implementation of this query impractical. Specifi-
cally, given an input trajectory, the naive implementation de-
composes the input into a list of <start, end> coordinates.
The implementation then iterates through all relevant histor-
ical trajectories to identify trajectories that are close enough
(determined based on predefined threshold) to every pair of
<start, end> positions, leading to high computational com-
plexity. Third, a trajectory exploration system should ensure
fast response to user’s query, especially when it is intended
for use by non-technical users for the purposes of identify-
ing interesting trajectories in an unfamiliar geographical re-
gion. Given the high computational cost of trajectory explo-
ration, this is almost impossible to achieve when adopting the
conventional “query-before-process” execution model that re-
quires the user to express the entire input trajectory before the
trajectory exploration can be initiated.

To address the above challenges, we develop an interac-
tive trajectory exploration system named TraV. To address the
first challenge, TraV allows users to express their input trajec-
tory using a simple Graphical User Interface (GUI). However,
such a GUI based implementation comes with its own sets
of challenges. For example, plotting trajectories by hand is
hardly accurate. Hence, TraV calibrates the input automati-
cally and progressively based on the Hidden Markov Model
when the users are expressing their trajectory. This auto-
matic calibration is analogous to automatic text correction.
To handle the second challenge, TraV makes use of aggres-
sive indexing and takes advantage of the massive parallelism
provided by modern hardware devices. The use of index-
ing allows TraV to minimize the amount of computation and
the parallel execution model allows it to concurrently process
massive amounts of underlying trajectory data. To address the



third challenge, TraV adopts a progressive execution model
that calibrates the input trajectories and explores the under-
lying trajectory data while the input trajectory data is being
expressed by the user. This provides quick responses to the
user, thus ensuring a seamless user experience.

Overall, our demonstration of TraV aims to show the use-
fulness of an interactive trajectory exploration system capable
of exploring billions of GPS coordinates in real-time. In the
remainder of this paper, we present the implementation and
describe our solutions.

2. TRAJECTORY EXPLORATION

Trajectory exploration aims to identify nearby trajectories of
an input trajectory. In the typical scenarios we explored in
this study (i.e., identifying incorrect road network data and
assisting users in exploring unfamiliar geographical regions),
what we are interested in are the trajectories that pass through
the same path/road of the input trajectory. However, exist-
ing trajectory similarity search [12] or trajectory join [11] im-
plementations may consider the input trajectory to be very
different from any underlying trajectory because of their dif-
ferent resolutions and lengths. As a result, we need to revisit
new implementations of trajectory exploration query. In the
following, we present the formal definition of the trajectory
exploration query.

Following previous works, such as [11], we define a tra-
jectory as follows. Note that, TraV is not restricted by the
point-based representation used in this section and can be
adapted to use other representations such as segment-based
trajectory data with ease.

Definition 2.1. A trajectory of a specific object is an or-
dered sequence of points, denoted by T =< p1, p2, ..., pn >,
where each pi is a coordinate corresponding to the same ob-
ject. Further, these coordinates are ordered based on their
timestamp, such that T (pi) < T (pi+1), where T (pi) repre-
sents the timestamp associated with pi.

Definition 2.2. Given two trajectories, Tl =< l1, l2, ..., ln >
and Tr =< r1, r2, ..., rm >, if there exist two points ri and
rj in Tr such that i < j and both dist(ri, l1), dist(rj , ln)
are smaller than a threshold δ. Then, all consecutive points
between ri and rj in Tr form a candidate sub-trajectory
that needs to be explored corresponding to Tl.

Note, that there might be multiple sub-trajectories that
could be constructed from Tr that satisfy the above conditions
and all such trajectories need to be explored by the system to
ensure high accuracy.

Definition 2.3. Given two trajectories, Tl, Tr, Tr is a near-by
trajectory of Tl if there is at least one candidate sub-trajectory,
T ′
r, of Tr such that sim(T ′

r, Tl) is smaller than a predefined
threshold. Finally, sim(x, y) can be computed using any
similarity metric such as Fréchet distance [8], dynamic time
warping [9] etc.

User GUI

Trajectory
Editor

Parameters
Setting

Query
Results

Calibration

Query
Processor

Client Server

Calibrated
Trajectory

Index

Fig. 1: Architecture of TraV. Solid rectangles represent ma-
jor components and dotted rectangles represent auxiliary data
structures/parameters.

Finally, we define trajectory exploration query as follows.

Definition 2.4. Given an input trajectory
Tq=<p1, p2, ..., pn>, and a set of N trajectories
(<T1, T2, ..., TN>), the trajectory exploration query
should identify all trajectories (< T1, T2, ..., Tk >) that are
near-by trajectories of T .

3. SYSTEM ARCHITECTURE

The system architecture of TraV is shown in Figure 1. TraV
adopts a client-server model to allow wide usage of the sys-
tem by a variety of users while also taking advantage of the
massive computational capability of modern server hardware.
Overall TraV comprises of three main units: 1) a GUI unit
that allows users to express their interested trajectory by sim-
ply drawing on a map of a geographical region using a mouse
or other input means (touch, stylus etc.), 2) a Calibration
Unit that calibrates the input trajectories being expressed by
the user based on the underlying road network data and 3) a
Query Processing Unit that is responsible for exploring the
underlying trajectory data corresponding to the user input.

3.1. Graphical User Interface

The Graphical User Interface (GUI) of TraV runs on the client
side and allows the user to express his/her trajectory. Fur-
thermore, it is connected to both the Calibration Unit and the
Query Processing Unit which are both running on the server
in a remote location.

Initially, the user is presented with an overview of the map
of a geographical region. Note, the user can freely interact
with the map (e.g move to a different geographical region,
zoom in, zoom out etc). As soon as the user starts draw-
ing, the GUI starts sampling the user mouse/touch input and
sends them to the Calibration Unit running in the server, as
two dimensional coordinates (Latitude, Longitude). Overall,
the GUI does not wait for the entire input trajectory to be ex-
pressed and progressively sends the input data to the server
for processing to ensure very fast response to the user query.



As the user is expressing his/her trajectory, the calibrated
results will be presented back to the user. Furthermore, the
user can go into an “Edit” mode to approve or ignore the
calibrated results. This is especially useful when trying to
find missing roads or road segments in the underlying road
network. Once the user determines the appropriate calibra-
tion points, the calibrated trajectory is transmitted back to the
server. The server then returns the nearby trajectories associ-
ated with the calibrated input trajectory, which is presented to
the user. Note, a video demonstrating the use of our GUI can
be found in the supplementary materials.

3.2. Calibration Unit

TraV allows users to simply draw on a GUI to express their
interested trajectory. However, hand drawing is hardly accu-
rate and calibration of the user input is essential to fix any
mistakes in user input and to provide a good user experience.
To this end, our Calibration Unit maps each input coordinate
from the user to a corresponding GPS coordinate in the un-
derlying road network data obtained from the Land Trans-
port Authority [1]. Note, the major challenge in this calibra-
tion stage is choosing a route that is geographically close to
the coordinates expressed by the user, while also taking into
consideration the likelihood of choosing a given route. This
is especially important in regions like Singapore which has
extremely dense road networks. To achieve this, we adopt
a Hidden-Markov-Model (HMM) based map matching algo-
rithm presented in previous studies [10, 7] that takes into con-
sideration both the likelihood of taking a specific route (based
on the previous trajectory points already expressed by user)
and the geographical distance between a point expressed by
the user and a route in the underlying road network.

Conventional implementations often adopt a “query-
before-process” execution model. Such an execution model
introduces unnecessary latency, which is undesirable in an in-
teractive trajectory exploration system. Hence, we implement
the Calibration Unit in TraV as a streaming application run-
ning on Flink [2], which is capable of performing the calibra-
tion as the user is expressing his/her input trajectory.

Algorithm Overview. Overall, our calibration algorithm
is implemented as follows.

• As mentioned before, the input coordinates are contin-
uously streamed into the Calibration Unit by the GUI
as the trajectory is being expressed by the user. The
Calibration Unit first performs down-sampling on this
input data. This is because directly treating the points
sampled by the GUI is both computationally intensive
and unnecessary, especially if the underlying trajectory
data has a significantly lower resolution.

• Next, the Calibration Unit identifies potential GPS co-
ordinates in the underlying road network, for each input
coordinate. Naively, all points in the underlying road
network data are candidates for this computation. To

minimize the computation, our Calibration Unit makes
use of a simple R-Tree based indexing to first identify a
set of road network points which are within δ meters of
each input coordinate. Note, δ is a tune-able parameter,
which can be varied by users.

• Finally, the Calibration Unit applies the Viterbi algo-
rithm [6] to compute the most likely sequence of cali-
brated GPS coordinates as the calibrated trajectory.

Algorithm Implementation. We implement the above
calibration algorithm as a continuous streaming application
on Apache Flink [2], consisting of the following operators: 1)
a Spout that continuously receives input coordinates from
the GUI, 2) a Localization operator that identifies the
candidate GPS coordinates in the road network correspond-
ing to each input coordinate (using an R-Tree Index and a
predefined threshold), 3) a PreCalibration operator that
computes the emission probabilities or the likelihood of each
candidate point identified by the Localization operator based
on their geographical distance from the point plotted by the
user, 4) a PostCalibration operator that computes the
transition probabilites or the likelihood of the user moving to
each one of the candidate points from the previous point and
5) a Sink that sends the point with the highest probability
back to the visual interface so that it can be presented back
to the user. All operators except the PostCalibration operator
can be parallelised in our implementation.

3.3. Query Processing Unit

The Query Processing Unit in TraV is responsible for identi-
fying the nearby trajectories of the calibrated input trajectory
provided by the user (or non calibrated if all calibration points
are ignored by the user). However, the process of identify-
ing nearby trajectories from billions of underlying trajectory
points is computationally intensive and could hence lead to a
poor user experience in an interactive system like TraV.

To minimize the amount of computation and for quick
processing of large amounts of trajectory data, TraV adopts
the following techniques. First, to minimize the number of
candidate sub-trajectories that are explored, we build an R-
Tree index on the entire underlying trajectory data set. The
Query Processing Unit module then only selects those sub-
trajectories that begin and end within a specified threshold of
the start and end points of the calibrated trajectory for explo-
ration. Second, we leverage Flink and its parallel process-
ing engine to make efficient use of modern massively parallel
multi-/many- core hardware to quickly compute the distance
between each candidate sub-trajectory and the calibrated in-
put trajectory.

Algorithm Overview. Overall our Query Processing Unit
works as follows.

• First, the Query Processing Unit receives the (cali-
brated) input trajectory from the visual interface.



• It then quickly retrieves a set of candidate sub-
trajectories which are within a threshold distance of
the start and end points of the calibrated input trajec-
tory. The candidate sub-trajectories are then grouped
together by their parent trajectory ID to leverage over-
lapping of GPS coordinate data across sub-trajectories.

• The distance between each group of sub-trajectories
and the calibrated input trajectory is then computed by
a predefined number of threads in parallel. To further
minimize the cost of computing the distance of each
group of sub-trajectories with the input trajectory, we
leverage the overlap in GPS coordinates across differ-
ent sub-trajectories of the same parent trajectory.

• Finally, the trajectories which have at least one sub-
trajectory within a threshold distance of the calibrated
input trajectory is identified as nearby trajectories.

Note, in this study we use the Fréchet metric [4] for mea-
suring the distance between a sub-trajectory and the calibrated
input trajectory. Our implementation can be easily modified
to use any other metrics [5] like Edit Distance, Synchronized
Euclidean Distance, Dynamic time warping etc.

Algorithm Implementation. The above algorithm is im-
plemented as a streaming application using Apache Flink
and consists of the following operators: 1) a Spout that
receives the calibrated input trajectory from the GUI, 2)
a CandidateGenerator which generates the candidate
sub-trajectories which are within a threshold distance of the
start and end points of the calibrated input trajectory, 3)
a DistanceCalculator that computes the distance be-
tween each group of sub-trajectories and the calibrated in-
put trajectory and 4) Sink that sends the trajectories within
a threshold distance of the calibrated input trajectory to the
GUI to be presented to the user. All operators except the
CandidateGenerator in our implementation can be exe-
cuted using multiple threads. The DistanceCalculator
operator is the most computationally intensive one, and is
hence allocated relatively more computing resources.

4. DEMONSTRATION

4.1. Demo Setup

Our demonstration setup consists of a client and a server. The
client device (Mobile or Laptop PC) runs the GUI module
depicted in Figure 1 and the server (a workstation located in
our Lab at NUS, Singapore) runs the calibration and query
processing module. The user can then draw the trajectory on
the GUI module as described in Section 3.

Our demonstration uses trajectory data collected from
Grab drivers in Singapore. The underlying trajectory data set
consists of billions of GPS coordinates and our massively par-
allel trajectory exploration application is able to quickly sat-
isfy most user queries and ensure an interactive user experi-
ence. Further, we use road network data collected from Land
Transport Authority [1] consisting of 250K GPS coordinates.

Fig. 2: Auto Calibration in TraV.

Fig. 3: Result of trajectory exploration in TraV (explored tra-
jectories shown in red).
4.2. Demonstration Objectives

The objectives of our demonstration are: 1) demonstrate the
effectiveness of our automatic calibration in assisting the user
in expressing the trajectories. 2) demonstrate the ability of
our system to quickly explore large trajectory data sets.

The demonstration workflow is as follows. First, we al-
low the user to draw trajectories using our GUI module and
the GUI will present the calibrated results while the trajec-
tory is being populated by the user (Figure 2). Second, once
the user makes a determination of the appropriate trajectory
data for exploration (i.e either the original input trajectory or
the calibrated trajectory), TraV starts processing and presents
the nearby trajectories back to the user along with the time
taken for the computation, helping the user to understand the
capabilities of our machine (Figure 3) .

5. ACKNOWLEDGEMENT

This work was funded by the Grab-NUS AI Lab, a joint col-
laboration between GrabTaxi Holdings Pte. Ltd. and National
University of Singapore. We would like to thank Prof. See
Kiong Ng, Xiang Hui Nicholas Lim and Yong Liang Goh for
their support.



6. REFERENCES

[1] Land transport authority. https://www.
mytransport.sg/content/mytransport/
home/dataMall.html.

[2] Apache flink. https://flink.apache.org/,
2018.

[3] Grab – transport, food delivery & payment solutions.
https://www.grab.com/, 2019.

[4] H. Alt and M. Godau. Computing the fréchet distance
between two polygonal curves. International Journal of
Computational Geometry & Applications, 5(01n02):75–
91, 1995.

[5] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In Pro-
ceedings of the 2005 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’05, pages
491–502, New York, NY, USA, 2005. ACM.

[6] G. D. Forney. The viterbi algorithm. Proceedings of the
IEEE, 61(3):268–278, 1973.

[7] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran,
and P. Jaillet. Online map-matching based on hid-
den markov model for real-time traffic sensing applica-
tions. In 2012 15th International IEEE Conference on
Intelligent Transportation Systems, pages 776–781, Sep.
2012.

[8] S. Har-Peled and B. Raichel. The fréchet distance revis-
ited and extended. In Proceedings of the twenty-seventh
annual symposium on Computational geometry, pages
448–457. ACM, 2011.

[9] M. Müller. Dynamic time warping. Information re-
trieval for music and motion, pages 69–84, 2007.

[10] P. Newson and J. Krumm. Hidden markov map match-
ing through noise and sparseness. In Proceedings of
the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS ’09,
pages 336–343, New York, NY, USA, 2009. ACM.

[11] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and
P. Kalnis. Trajectory similarity join in spatial networks.
Proc. VLDB Endow., 10(11):1178–1189, Aug. 2017.

[12] D. Xie, F. Li, and J. M. Phillips. Distributed trajectory
similarity search. Proc. VLDB Endow., 10(11):1478–
1489, Aug. 2017.

https://www.mytransport.sg/content/mytransport/home/dataMall.html
https://www.mytransport.sg/content/mytransport/home/dataMall.html
https://www.mytransport.sg/content/mytransport/home/dataMall.html
https://flink.apache.org/
https://www.grab.com/

	 Introduction
	 Trajectory Exploration
	 System Architecture
	 Graphical User Interface
	 Calibration Unit
	 Query Processing Unit

	 Demonstration
	 Demo Setup
	 Demonstration Objectives

	 Acknowledgement
	 References

