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Abstract. The efficient stacking of outbound containers presents a significant 

challenge within container terminal operations. It's crucial to minimize the antic-

ipated need for rehandling, as this directly impacts yard productivity and overall 

terminal efficiency. To address this challenge, we introduce a novel approach 

based on reinforcement learning. Our method employs Q-learning, incorporating 

Monte Carlo techniques to identify optimal storage locations by maximizing re-

ward values. Furthermore, we've developed effective strategies for determining 

storage placements through extensive training iterations. Through numerical ex-

perimentation using real-world container terminal data, we've compared our 

model with existing algorithms. Numerical results highlight the robustness of our 

approach in navigating uncertain operational environments, its ability to support 

real-time decision-making, and its effectiveness in minimizing rehandling re-

quirements. 

Keywords: Container terminal; Q-learning; Yard management; Container 

stacking problem. 

1 Introduction 

Global trade growth leads to increased demand for container shipping worldwide (Woo 

et al., 2024). Terminals are vital in supply chain networks, with new ones built and 

existing ones expanded (Park et al., 2021; Cho et al., 2021). Efficient yard management 

connects various container movements, and container storage is key to reducing turna-

round time. The study aims to determining storage locations for outbound containers. 

Outbound container allocation at the yard block level is pre-scheduled; however, the 

specific storage location within the yard bay, referred to as the container stacking prob-

lem (CSP), is determined upon arrival (Zhang et al., 2003). CSP is complex due to 

uncertainties in the arrival sequence, which subsequently impact loading operations. 

Therefore, for efficient loading operations, the storage location of the container should 

be determined to minimize the expected rehandling. 



Previous research on the container stacking problem (CSP) for outbound containers 

has categorized solutions into offline and online optimization techniques. The solution 

quality of existing offline optimization approaches decreases dramatically due to fluc-

tuations in information, and a scalability issue is induced as the problem size is larger. 

In addition, studies that have proposed an online optimization approach do not calculate 

rehandling whenever the storage location of incoming containers is determined. And 

thus, the solution quality is not good. 

In this study, we introduce a new approach using Q-learning in reinforcement learn-

ing. We designed a reinforcement learning framework by utilizing the state and novel 

reward function that reduces the possibility of rehandling events in the future by con-

sidering the free space in each stack. The proposed approach supports real-time deci-

sion making, such as the online optimization approach, and also reduces the optimality 

gap with the offline optimization approach compared to existing methodologies. In ad-

dition, we demonstrate the superiority of the proposed approach through comparison 

with existing online and offline algorithms according to various numerical experiments. 

2 Literature review 

The container stacking problem (CSP) is typically addressed through offline or online 

optimization strategies, chosen based on data availability. Offline optimization assumes 

complete data and aims to reduce uncertainty by generating nearly optimal solutions, 

while online optimization adapts to changing data availability in uncertain settings, 

striving to develop robust policies for diverse scenarios. 

The offline optimization approach in CSP for outbound containers relies on weight 

information's completeness impacting rehandling. Kim, Park, and Ryu (2000) intro-

duced a dynamic programming (DP) model and decision tree algorithm for scenarios 

with fixed container numbers per weight class. Zhang et al. (2014a) extended this model 

to handle larger instances, while Gharehgozli et al. (2014) devised a decision tree-based 

heuristic for practical pile problems using DP results. Despite these advancements, 

studies suggest the need for stacking strategies that account for uncertainty in container 

weights. Kang, Ryu, and Kim (2006) utilized simulated annealing and machine learning 

to mitigate rehandling due to weight uncertainties, while Zhang et al. (2014b) proposed 

a two-stage heuristic within a reasonable computation time. 

Online optimization approaches for outbound container stacking vary depending on 

the optimization objective, encompassing vertical, horizontal, and category strategies. 

Duinkerken, Evers, and Ottjes (2001) proposed a strategy to minimize reductions in 

stack capacity based on load category information, while Dekker, Voogd, and Asperen 

(2007) introduced a category stacking strategy to reduce rehandlings with stacking lo-

cation preferences. Chen and Lu (2012) devised a hybrid sequence stacking method for 

enhanced optimization, and He, Wang, and Su (2020) developed heuristic algorithms 

combining reshuffle, lowest stack, and nearest stack rules. Moreover, dynamic factors 

such as yard configurations and stowage instructions are considered in stacking strate-

gies. Park et al. (2011) proposed a dynamic policy adjustment algorithm, while Guven 

and Eliiyi (2014) suggested stacking strategies based on container attributes. Park et al. 



(2022) and Cho et al. (2022) introduced data-driven and Gaussian mixture model 

(GMM)-based online stacking strategies, respectively. 

Few studies focus on machine learning techniques for CSP despite recent computing 

advancements. Our study proposes the application of reinforcement learning to practi-

cal container terminal operations, enhancing decision-making and solution quality by 

considering state and reward design. We have developed a novel framework that im-

proves upon existing models by refining the reward function to reduce rehandling 

events and enhance training efficiency through the consideration of free space in each 

stack. 

3 Methodology 

3.1 Meanings and vocabulary 

MC Q-learning for CSP problem can be expressed with 𝑤𝑡 , weight class of current 

container, as follows: 

 𝑄(𝑠𝑡, 𝑤𝑡, 𝑎𝑡)new = 𝑄(𝑠𝑡, 𝑤𝑡, 𝑎𝑡) + α[𝐺𝑡 − 𝑄(𝑠𝑡 , 𝑤𝑡, 𝑎𝑡)], (1) 

𝑤ℎ𝑒𝑟𝑒 𝐺𝑡 = 𝑅𝑡+1(𝑠𝑡 , 𝑤𝑡 , 𝑎𝑡) + γ𝐺𝑡+1,  𝑎𝑡 ∈ 𝐴(𝑠𝑡). 

The Q value is related to the rehandling value that is acquired when the container is 

piled in the current state, 𝑠𝑡 = (𝒏𝒕, 𝒉𝒕). When the reinforcement learning agent pile the 

container, the reward 𝑅𝑡+1(𝑠𝑡 , 𝑎𝑡 , 𝑤𝑡), which is a function of rehandling, is observed. 

The definitions associated with the Q-function and incentive are described in Table 1.  

Table 1. Notations of the Q-function and reward 

Variable Definition 

𝑤 The current container weight class 

𝑠 The current state in Q-learning 

𝐧 
The vector with a size equal to the number of containers in tiers of 

the current state  

𝐡 
The vector with a set of the highest weight class in each tier of the 

current state 

[𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥] The weight range of the containers 

[𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥] The tier range of the bay 

(𝐧, 𝐡) The state representation with n and h 

𝐴(𝑠) The possible actions in the current state 

𝑎 Stack selection of current container 

𝑄(𝑠, 𝑤, 𝑎) Estimated Q value when the agent place a current container due to 

an action a 

𝑅(𝑠, 𝑤, 𝑎) Reward value when the agent place a current container after an ac-

tion a 

𝛼 Learning rate 



𝛾 Discount factor 

 

Fig. 1. Reinforcement learning agent for container stacking problem.

 

Figure 1 illustrates the CSP, showing the positioning of certain container sets and the 

action of the agent transferring the current container to the bay. 𝐴(𝑠) =
{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} is the feasible action set for the current state. If the agent positions 

the container in stack 1, the reward 𝑅(𝑠, 𝑤, 𝑎1) is obtained in the current state. 

If the sequence of the container is settled within a constant ratio, the optimal 𝑄 value 

can be directly generated by solving the Bellman equation. Nevertheless, if the propor-

tion and the sequence of container are ambiguous, the optimal 𝑄 value alters in each 

scenario, and it is challenging to discover an optimal solution in each scenario. There-

fore, we enhance the 𝑄 value toward the optimal 𝑄 value according to the payoff per-

ceived while the agent stacks the container. 

 

3.2. State design 

States in CSP are determined by bay configuration. Multiple states are needed to 

show bay configuration, requiring many episodes for agent training. The CSP aims to 

position containers with minimal rehandling, maintaining their position once placed. 

Identifying key components in the stacking problem is crucial for effectively defining 

a state: (1) Containers' locations remain fixed once placed. (2) Recognizing potential 

bay arrangements is essential for stacking containers efficiently. (3) Rehandling calcu-

lations are performed after containers are stacked. 

For potential arrangement, the quantity of containers in each stack should be indic-

ative of the state. Additionally, the heaviest container in each stack should be indicative 

of rehandling. Therefore, state signifies the quantity of containers and the heaviest con-

tainer in each stack, which can be denoted as (𝐧, 𝐡). 

 

3.3. Reward design 

Reward function should be formulated with rehandling. The proposed reward func-

tion aims to reduce current and future rehandling instances. In this study, the reward is 

used as a penalty mechanism to minimize rehandling. The penalty function for rehan-

dling is articulated as follows: 



 𝑅1(𝑠, 𝑤, 𝑎) = {
−1, 𝑤 < ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

When considering only 𝑅1 related to rehandling, a trial and error method will be uti

lized for learning. The stacking problem's attributes were utilized to minimize the nee

d for trial and error. Positioning lighter containers lower in CSP may reduce rehandlin

g. In accordance with these attributes, the heuristic function can be defined as 

 𝑅2(𝑠, 𝑤, 𝑎) =
𝑡max−𝑡

𝑡max−𝑡min
×

𝑤max−𝑤

𝑤max−𝑤min
 (3) 

where the variable 𝑡 represents the current tier of the container. 

The increase of 𝑅2 is related to the weight increase and low positioning of the con-

tainer. This aspect reduces rehandling in stacking. Therefore, the reward function com-

bines both 𝑅1 and 𝑅2. The payoff function is articulated as follows: 

 𝑅(𝑠, 𝑤, 𝑎) = 𝑅1(𝑠, 𝑤, 𝑎) + 𝑅2(𝑠, 𝑤, 𝑎) (4) 

Algorithm 1 is MC Q-learning for the CSP with port terminal instances. 

Algorithm 1 Q-learning algorithm for CSP  

1: Initialize 𝑄(𝑠, 𝑤, 𝑎), ∀𝑠 

2: for episode = 1 to N do 

3:  Select a specific weight distribution from the instance 

4:  Generate a container set M based on the specific weight distribution 

5:  for t = 1 to length(M) do 

6:   𝑤𝑡    ←  𝑀[𝑡] 
7:   if 𝑋 > 𝜖//𝑋 ∈ (0,1) then 

8:    𝑎𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑤𝑡 , 𝑎𝑡) 

9:   else 

10:    𝑎𝑡 ← 𝑎′ 

11:   end if 

12:   𝑅𝑡+1 ← 𝑅1(𝑠𝑡 , 𝑤𝑡 , 𝑎𝑡) + 𝑅2(𝑠𝑡 , 𝑤𝑡 , 𝑎𝑡) 

13:   update 𝒏𝑡+1, 𝒉𝑡+1 

14:   𝑆𝑡+1 ← (𝒏𝑡+1, 𝒉𝑡+1) 

15:  end for  

16:  for t = 1 to M do 

17:   𝐺𝑡 ← 𝑅𝑡+1 + 𝛾𝐺𝑡 

18:   𝑄(𝑠𝑡 , 𝑤𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑤𝑡 , 𝑎𝑡) + 𝛼(𝐺𝑡 − 𝑄(𝑠𝑡 , 𝑤𝑡 , 𝑎𝑡)) 

19:  end for 

20: end for 
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