
EasyChair Preprint
№ 14150

NextGenJax: a Comprehensive Analysis of
State-of-the-Art Machine Learning Libraries and
Models

Swayampakulavsspavana Kasinadhsarma

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 25, 2024

NextGenJax: A Comprehensive Analysis of
State-of-the-Art Machine Learning Libraries and

Models
kasinadhsarma

VishwamAI
Email: kasinadhsarma@gmail.com

Abstract—This report presents an in-depth analysis of several
state-of-the-art machine learning libraries and models, includ-
ing JAX, Flax, DM-Haiku, Optax, Fairscale, Gym, Whisper,
Langchain, and RouteLLM. The research aims to provide in-
sights into building NextGenJax, a custom model leveraging the
strengths of these libraries. We examine the code, architecture,
and functionalities of each library, focusing on their potential
contributions to NextGenJax.

Index Terms—Machine Learning, JAX, Flax, DM-Haiku, Op-
tax, Fairscale, Gym, Whisper, Langchain, RouteLLM

I. INTRODUCTION

A. Background on Machine Learning Libraries and Models

Machine learning (ML) has revolutionized various fields,
from computer vision to natural language processing. The
rapid advancement of ML has led to the development of nu-
merous libraries and models, each designed to address specific
challenges and optimize performance. These libraries serve as
building blocks for researchers and developers, enabling them
to create sophisticated ML systems efficiently.

Key ML libraries and models have emerged to tackle
different aspects of the ML pipeline:

1. JAX: A high-performance numerical computing library
that combines NumPy’s familiar API with the benefits of
automatic differentiation and GPU/TPU acceleration. 2. Flax:
A neural network library designed for flexibility and built on
top of JAX, offering a collection of neural network layers
and optimizers. 3. DM-Haiku: Another neural network library
built on JAX, focusing on simplicity and modularity. 4. Optax:
A gradient processing and optimization library for JAX. 5.
Fairscale: A library for scaling deep learning models and
training processes. 6. Gym: A toolkit for developing and
comparing reinforcement learning algorithms. 7. Whisper: A
speech recognition model designed to be accurate and efficient.
8. Langchain: A library for building applications with large
language models. 9. RouteLLM: A framework for integrating
multiple machine learning models in a cohesive pipeline.

II. JAX

JAX is a high-performance numerical computing library
that combines the familiar API of NumPy with the power
of automatic differentiation and GPU/TPU acceleration. It is
designed to be flexible and efficient, making it a popular choice

for researchers and developers working on complex machine
learning models.

1 import jax
2 import jax.numpy as jnp
3

4 # Define a simple function
5 def f(x):
6 return x ** 2
7

8 # Compute the gradient of the function
9 grad_f = jax.grad(f)

10 print(grad_f(3.0)) # Output: 6.0

Listing 1. Example of JAX code

III. FLAX

Flax is a neural network library built on top of JAX, offering
a collection of neural network layers and optimizers. It is
designed for flexibility and usability, allowing users to easily
define and train neural networks.

1 from flax import linen as nn
2 import jax
3 import jax.numpy as jnp
4

5 class SimpleNN(nn.Module):
6 @nn.compact
7 def __call__(self, x):
8 x = nn.Dense(128)(x)
9 x = nn.relu(x)

10 x = nn.Dense(10)(x)
11 return x
12

13 model = SimpleNN()
14 x = jnp.ones((1, 28 * 28))
15 params = model.init(jax.random.PRNGKey(0), x)
16 logits = model.apply(params, x)

Listing 2. Example of Flax code

IV. DM-HAIKU

DM-Haiku is a neural network library built on JAX that
focuses on simplicity and modularity. It is designed to work
seamlessly with JAX’s functional programming model, making
it easier to define and train complex neural network architec-
tures.

1 import haiku as hk
2 import jax
3 import jax.numpy as jnp
4

5 def forward(x):
6 mlp = hk.Sequential([
7 hk.Linear(128), jax.nn.relu,
8 hk.Linear(10)
9])

10 return mlp(x)
11

12 # Transform the function into a Haiku module
13 forward = hk.transform(forward)
14

15 # Initialize parameters
16 rng = jax.random.PRNGKey(42)
17 x = jnp.ones([1, 28*28])
18 params = forward.init(rng, x)
19

20 # Apply the model
21 logits = forward.apply(params, x)

Listing 3. Example of DM-Haiku code

DM-Haiku’s design philosophy emphasizes clear separation
between model definition and parameter management, pro-
viding flexibility and control over the training process. Its
modularity makes it suitable for experimenting with different
model components.

V. OPTAX

Optax is a gradient processing and optimization library for
JAX. It provides a collection of state-of-the-art optimization
algorithms and utilities for constructing custom optimizers,
making it an essential tool for training machine learning
models.

1 import jax
2 import jax.numpy as jnp
3 import optax
4

5 # Define a simple linear model
6 def model(params, x):
7 return jnp.dot(x, params)
8

9 # Loss function
10 def loss_fn(params, x, y):
11 pred = model(params, x)
12 return jnp.mean((pred - y) ** 2)
13

14 # Initialize parameters and optimizer
15 params = jax.random.normal(jax.random.PRNGKey(0),

(3,))
16 optimizer = optax.sgd(learning_rate=0.1)
17 opt_state = optimizer.init(params)
18

19 # Define a single optimization step
20 @jax.jit
21 def step(params, opt_state, x, y):
22 grads = jax.grad(loss_fn)(params, x, y)
23 updates, opt_state = optimizer.update(grads,

opt_state)
24 params = optax.apply_updates(params, updates)
25 return params, opt_state
26

27 # Dummy data
28 x = jnp.array([[1.0, 2.0, 3.0]])
29 y = jnp.array([10.0])
30

31 # Perform a single optimization step
32 params, opt_state = step(params, opt_state, x, y)

Listing 4. Example of Optax code

Optax’s flexibility allows for the creation of custom op-
timization schedules and algorithms, providing users with
powerful tools to fine-tune their model training processes.

VI. FAIRSCALE

Fairscale is a library for scaling deep learning models and
training processes. It offers a range of tools for model paral-
lelism, data parallelism, and optimization, enabling researchers
to efficiently train large-scale models.

1 from fairscale.nn.data_parallel import
ShardedDataParallel

2 import torch
3 import torch.nn as nn
4 import torch.optim as optim
5

6 # Define a simple neural network
7 class SimpleNN(nn.Module):
8 def __init__(self):
9 super(SimpleNN, self).__init__()

10 self.fc1 = nn.Linear(10, 50)
11 self.fc2 = nn.Linear(50, 1)
12

13 def forward(self, x):
14 x = torch.relu(self.fc1(x))
15 x = self.fc2(x)
16 return x
17

18 model = SimpleNN()
19 optimizer = optim.SGD(model.parameters(), lr=0.01)
20

21 # Wrap the model with ShardedDataParallel
22 model = ShardedDataParallel(model)
23

24 # Dummy input and output
25 x = torch.randn(32, 10)
26 y = torch.randn(32, 1)
27

28 # Forward and backward pass
29 output = model(x)
30 loss = nn.MSELoss()(output, y)
31 loss.backward()
32

33 # Optimizer step
34 optimizer.step()

Listing 5. Example of Fairscale code

Fairscale’s ability to handle large models and distribute
Fairscale’s ability to handle large models and distribute the
training process across multiple GPUs or devices is a crucial
feature for NextGenJax. By incorporating Fairscale’s tech-
niques, NextGenJax can enable the training of large-scale
machine learning models, which is essential for solving com-
plex problems in areas like computer vision, natural language
processing, and reinforcement learning.

One of the key components of Fairscale that can benefit
NextGenJax is the ‘ShardedDataParallel‘ module, which al-
lows for efficient data parallelism. This module automatically
distributes the model parameters and gradients across multiple
devices, enabling parallel training and reducing the memory
footprint on each device.

Another important aspect of Fairscale is its support for
model parallelism. This allows for the partitioning of a large
model across multiple devices, enabling the training of models

that are too large to fit on a single GPU. NextGenJax can lever-
age this capability to tackle problems that require extremely
large and complex models.

Fairscale also provides optimization utilities, such as gra-
dient clipping and gradient accumulation, which can be valu-
able for stabilizing the training of large models. These tech-
niques can be seamlessly integrated into NextGenJax’s training
pipeline, further enhancing the framework’s ability to handle
large-scale machine learning tasks.

By incorporating Fairscale’s parallelism and optimization
techniques, NextGenJax can unlock the ability to train highly
complex models, pushing the boundaries of what is possi-
ble in the field of machine learning. This integration will
enable NextGenJax to tackle problems that were previously
intractable due to the limitations of computational resources
and model size.

VII. GYM

Gym is a toolkit for developing and comparing reinforce-
ment learning algorithms. It provides a standardized set of
environments that expose a common interface, allowing for
easy development and benchmarking of reinforcement learning
algorithms.

1 import gym
2 import numpy as np
3

4 # Create the CartPole environment
5 env = gym.make(’CartPole-v1’)
6

7 # Reset the environment to the initial state
8 observation = env.reset()
9

10 # Take a random action and observe the next state,
reward, and done flag

11 action = env.action_space.sample()
12 next_observation, reward, done, info = env.step(

action)
13

14 # Render the environment
15 env.render()

Listing 6. Example of Gym code

Gym’s flexibility in providing a wide range of environments,
from classic control tasks to complex 3D simulations, makes
it a valuable tool for NextGenJax. By integrating Gym’s
environment management and testing capabilities, NextGenJax
can offer a comprehensive suite of reinforcement learning
benchmarks and facilitate the development of advanced re-
inforcement learning algorithms.

VIII. WHISPER

Whisper is a large language model developed by OpenAI
that can perform automatic speech recognition (ASR) across
a wide range of languages. Its multilingual capabilities and
robust performance in various audio conditions make it a
valuable asset for NextGenJax.

1 import whisper
2

3 # Load the Whisper model
4 model = whisper.load_model("base")

5

6 # Transcribe an audio file
7 result = model.transcribe("audio_file.wav")
8 print(result["text"])

Listing 7. Example of Whisper code

By incorporating Whisper’s ASR capabilities, NextGenJax
can expand its reach to multimodal applications that involve
both text and audio data, enabling tasks such as speech
recognition, language translation, and audio-based decision
making.

IX. LANGCHAIN

Langchain is a framework for developing applications pow-
ered by large language models (LLMs). It focuses on compos-
ability and extensibility, allowing developers to easily integrate
LLMs into their applications.

1 from langchain.agents import initialize_agent
2 from langchain.llms import OpenAI
3 from langchain.tools import GoogleSearchAPIWrapper
4

5 llm = OpenAI(temperature=0.9)
6 search = GoogleSearchAPIWrapper()
7

8 agent = initialize_agent(
9 [search],

10 llm,
11 agent="zero-shot-react-description",
12 verbose=True
13)
14

15 result = agent.run("What is the capital of France?")
16 print(result)

Listing 8. Example of Langchain code

By leveraging Langchain’s capabilities, NextGenJax can
seamlessly integrate large language models into its ecosystem,
enabling powerful natural language processing and generation
capabilities. This can be particularly useful for tasks such
as question answering, text summarization, and knowledge-
intensive decision making.

X. ROUTELLM

RouteLLM is a library designed for efficient routing and
serving of large language models (LLMs). It provides op-
timization strategies for inference performance and resource
utilization, which are crucial for deploying and managing
LLMs at scale.

1 from routellm.server import LLMServer
2 from routellm.client import LLMClient
3

4 # Initialize the server
5 server = LLMServer(
6 models={
7 "gpt-3": "path/to/gpt-3/model",
8 "bert": "path/to/bert/model"
9 }

10)
11 server.start()
12

13 # Create a client and make a request
14 client = LLMClient()
15 response = client.query("What is the capital of

France?", model_name="gpt-3")

16 print(response)

Listing 9. Example of RouteLLM code

By integrating RouteLLM’s efficient routing and serving
capabilities, NextGenJax can leverage the power of large
language models while optimizing resource utilization and
inference performance. This can be particularly beneficial for
deploying NextGenJax in production environments, ensuring
high-performance and scalable machine learning applications.

XI. BUILDING NEXTGENJAX

Building NextGenJax, a comprehensive machine learning
framework, involves integrating the strengths of the analyzed
libraries and models. The key architectural considerations and
implementation strategies are as follows:

A. Architectural Considerations

1. Leverage JAX’s high-performance numerical computing
capabilities as the foundation for NextGenJax. 2. Incorporate
Flax and DM-Haiku’s flexible and modular neural network
architectures. 3. Utilize Optax’s gradient processing and opti-
mization techniques for efficient model training. 4. Implement
Fairscale’s parallelism strategies for scalable training of large-
scale models. 5. Integrate Gym’s environment management
and testing capabilities for reinforcement learning tasks. 6.
Incorporate Whisper’s speech recognition and multimodal
processing abilities. 7. Leverage Langchain’s framework for
seamless integration of large language models. 8. Adopt
RouteLLM’s efficient routing and serving strategies for de-
ploying NextGenJax in production environments.

B. Integration of Key Components

1. Establish a core JAX-based computational foundation
for NextGenJax, leveraging its automatic differentiation and
hardware acceleration capabilities. 2. Build flexible and mod-
ular neural network architectures using Flax and DM-Haiku,
enabling easy experimentation and customization. 3. Integrate
Optax’s optimization techniques to train NextGenJax models
efficiently, supporting a wide range of optimization algorithms
and gradient processing strategies. 4. Implement Fairscale’s
parallelism techniques, including model parallelism and data
parallelism, to enable the training of large-scale models. 5.
Seamlessly integrate Gym’s environment management sys-
tem and testing framework, allowing for the development
and benchmarking of reinforcement learning algorithms. 6.
Incorporate Whisper’s speech recognition and multimodal
processing capabilities to expand the scope of NextGenJax
beyond text-based tasks. 7. Leverage Langchain’s framework
to facilitate the integration of large language models, enabling
powerful natural language processing and generation capa-
bilities. 8. Adopt RouteLLM’s efficient routing and serving
strategies to optimize the deployment and management of
NextGenJax in production environments.

C. Proposed Implementation Strategy

1. Establish a JAX-based core for NextGenJax, providing a
high-performance numerical computing foundation. 2. Imple-
ment flexible and modular neural network architectures using
Flax and DM-Haiku, allowing for easy experimentation and
customization. 3. Integrate Optax’s optimization techniques,
enabling efficient training of NextGenJax models. 4. Incorpo-
rate Fairscale’s parallelism strategies to support the training of
large-scale models. 5. Develop a comprehensive environment
management and testing framework based on Gym, facilitating
the development and benchmarking of reinforcement learning
algorithms. 6. Integrate Whisper’s speech recognition and
multimodal processing capabilities to expand the functionality
of NextGenJax. 7. Leverage Langchain’s framework to seam-
lessly incorporate large language models, enhancing NextGen-
Jax’s natural language processing and generation abilities. 8.
Adopt RouteLLM’s efficient routing and serving strategies to
optimize the deployment and management of NextGenJax in
production environments.

XII. CONCLUSION

This report has presented a comprehensive analysis of
several state-of-the-art machine learning libraries and mod-
els, including JAX, Flax, DM-Haiku, Optax, Fairscale, Gym,
Whisper, Langchain, and RouteLLM. The insights gained from
this analysis have been instrumental in formulating the design
and implementation strategy for NextGenJax, a custom ma-
chine learning framework that aims to leverage the strengths
of these libraries.

By integrating the key components and capabilities of these
libraries, NextGenJax can provide a powerful and versatile
platform for researchers and developers to tackle a wide
range of machine learning challenges. The modular and flex-
ible architecture of NextGenJax, combined with its high-
performance computing capabilities, will enable the creation
of sophisticated machine learning models and applications that
push the boundaries of what is possible in the field.

Future research directions for NextGenJax may include
exploring advanced techniques in areas such as few-shot
learning, self-supervised learning, and multi-task learning.
Additionally, the integration of emerging technologies like fed-
erated learning and privacy-preserving machine learning can
further enhance the capabilities and applicability of NextGen-
Jax in sensitive domains.

REFERENCES

Google, ”JAX,” [Online]. Available: https://github.com/google/
jax.

Google, ”Flax,” [Online]. Available: https://github.com/google/
flax.

Google DeepMind, ”DM-Haiku,” [Online]. Available: https://
github.com/google-deepmind/dm-haiku.

Google DeepMind, ”Optax,” [Online]. Available: https://github.
com/google-deepmind/optax.

Facebook Research, ”Fairscale,” [Online]. Available: https://
github.com/facebookresearch/fairscale.

OpenAI, ”Gym,” [Online]. Available: https://github.com/openai/
gym.

OpenAI, ”Whisper,” [Online]. Available: https://github.com/
openai/whisper.

Langchain AI, ”Langchain,” [Online]. Available: https://github.
com/langchain-ai/langchain.

lm-sys, ”RouteLLM,” [Online]. Available: https://github.com/
lm-sys/RouteLLM.

