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Abstract

A witness set W in a polygon P is a subset of P such
that any set G ⊂ P that guards W is guaranteed to
guard P . We study the problem of finding a minimum
witness set for an orthogonal polygon under three mod-
els of orthogonal visibility: rectangular, staircase and
k-periscope visibility.

Under the traditional line-segment visibility, it is
known that not all simple polygons admit a finite wit-
ness set and, when a polygon admits a finite minimal
witness set, the witnesses must lie on the boundary of
the polygon [3].

In this paper, we prove that every orthogonal poly-
gon with n vertices admits a finite witness set which
has O(n2) witnesses under rectangular, staircase and
k-periscope visibility. We also show that there exist or-
thogonal polygons which require Ω(n2) witnesses under
staircase visibility. Furthermore, we show that there ex-
ist orthogonal polygons for which the boundary is not
a witness set for any of the three considered visibility
models. Finally, we describe an O(n4) time algorithm
to find a minimum witness set for a given orthogonal
polygon under the rectangular and staircase visibility
models.

1 Introduction

The Art Gallery Problem (AGP) is a classical problem
in Computational Geometry that has been widely stud-
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ied since it was proposed in 1973 by V. Klee [2]: given a
polygon P , the Art Gallery Problem consists in finding
a minimum set of points G such that each point in P
is guarded by at least one element of G. G is called a
guard set.

Several variants of AGP arise by imposing restric-
tions on the type of guards, the visibility model or the
shape of the gallery. Many results on problems related
to AGP can be found in the book by O’Rourke [9] and
the surveys by Shermer [12] and Urrutia [13].

Under line-segment visibility, it is well known that
finding minimum guard sets for simple and orthogonal
polygons is an NP-hard problem, see Lee and Lin [7]
and Schuchardt and Hecker [10], respectively.

In this paper we are interested in three kinds
of orthogonal visibility: rectangular, staircase and
k-periscope visibility. For rectangular visibility, a mini-
mum guard set can be found in polynomial time if the
polygon has no holes. An algorithm with complexity
O(n17) is given by Worman and Keil in [14]. However,
if the polygon has holes, then AGP is NP-hard under
rectangular visibility, as proven by Biedl and Mehrabi
in [1]. For staircase visibility, Motwani et al. [8] prove
that a minimum guard set can be found in O(n8) time
in orthogonal polygons without holes. It remains as an
open problem to determine if AGP is NP-hard in poly-
gons with holes under staircase visibility. Finally, for
k-periscope visibility, Gewali and Ntafos proved in [6]
that AGP can be solved in O(n3) time for k = 1 in a
restricted class of orthogonal polygons.

The Witness Problem is a variant of AGP that con-
sists in finding a set W in a given polygon, such that if
W is guarded by a set of guards G, then the polygon is
guaranteed to be guarded by G. The set W is called a
witness set. A motivation behind this research is that
a witness set allows us to quickly verify if a polygon is
guarded by a set of points.

The Witness Problem under line-segment visibility in
simple polygons was studied by Chwa et al. in [3]. They
proved that not all simple polygons admit a finite wit-
ness set. They also proved that, if a simple polygon P
admits a finite minimal witness set, then all the wit-
nesses must lie on the boundary of P . In addition,
they gave an O(n2 log n) time algorithm that computes
a minimum witness set for P if it exists, or it reports
the non-existence of a finite witness set otherwise.
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In this paper, we study the Witness Problem in or-
thogonal polygons under rectangular, staircase and k-
periscope visibility. First, we show that there exist or-
thogonal polygons such that their boundary is not a
witness set under the visibility models considered here.
Then, we prove that we can always find a finite wit-
ness set with O(n2) elements in any orthogonal polygon
under each of the considered visibility models. Finally,
we describe an O(n4) time algorithm for finding a min-
imum witness set in orthogonal polygons under rectan-
gular and staircase visibility models.

2 Preliminaries

Let P be a simple polygon. A vertex of P is convex if
its interior angle is less than π and is reflex if its interior
angle is greater than π.

Consider two points p and q in P . Under the line-
segment visibility model, p and q are mutually visible if
the line segment pq is contained in P . Under the rect-
angular visibility model, p and q are mutually visible
if the smallest isothetic rectangle containing p and q,
denoted by R(p, q), is contained in P . Under the stair-
case visibility model, p and q are mutually visible if P
contains a monotone isothetic polygonal path joining p
and q. Finally, under the k-periscope visibility model,
for k ∈ N \ {0}, p and q are mutually visible if P con-
tains an isothetic polygonal path joining p and q with
at most k bends.

The following definitions are common to all the visi-
bility models described above. The kernel of P , denoted
by K(P ), is the set of points in P from which every point
in P is visible. Let p be a point in P . The visibility poly-
gon of p, denoted by VP(p), is the set of points of P that
are visible to p. The visibility kernel of VP(p), for short
the visibility kernel of p, denoted by VK(p), is the set
of points from which each point of VP(p) is visible.

Recall that a witness set is defined as a set of points
in a given polygon P , such that if any set of points
G guards W , then P is also guarded by G. We say
that a point p witnesses another point q if guarding p
guarantees that q is also guarded.

The following auxiliary results were proved for line-
segment visibility. Nevertheless, they also hold for
rectangular, staircase and k-periscope visibility models.
This is because they rely on properties of visibility poly-
gons that are valid in all the visibility models mentioned
above.

Theorem 1 [3, Theorem 1] Let P be a simple polygon
and let W be a point set in P . Then W is a witness set
for P if and only if the union of the visibility kernels of
the elements of W covers P completely.

Lemma 2 [3, Lemma 1] Let P be a polygon and let p
and q be points in P . Then p witnesses q if and only if
q lies in VK(p).

Lemma 3 [3, Lemma 2] Let P be a simple polygon. A
point p in P witnesses a point q in P if and only if
VP(p) ⊂ VP(q).

Lemma 4 [3, Lemma 3] Let P be a simple polygon,
and let p, q and r be points in P . If p witnesses q and
q witnesses r, then p witnesses r.

We now give two definitions of directed graphs that
we use in the next section. Two nodes u and v in a
directed graph are said to be mutually adjacent if there
is an arc from u to v and there is an arc from v to u. A
clique in a directed graph is a set of pairwise mutually
adjacent nodes of the directed graph.

The pixelation of P is the partition of P obtained
by extending a horizontal and a vertical line inward at
every reflex vertex until each line hits the boundary.
The regions obtained from this partition are known as
pixels. We denote as Ψ the set of pixels obtained from
the pixelation of an orthogonal polygon P . Note that,
in general, Ψ may have a quadratic amount of elements.

3 Witnessing orthogonal polygons

It is known that, under line-segment visibility, if there
exists a finite witness setW , then the elements of a mini-
mal witness set W are always be placed on the boundary
of the polygon [3]. For orthogonal polygons under rect-
angular, staircase or k-periscope visibility that is not
always the case, even though we can always find a fi-
nite witness set for an orthogonal polygon under these
three visibility models (as proven below in Lemma 7).
In Figure 1 we show an orthogonal polygon that is not
witnessed even if we place a witness at each point of its
boundary for each of the considered visibility models.

Figure 1: An orthogonal polygon P such that its bound-
ary is not a witness set. The red points guard the
boundary of P under rectangular visibility. The blue
points guard the boundary of P under 1-periscope and
staircase visibility. In both cases the gray region re-
mains unguarded. Hence, there has to be a witness
in the interior of P . To attain the same effect for k-
periscope visibility we only need to bend k − 1 times
each extremity of P .
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Now, we prove that it is always possible to find a finite
witness set for an orthogonal polygon under rectangular,
staircase and k-periscope visibility. Consider the set of
pixels Ψ obtained from the pixelation of an orthogonal
polygon P . We next show that any two points in a pixel
of Ψ have the same visibility kernel.

Lemma 5 Let X be a pixel obtained from the pixelation
of P and let p, q ∈ X be two distinct points. Then
VK(p) = VK(q), and X ⊂ VK(p) under rectangular,
staircase and k-periscope visibility.

Proof. Let H be the maximal rectangle contained in P
whose top edge contains the top edge of X and whose
bottom edge contains the bottom edge of X. Similarly,
let V be the maximal rectangle contained in P whose
left edge contains the left edge of X and whose right
edge contains the right edge of X. Note that the left
and right edges of H and the top and bottom edges of
V are contained in edges of P .

Note that if VP(p) = VP(q), then VK(p) = VK(q).
Therefore we prove that VP(p) = VP(q). Consider a
point r ∈ P seen by p. Now we prove that r is also
visible to q. Note that if r is contained in H or V
then r is trivially visible from q under any of the three
visibility models. Therefore, we suppose that r is not in
H nor V .

First, we consider rectangular visibility, see Figure 2a.
As r is seen by p, R(p, r) is contained in P . Observe that
the horizontal edges of R(p, r) and R(q, r) incident to p
and q, respectively, are contained in H. Similarly, the
vertical edges of R(p, r) and R(q, r) incident to p and
q, respectively, are contained in V . As the symmetric
difference of R(p, r) and R(q, r) is contained in V ∪ H
for any r ∈ P visible to p, R(q, r) is contained in P .
Hence, q sees r.

Now consider staircase visibility, see Figure 2b. Since
p sees r, P contains a monotone isothetic polygonal path
T = t0, t1, . . . , tk joining p and r. Let ti be the line
segment of T with an endpoint in H ∪ V and the other
one outside, and let ` be the straight line containing ti.
Let s1 be the line segment orthogonal to ` joining q and
` and let s = s1 ∩ `. Let s2 be the line segment joining
s and ti ∩ ti+1. Note that either ti contains s2 or s2
contains ti. In any case, the isothetic polygonal path
s1, s2, ti+1, ti+2, . . . , tk is monotone and is contained in
P . Hence, q sees r.

Finally, consider k-periscope visibility, see Figure 2c.
Since p sees r, P contains an isothetic polygonal path
T = t0, t1, . . . , tk joining p and r with at most k bends.
Let ti be the first line segment of T with an endpoint in
X and the other one outside ofX, and let t′ = ti+1∩ti+2.
Let s be the intersection point of the line through ti+1

and the line through q parallel to ti. Note that s is ei-
ther contained in H or V . Thus, the polygonal path
qs, st

′
, ti+2, ti+3, . . . , tk joining q and r is completely

contained in P and has at most k bends. Hence, q
sees r.

As VP(p) for any p ∈ X is contained in the visibility
polygon of any other point in X, X ⊂ VK(p). �

(a)

(b) (c)

Figure 2: Illustration of the proof for Lemma 5. Given
two points p and q in the same pixel X, they have the
same visibility polygon under: (a) rectangular visibility,
(b) staircase visibility and (c) k-periscope visibility.

The following corollary is a direct consequence of the
previous lemma.

Corollary 6 Let p be a point in an orthogonal poly-
gon P . Then, VK(p) is the union of a set of pixels
of the pixelation of P under rectangular, staircase and
k-periscope visibility.

Lemma 5 allows us to give the following definitions.
We define the visibility kernel of a pixel a, denoted as
VK(a), as the visibility kernel of any point in a. We
say that a pixel a witnesses a pixel b if any point in a
contains any point in b in its visibility kernel. Note that,
by Lemma 4, if the pixel a witnesses the pixel b, then a
witnesses the region of P witnessed by b.

Lemma 7 Let P be an orthogonal polygon with n ver-
tices. There is always a finite witness set W for P
under rectangular, staircase and k-periscope visibility.
Furthermore, W has O(n2) elements.

Proof. Let Ψ be the set of pixels obtained from the
pixelation of P . By Lemma 5, the visibility kernel of
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any point p in P contains the pixel of P containing it.
By Theorem 1, a subset W of P is a witness set if the
union of the visibility kernels of the elements of W is P .
Therefore, a set of points containing a point in each pixel
of Ψ is a witness set for P . Since |Ψ| ∈ O(n2), we can
always find a finite witness set with O(n2) elements for
an orthogonal polygon under the considered visibility
models. �

Figure 3: A family of orthogonal polygons that needs a
quadratic number of witnesses under staircase visibility.

Theorem 8 There are orthogonal polygons with n ver-
tices for which any witness set has cardinality Ω(n2)
under staircase visibility.

Proof. Let P be an orthogonal polygon consisting of a
rectangle R with m vertically oriented T -shaped orthog-
onal polygons attached to the interior of its left edge and
m horizontally oriented T -shaped orthogonal polygons
attached to the interior of its top edge. We illustrate
this construction in Figure 3.

Consider the pixelation of P . Observe that R is sub-
divided in a grid with i rows and j columns of pixels,
with i = j = 2m+ 1. We denote as ri,j the pixel at the
i-th row and the j-th column of R.

Consider the pixels of the T -shaped subpolygons
which are shown shaded in Figure 3. We label these
pixels as follows. If T is attached to the left edge of R
at the i-th row of the pixelation we label the top pixel of
T as ti and the bottom pixel of T as bi. If T is attached
to the top edge of R at the j-th column of the pixelation
we label the left pixel of T as lj and the right pixel of
T as rj .

Consider a pixel ri,j with both i and j odd, shown in
gray in Figure 3. Then, the set consisting of a guard in

each pixel bk for k < i, tk for k > i, rk for k < j and lk
for k > j guards each pixel in P except ri,j . Therefore,
we need to place a witness in each of the ri,j with both
i and j odd. Note that there are (m + 1)2 such pixels
in R.

Since P has n = 16m + 4 vertices and there are
(m+ 1)2 pixels in R in which we need to place a witness,
it follows that P needs Ω(n2) witnesses under staircase
visibility.

�

It follows from Lemmas 5 and 7 that any minimal
witness set contains at most one point in each pixel
of P . For the sake of simplicity, we will henceforth say
that a set of pixels L is a witness set if a set containing
a point in each pixel of L is a witness set.

The following remarks follow from Theorem 1 and
Lemmas 2, 3 and 4:

• If a pixel a is not contained in the visibility kernel
of any other pixel in P , then a must be included in
the witness set W .

• If a pixel a is contained in the visibility kernel of
the pixel b but b is not contained in the visibility
kernel of a, then a cannot be included in a minimum
witness set.

• If two or more different pixels contain each other
on their respective visibility kernels, then only one
of them can be included in a minimal witness set.

3.1 An algorithm for finding a minimum witness set

In order to find the pixels contained in a minimum wit-
ness set, we first obtain the set of pixels Ψ from the
pixelation of P . Then, we construct a directed graph
H, which we call the kernel graph of P , in such a way
that there is a bijection between the set of nodes of H
and Ψ. After that, we compute the visibility kernel K
of the pixel represented by each node u ∈ H. Finally,
we add to H the arc from u to v if K contains the pixel
represented by v ∈ H, with u 6= v. For the sake of
simplicity, we say that a node u in H witnesses another
node v if H contains the arc (u, v).

To compute the visibility kernel of a point p in an or-
thogonal polygon under rectangular and staircase vis-
ibility, we first compute VP(p) and then we compute
K(VP(p)), the kernel of VP(p). It is straightforward to
see that, under rectangular visibility, the visibility re-
gion VP(p) of a point is also an orthogonal polygon. For
orthogonal polygons without holes, and under staircase
visibility, Gewaly [5] proved that the visibility region of
a point is also an orthogonal polygon. Therefore, we
can use one of the existing algorithms for computing
the kernel of an orthogonal polygon under rectangular
or staircase visibility.
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Now we prove that the polygon obtained in this man-
ner is indeed the visibility kernel of the point p. In or-
thogonal polygons with holes under staircase visibility
that is not always the case as shown in Figure 4.

Proposition 9 Let P be an orthogonal polygon (possi-
bly with holes). Let p be a point in P . Then the polygon
obtained by computing the kernel of VP(p) is equal to
VK(p) under rectangular visibility.

Proof. It is straightforward to see that K(VP(p)) is
contained in VK(p). Therefore we only prove that
K(VP(p)) contains VK(p). Suppose that there exists
a point q ∈ VK(p) which is not contained in the poly-
gon obtained by computing the kernel of VP(p). Thus,
there exists a point r ∈ VP(p) such that R(q, r) is
contained in P but not in VP(p). As p sees both q
and r, then both R(p, q) and R(p, r) are contained in
P . Therefore, R(p, q) ∪ R(p, r) ∪ R(q, r) ⊂ P . This
implies that for any point l ∈ R(q, r) we have that
R(p, l) ⊂ R(p, q) ∪ R(p, r) ∪ R(q, r) ⊂ P . Therefore,
l ∈ VP(p), which implies that R(q, r) ⊂ VP(p), a con-
tradiction. Hence, q is contained in the polygon ob-
tained by computing the kernel of VP(p). �

Proposition 10 Let P be an orthogonal polygon with-
out holes. Let p be a point in P . Then the polygon
obtained by computing the kernel of VP(p) is equal to
VK(p) under staircase visibility.

Proof. It is straightforward to see that K(VP(p)) is
contained in VK(p). Therefore we only prove that
K(VP(p)) contains VK(p). Suppose there exists a point
q ∈ VK(p) which is not contained in the polygon ob-
tained by computing the kernel of VP(p). Thus, there
exists a point r ∈ VP(p) such that T , the monotone
isothetic polygonal path joining q and r, is contained
in P but not in VP(p). As p sees both q and r, there
exist two monotone isothetic polygonal paths contained
in P , the first one T ′ joining p and q, and the second
one T ′′ joining p and r. Since P has no holes, the region
R bounded by T , T ′ and T ′′ is contained in P . Thus,
we can always find a monotone isothetic polygonal path
M joining p to any point of T , such that M is contained
in R. Therefore, p sees every point in T which implies
that T is contained in VP(p), a contradiction. Hence, q
is contained in the polygon obtained by computing the
kernel of VP(p). �

Now we show how to find a minimum witness set once
we have constructed the kernel graph H of P . Observe
that, by Lemma 4, for any clique C in H, any node of
C witnesses all the elements of C.

We say that a node u of H is a source node if for each
arc of the form (v, u) for any other node v, H contains
the arc (u, v).

Figure 4: An orthogonal polygon with a hole (shown
in gray) and an interior point p. Under staircase or 1-
periscope visibility the following holds. The visibility
polygon of p is the union of the blue, yellow and red
regions. The visibility kernel of p is the union of the blue
and red regions. The kernel of the visibility polygon of
p is the blue region.

Theorem 11 Let P be an orthogonal polygon. Let H
be the kernel graph of P . Let C be a set containing
one node in each maximal clique of source nodes in H.
Then any set containing exactly one point in the pixel
represented by each node of C is a minimum witness set
for P .

Proof. Let u be a node of H. If u is a source node
then it can only be witnessed by a node contained in
a clique containing u. Note that, since witnessing is
transitive (Lemma 4), each node in H is contained in
at most one maximal clique. Therefore, we need one
witness per maximal clique of source nodes, placed in
any of the pixels associated to the nodes of the clique.

Now suppose that u is not a source node. As witness-
ing is transitive, there exists an arc from a source node
to u. Otherwise, u would be a source node. Therefore,
it is not necessary to place a witness in a pixel corre-
sponding to a non-source node in H.

Hence, the witness set composed by a pixel for each
maximal clique of source nodes in H is a minimum wit-
ness set for P . �

In order to report a minimum witness set, we do a
traversal of H as follows. If the node u ∈ H is not a
source node, we remove it from H. If u is a source node,
we add the pixel represented by u to the witness set W
and remove u as well as its neighborhood from H. Note
that in this manner we add to the witness set at most
one pixel for each maximal clique of source nodes in H.

Now we analyze the running time of the proposed so-
lution. Obtaining the pixelation takes O(n2) time, since
we need to report O(n2) regions. The time required to
create the directed graph H depends on the subroutines
used to compute the visibility kernel of each pixel.

In their book [4], Fink and Wood give an O(n log n)
time algorithm to obtain VP(p) from a point p in an
orthogonal polygon under rectangular visibility. In [11],
Schuierer and Wood give an O(n) time algorithm to
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obtain the kernel of an orthogonal polygon under rect-
angular visibility. Note that, by Corollary 6, VK(p) is a
set of pixels under rectangular visibility. Note also that
VK(p) is a rectangle. Therefore, finding the coordinates
enclosing the set of pixels in VK(p) takes O(1) time.
Since the visibility kernel of a point may have O(n2)
pixels, H may have O(n4) arcs. Therefore, constructing
H takes O(n4) time under rectangular visibility.

In [5], Gewali gives an O(n) time algorithm to obtain
VP(p) from a point p in an orthogonal polygon with-
out holes under staircase visibility. In the same paper,
he gives an algorithm to obtain the kernel of a point in
O(n) time for orthogonal polygons without holes under
staircase visibility. Once we have computed the visibil-
ity kernel of a point, it is not difficult to see that we can
find all the pixels it contains in O(n2) time. Since we
only do this once for each pixel, this step takes O(n4)
time. Therefore, constructing H takes O(n4) time un-
der staircase visibility.

In the last step of the algorithm we do a traversal of H
to report the obtained minimum witness set. Since we
process each node of H just once, this step takes O(n2)
time. Therefore, our procedure takes O(n4) overall time
under rectangular and staircase visibility. For the case
of k-periscope visibility, we can achieve the same run-
ning time under the assumption that we can obtain
the visibility kernel of a point in O(n2) time. How-
ever, efficiently calculating the visibility kernel under
k-periscope visibility is, to the best of our knowledge,
an open problem.

4 Conclusions

In this paper we studied the Witness Problem on or-
thogonal polygons under three models of orthogonal vis-
ibility. We proved that there are orthogonal polygons
that are not witnessed by their boundary under rectan-
gular, staircase and k-periscope visibility. Next proved
that all orthogonal polygons admit a finite witness set
under these three visibility models. We achieved this by
using the so called pixelation of an orthogonal polygon,
in which any two points in the same pixel turned out to
have the same visibility polygon. We also proved that,
under staircase visibility, some orthogonal polygons re-
quire a quadratic number of witnesses. As the main
result, we gave an O(n4) time algorithm for computing
a minimum witness set for orthogonal polygons under
the rectangular and staircase visibility models. This al-
gorithm makes use of the pixelation of a polygon, and
relies on an algorithm for computing the visibility kernel
of a point under each visibility model.
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