
EasyChair Preprint
№ 1735

Pigeon: A Dynamic and Efficient Serverless and
FaaS Framework for Private Cloud

Wei Ling, Lin Ma and Chen Tian

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2019



Pigeon: A Dynamic and Efficient Serverless and
FaaS Framework for Private Cloud

Wei Ling
Futurewei Technologies.

Santa Clara, USA
weiling6@gmail.com

Lin Ma
Futurewei Technologies.

Santa Clara, USA
lin.ma@futurewei.com

Chen Tian
Futurewei Technologies.

Santa Clara, USA
chen.tian@futurewei.com

Abstract—Recently, voice-triggered small cloud functions such
as Alexa skills [1], and cloud mini programs [2] for IoT
and smartphone, grow exponentially. These new developments
also attract organizations to host their own cloud functions or
mini programs in private cloud environment and move from
traditional Micro-service architecture to Serverless Function-as-
a-Service (FaaS) architecture. However, current Serverless FaaS
frameworks [3] [4] [5] [6] [7] cannot meet cold start latency,
resource efficiency required by short-lived cloud functions and
mini programs.

In this paper, we build a new Framework — Pigeon that
brings Serverless and FaaS programming paradigm into private
cloud to enable enterprises to host these applications. Pigeon
creates function-oriented Serverless framework by introducing an
independent and finer-grained function-level resource scheduler
on top of Kubernetes. A new oversubscription-based static pre-
warmed container solution is also proposed to effectively reduce
function startup latency and increase resource recycling speed
for short-lived cloud functions. Empirical results show that
Pigeon framework enhances function cold trigger rate by 26%
to 80% comparing to AWS Lambda Serverless platform [5].
Comparing to Kubernetes native scheduler based serverless
platforms, throughput gets 3 times improvement while handling
short-lived functions.

Index Terms—Serverless, FaaS, Dynamic Resource Manage-
ment, Private Cloud

I. INTRODUCTION

While Public cloud serverless platforms, such as AWS
Lambda [5], Microsoft Azure Function [8], and Google Cloud
Function [9], show advantages, such as flexibility of scaling,
speed of development and cost reduction, etc., the downsides
of serverless solutions are obvious and remain unsolved.
The top 3 downsides of serverless approach are portability,
control, and performance [10] [11]. First of all, public cloud
serverless approach requires enterprises lock-in to one cloud
vendor, and reduces software portability. Secondly, for some
cloud applications, the serverless pay-per-use model reduces
cost. But for many large-scale or computational-intensive
applications, the control for both cost and scheduling becomes
very challenging [12] [13]. Thirdly, application performance,
especially cold startup latency, is not guaranteed by any of the
public serverless platforms. Therefore a better cloud serverless
solution is needed to overcome these issues.

Together with serverless, Function-as-a-Service (FaaS) is
attracting prevailing attention recently with the emerging of
voice-triggered skills, action functions [1] [14], and cloud mini

program [2]. It fundamentally changes the way developers
build applications [10]. FaaS enables small programs, i.e.
stateless functions, to run on cloud platform with trigger action
based execution model. (Trigger refers to function invocation
request and action means function being executed.) Unlike
traditional long-lasting micro-service, the skill function is
small in size but large in quantities. For example, the amount
of cloud skill functions developed by community for AWS
Alexa reaches 80,000 [1]. These skill functions are replacing
smart phone APPs with increased varieties and enhanced fast
responsiveness.

In private cloud FaaS approach, an organization rents or pur-
chases a set of cloud servers, such as AWS EC2. Using FaaS
and serverless programming model and execution framework,
developers can develop and execute their code the same way
as for Lambda functions on public serverless cloud. It enables
quick serving small program as function with small footprint
and simple life cycle management, and expands applications
that use cloud as a platform.

II. MOTIVATION

The main motivation of building Pigeon — a highly dy-
namic private cloud serverless and FaaS framework is to
host tiny cloud functions of large quantity and overcome
drawbacks that public serverless infrastructure suffers. First
of all, FaaS function cold startup latency is always a major
concern for serverless approach. The time it takes to start
Docker container, download function and initialize running
environment may exceed 3∼100 sec [15], [16], which limits
FaaS use-cases to only those slow-responsive applications.
For the mini programs and skill functions, they are started
occasionally when there is a trigger. The cold startup latency
has direct impact on user experience. Second, Kubernetes
[17] is becoming a popular container orchestration platform
that supports most open source serverless FaaS frameworks
[4], [3], [18], [7], [6]. However, scheduling and resource
management of Kubernetes are designed exclusively for long
running micro-services. They cannot meet FaaS’ short-lived,
fast resource reusing requirements in a private cloud envi-
ronment. An additional finer-grained function-level resource
management scheme is needed on top of Kubernetes. Third,
cost control is another important factor to choose private cloud
implementation. Pay-per-use model may be affordable for



individual service providers. But for large FaaS infrastructure
providers who allow their own customers to write and run
FaaS programs, the public serverless billing model gives little
control on overall budgeting and spending.

III. KUBERNETES BASED FAAS FRAMEWORK SURVEY

A. FaaS Function Execution Model

Popular open source Serverless Frameworks, such as Open-
Whisk [4], OpenFaaS [18], Kubeless [6], Fission [3], and
Nuclio [7], are all designed to run on top of Kubernetes.
This makes these serverless frameworks portable to different
cloud providers’ Kubernetes-based cloud environments, e.g.
Google GKE [19], AWS EKS [20], and Azure AKS [21],
which solves vendor lock-in problem mentioned in Section I.
The function execution process of OpenWhisk [4] is based
on spins up a Kubernetes-managed docker container from a
pool that acts as execution unit for a chosen function. Function
trigger and execution are handled by Kubernetes. Fission [3],
instead, maintains a pool of generic environment Kubernetes
pods. Once a function is invoked, one of pods from the
pool is taken and used for execution. OpenFaaS [18] and
Nuclio [7] work natively with Kubernetes. Each function user
builds creates a Docker image. which when deployed, creates
a Kubernetes service and that in turn creates a number of
Pods for execution. Kuberless [6] uses Kubernetes Customer
Resource Definition (CRD) to represent function. A function
custom object will be created and managed by independent
CRD controller. The function is exposed as a Kubernetes
service. As we can see, the function execution model of these
open source serverless frameworks all rely on Kubernetes‘
service, pod, main controller, and resource scheduler. While it
simplifies overall design, but it incurs all limitation imposed
by Kubernetes, e.g. high startup latency and slow resource
recycling speed.

B. Pre-warmed Container Pool Approach

FaaS Function cold startup latency and resource recycling
latency are major concerns for short-lived skill functions and
mini programs running on top of Kubernetes. Kubernetes
resource recycling latency is mainly due to heavy interactions
among Kubernetes API servers, distributed Kubelets and mul-
tiple Kubernetes managers. The Function cold startup latency
depends on container type, container image size, programming
language runtime [22], function and its dependent package
size, network bandwidth, memory cache, and local volume
settings [11]. If all these components and packages are freshly
downloaded from database and initialized on demand, it may
take more than 130 sec [15]. In order to reduce the cold start
latency, pre-warmed containers are adapted by OpenWhisk [4]
and Fission [3]. Openwhisk [22] keeps 3 container pools,
e.g. hot container pool, warm container pool and pre-warmed
container pool. The pre-warmed containers are pre-started
and loaded with common running environment and language
runtime but without function and its dependent package. The
warm and hot container have user function and specific depen-
dent package loaded. The hot container is in active state and

the warm container is in sleep state. Openwhisk relies on its
Invoker to make the decision of either reusing an existing hot
container, or resuming a paused warm container, or start to use
a pre-warmed container, or launching a new ‘cold’ container
and transforming it to pre-warmed containers. Invoker also
monitors the size and health of the pools. Fission [3], on the
other hand, maintains a pod pool of pre-warmed containers to
host function. The pool size of initial pre-warmed containers
can be configured based on user needs and managed by the
pool manager. Pigeon framework also uses a pre-warmed
container pool. In the following sections, we will discuss how
Pigeon enhance performance and dynamics of its pre-warmed
container pool.

C. Pre-warmed Container Pool Management

While pre-warmed container pool reduces FaaS function
startup latency, managing the pool brings new challenges. For
example, different resource-sized containers are needed in the
pool for diversified functions. The resource includes CPU,
memory or GPU, etc. Traditionally, container is managed
by Kubernetes controller. Once a container is created, the
resources that required by the container are actually reserved
and cannot be modified on the fly. Therefore, a combination
of different sized containers needs to be carefully planned
for the pool ahead of time. As we cannot predict incoming
trigger patterns and function footprints, resource segmentation
is inevitable, i.e. some smaller-sized containers may not be
used at all if all incoming function are large, or some large-
sized container may end up running smaller functions if
smaller containers are all taken.

The pre-warmed container pool solution also comes with
a dynamic container creation scheme to maintain the pool
size [3] [23]. In principle, once a container is assigned to a
new function, a same-sized empty container will be created
immediately. The pre-warmed container pool size is of key
importance. If the pool size is not big enough, in case of burst
requests, entire pre-warmed container pool may be drained
out and function triggers have to wait for new pre-warmed
containers to be created from cold. This situation is very
common in private cloud environment since overall resources
are quite limited and the pool size is oftentimes moderate.
Increasing pre-warmed container pool size is not a good choice
either. Since pre-warmed container combination in the pool
cannot fully match with the unpredicted incoming function
requests, the number of un-used or under-used containers will
be large and the overall resource utilization may be low.

IV. HIGHLY DYNAMIC PIGEON FRAMEWORK

A. Oversubscribed Static Pre-warmed Container Pool

One novelty of Pigeon framework is to use an oversub-
scribed static pool that contains pre-warmed containers with
all combinations of resource sizes. Each FaaS service pod is
preloaded with this static pool. In Pigeon, one FaaS service
maps to only one FaaS service pod due to intra-service load-
balancing restrictions. The function-level resource scheduler
ensures only some of these pre-warmed containers of a FaaS



Fig. 1: Two-level Resource Management: a function-level resource scheduler on top of Kubernetes service-level resource scheduler.

service are assigned functions and overall resource usage is
always in check and never exceeds upper limit. Figure 1
illustrates an example of a set of FaaS services. The overall
resource request of each FaaS service is 4-CPU, thus the Pod
of the FaaS service is assigned to 4-CPU host by Kuber-
netes. In the FaaS service 1, seven pre-warmed containers are
preloaded. Among them, four containers have 1-CPU resource
upper limit, two containers have 2-CPU resource upper limit,
and one container has 4-CPU resource upper limit. This kind
of pre-warmed container size partition can serve nearly all
kind of function triggers with different function size requests.
For example, it can serve either four 1-CPU functions, or
two 2-CPU functions, or a single 4-CPU function, or any
combination of them. Even though these pre-warmed contain-
ers are started with preloaded language running environment
and runtime, they only consume less than 1% CPU since no
function is really loaded in it. A more comprehensive resource
partition scheme is defined in next sub-section to cover all
different kind of resource types, including GPU, CPU and
memory.

B. Two-level Resource Management

Another novelty of this proposed framework is to introduce
an independent function-level resource management scheme
on top of Kubernetes service-level resource scheduler. The
function-level resource scheduler is used to guide function
dispatcher to dispatch function trigger towards a FaaS service
with sufficient resource. Agent in each FaaS service pod then
finds a proper-sized container serving the function trigger.
The Kubernetes resource scheduler on the other hand is
only responsible for creating, deploying, and scaling FaaS
services and pods. Figure 1 shows an example of how the
two-level resource management scheme works. There are N
FaaS services and pods deployed on N 4-CPU hosts by
Kubernetes resource scheduler. The agent in each FaaS service
pod is responsible for syncing up available resources with the
function resource scheduler. The function resource scheduler
is aware of all available resources in each FaaS service in
a cluster, guides function dispatcher to dispatch the first
function trigger for a function to a proper FaaS service, and
updates remaining resources of the FaaS service. The function

dispatcher caches the first triggered function and FaaS service
mapping, and dispatches the subsequent function triggers of
the same function directly without getting function resource
scheduler involved again.

Figure 1 also gives an example of how the functions are
assigned to pre-warmed containers after trigger reaches service
pod. The agent assigns two 1-CPU functions to two 1-CPU
pre-warmed containers, and one 2-CPU function to a 2-CPU
pre-warmed container in FaaS service pod 1. In FaaS service
N , one 4-CPU function is loaded to a 4-CPU pre-warmed
container to have saturated the host resource. The function
runtime inside pre-warmed container handles function requests
and loads corresponding function from function storage.

C. Pigeon Function Level Resource Management

1) Function resource presentation:
We define resource subscription vector for each container as
Xj = {x1,j , x2,j , xi,j , . . . , xn,j} where j is container index,
i is resource type index, n is number of resource types,
and xi,j refers to the subscription upper limit of resource
type i on container j. Table I shows a list of containers in
FaaS service k and their upper limit resource subscription
breakdown. Note that Xj,k represents the resource subscription
vector for container j in FaaS service k.

TABLE I: Container Resource Subscription Vector Example

Resource Resource Resource Types (i ∈ [1..n], n = 3)

Container Vector CPU GPU Memory(GB)

1 X1,k x1,1 = 1 x2,1 = 0 x3,1 = 1
2 X2,k x1,2 = 2 x2,2 = 0 x3,2 = 1
3 X3,k x1,3 = 4 x2,3 = 0 x3,3 = 2
4 X4,k x1,4 = 6 x2,4 = 1 x3,4 = 4
5 X5,k x1,5 = 1 x2,5 = 1 x3,5 = 2

We also define Yk = {X1,k, X2,k, Xj,k, . . . , Xm,k} as an
exhaustive vector of pre-warmed containers in FaaS service
Yk, where m is the total number of pre-warmed containers in
service k. m is set to be bigger than the containers number that
will be actually used to enable over-subscription and facilitate
function assignment. The vector Yk will not be changed



once FaaS service k is created. Ak = {x1,k, x2,k, . . . , xn,k}
represents available resources in FaaS service k. The vector
of available resource for each service is used for function
scheduler to determine whether a new function trigger should
be allowed to dispatch to a FaaS service.
Y = {Y1, Y2, Yk, . . . , Yl} is a vector of all created FaaS

services in a cluster (cloud). This vector can be scaled up or
down by cloud service scheduler. Table II shows some FaaS
services in a cluster and corresponding available resources.

TABLE II: Available Resource Ak in a Service Yk

FaaS Available Resource Types (i ∈ [1..n], n = 3)

Service Resource CPU GPU Memory(GB)

Y1 A1 x1,1 = 1 x2,1 = 1 x3,1 = 0.5
Y2 A2 x1,2 = 2 x2,2 = 1 x3,2 = 0.9
Y3 A3 x1,3 = 1 x2,3 = 2 x3,3 = 1
Y4 A4 x1,4 = 1 x2,4 = 0 x3,4 = 0.5
Yk Ak x1,k = 6 x2,k = 1 x3,k = 8

2) Function resource management algorithm:
A function needs to be dispatched to a FaaS service and
then a pre-warmed container. We formulate resource request
of a function trigger q as Fq = {x1,q, x2,q, . . . , xn,q}. The
scheduler will pick the first service that satisfies Ak ≥ Fq .
Specifically, available resource needs to be more than the
requested resource for each of the n resource types. Agent
in the selected FaaS service pod picks a right sized pre-
warmed container, e.g. Xj,k = Fq , for loading the function
and processing the trigger.

The available resource Ak in FaaS service k will get
decreased by function resource scheduler when the function
dispatcher sends a new function trigger to the service. Agent
in each FaaS service pod will increase the available resource
when a function lifecycle ends. After available resources are
changed in a FaaS service, a list of valid containers will
be recalculated for future function assignment. For example,
if some resources are used in a FaaS service, some large
sized containers may not be valid and should be moved
out of the valid list. It uses Ak to measure if containers
Xj in a service k can still obtain its targeted resources
Xj = {x1,j , x2,j , xi,j , . . . , xn,j} based on current resource
availability Ak in service k. If any type of resource becomes
insufficient, this pre-warmed container becomes invalid. A new
valid pre-warmed container list in service Yk is regenerated.

Table III shows a new valid pre-warmed container list in
service k after resource are consumed by a function Fq={4,
0, 2} taking 4 CPUs, 0 GPU, and 2G Memory. Comparing to
Table I, only 3 pre-warmed containers are available instead of
5 before.

TABLE III: New Available Containers in Service k

Container Vector CPU GPU Memory(GB)

1 X1,k x1,1 = 1 x2,1 = 0 x3,1 = 1
2 X2,k x1,2 = 2 x2,2 = 0 x3,2 = 1
5 X5,k x1,5 = 1 x2,5 = 1 x3,5 = 2

V. PIGEON IMPLEMENTATION

The implementation of Pigeon framework consists of
7 major modules including Kubernetes, FaaS Controller,
FaaS Data Plane, Function Integrated Development Environ-
ment(IDE)/Command Line Interface(CLI), FaaS Service Pod,
Function/Docker Storage and Kubernetes Etcd. (Figure 2).

Fig. 2: Pigeon Framework Architecture

• Kubernetes: Foundation of Pigeon framework that han-
dles cloud orchestration, resource scheduling, and scala-
bility management of all Pigeon components.

• FaaS Controller: it deploys and manages FaaS data
plane components using operator.

• FaaS Service Pod: FaaS service pod hosts execution of
FaaS functions. It consists of an agent and multiple hot
and pre-warmed containers with FaaS runtime running in
it. The agent also monitors health of each container and
recycles the container when function lifecycle ends.

• FaaS Data Plane: All components of this module are
implemented as Kubernetes services. The monitor and
operator component is used to monitor the health of
each component and deploy a new instance if needed.
Ingress service handles incoming restful function trigger
and translates it to internal function trigger. Function
dispatcher service distributes function triggers to a FaaS
service, either through cached function to FaaS ser-
vice mapping, or through Function resource scheduler.
Function resource scheduler service monitors available
resources of FaaS services, and picks a suitable FaaS
service for sending a function trigger.

• Storage: We choose object store database for FaaS Func-
tion/Package/Docker storage and use Kubernetes Etcd for
resource counting.

• Function IDE/CLI: Function editing relies on Function
IDE. The CLI module supports FaaS function creation
through SAM [24] compatible 3rd party IDE.

VI. EXPERIMENTS AND EVALUATION

Extensive experiments are conducted to compare the ef-
ficiency and performance of Pigeon framework with other
Kubernetes based serverless frameworks.

A. Function First Trigger Latency Comparison

Function first time trigger round trip latency is considered as
a key measurement of user experience for skill functions and
mini program. Experiment is performed on a private cloud
of 6 nodes, each with 32 cores and 125GB memory. The
FaaS Functions used in these experiments are Node.js empty
FaaS functions that directly respond to restful API trigger.



The function image together with its dependent libraries are
packaged as a tar file and will be downloaded from database
to runtime after corresponding trigger arrives. The tar file size
is 100MB. Skill function CPU usage is set to 25% CPU. We
send 200 first time triggers of 200 different FaaS functions to
the cluster the same time and measure overall response time.
We obtain function first trigger rate (function/sec) by dividing
200 functions by overall response time.

For Pigeon framework, 100 over-subscribed multiple-sized
pre-warm container pools are pre-created on each node, the
actual CPU and memory utilization of these pre-warmed
containers per node are negligibly about 1% and 80MB respec-
tively. A totally 600 over-subscribed pre-warmed containers
are created for the private cloud cluster under testing.

For dynamic pre-warmed pool solution and Fission frame-
work [3], pool size used in the test varies from 40 containers to
200 containers per cluster. They are tested in the same private
cloud. The dynamic pre-warmed pool solution is used to mimic
the pool management of OpenWhisk [4] [23] and used as a
reference.

Figure 3 shows that the over-subscribed static pool solution
used in Pigeon framework supports a constant first time trigger
rate of about 60 function/sec. That of the dynamic pre-
warmed container pool solution varies from 2.1 function/sec,
2.5 function/sec, 5 function/sec, and 18 function/sec corre-
sponding to initial pool size of 40, 80, 160, and 200 containers
respectively. The bigger pool size, the better first time trigger
rate. This is because, when first time trigger injection rate is
high, dynamic pool solution may saturate all its standby pre-
warmed containers thus other triggers cannot be served until
new pre-warmed container and its corresponding service/pod
is created by Kubernetes native scheduler. Therefore, bigger
pool size can reduce first trigger latency. However, bigger
dynamic pool size causes lower resource utilization as depicted
in section 3.3. A win-win solution does not exist in dynamic
pool approach. On the other hand, the over-subscribed static
pool solution used in Pigeon framework has enough right-sized
pre-warmed containers, provides constant and 3 to 10 times
higher performance than dynamic pool approach.

We also create the same 200 empty Node.js functions on
AWS Lambda platform and run the same tests. We measure the
200 function first trigger rate and got the inconsistent results. It
varies from 12 functions/sec to 44 functions/sec, 80% to 27%
lower than what Pigeon offers. This is a known issue of public
cloud serverless solution. The first time trigger rate of Fission
is about 1.26 function/sec. The reason the first time function
startup rate is so low is that, even though Fission claims using
a pre-warmed container pool, a new Kubernetes service and
function-to-service mapping needs to be created at function
first loading time, which cancel all gains from pre-warmed
container approach.

B. Cloud Resource Efficiency Comparison

In private cloud environment, cloud resources are limited. In
order to support large quantity of small functions, it requires
short function life span and fast container/cloud resource

Fig. 3: FaaS Function Startup Rate

recycling. In this test, we create 400 empty Node.js FaaS
functions that requires 50% CPU upper limit each and 200
CPU resources in total. The cluster has only 100 CPU re-
sources and can run 200 functions simultaneously. In order to
serve all 400 functions, the function is configured to exit after
each trigger in Pigeon. So containers and cloud resources are
recycled after each serving. The function triggers are generated
in a controlled rate to prevent sending all 400 triggers at the
same time. The function dispatcher of Pigeon does not allow a
trigger to be served if there is no CPU resources or no ready
pre-warmed containers. These unserved triggers are counted
as failed triggers. A total of 400 over-subscribed static pre-
warmed containers are created in Pigeon before test starts.

Fig. 4: FaaS Resource Efficiency Test

In Figure 4, when the trigger rate is 19 function/sec, Pigeon
can serve 400 functions using limited CPU resources with
only 0.25% failed triggers. When the trigger rate is at 43
functions/sec, the failed trigger is around 3%. When the trigger
rate is increased to 51 functions/sec, the failed trigger is around
4.25%. For dynamic pre-warmed container pool approach used
in OpenWhisk and Fission, function trigger rate varies from
3,4,5,6 functions/sec corresponding to failed trigger rate of
0%, 7.5%, 29.5%, and 39.5% respectively. From this test we
can see that Pigeon can support more functions using limited
cloud resources and still maintain high performance. This is
an important feature for private cloud and a differentiator
for Pigeon comparing to other FaaS frameworks, such as
OpenWhisk, Kubeless and Fission.



C. Throughput Comparison

In this section, we measure overall throughput of Pigeon
and Kubernetes native scheduling based dynamic pre-warmed
container pool approach. The cluster is configured the same as
section 6.1. A total of 200 empty Node.js FaaS functions are
created. Tester continuously sends Restful triggers of these
functions to cluster in parallel for 5 min with maximum
possible speed the framework can handle. All resources in the
cluster are used. The total throughput counts only successful
returned triggers. For Pigeon, 600 oversubscribed multiple
sized pre-warmed containers are statically created in the
cluster. For Kubernetes native scheduling based dynamic pool
approach, initial pre-warmed container pool size is 80.

We measure throughput for different function life span,
e.g. 10, 30, and 60 sec. Once a function life cycle ends, it
automatically exits. Its container is recycled. The function will
be reloaded onto a new pre-warmed container when receiving
a new trigger. This test mixes function first time trigger test
and function subsequence trigger test. It reflects normal FaaS
running condition.

In Figure 5, over-subscribed static pool approach used in
Pigeon shows 3∼4 times better performance comparing to
Kubernetes native scheduling based dynamic pool approach
used in OpenWhisk and Fission. This is because the Kuber-
netes native scheduling approach uses simple one function
per service mapping. When function life cycle ends and all
available resources are used, subsequent triggers have to wait
until existing service and container is depleted, and new Ku-
bernetes service, Pod and container are recreated, which may
take 60sec during burst trigger situation. Pigeon on the other
hand, has more spared containers due to over-subscription.
Pigeon function-level resource scheduler can borrow these
over-subscribed pre-warmed containers when a same sized
container is under recycling. Therefore, there is almost no
waiting time, leading to overall high and stable throughput.

Fig. 5: FaaS Throughput Test
VII. CONCLUSION

In this paper, we present a new private cloud serverless
and FaaS solution — Pigeon framework. Pigeon provides
organization with better control, dynamics, efficiency and
portability comparing to public cloud Serverless solutions. One
novelty of Pigeon is the introduction of function level resource

scheduler on top of Kubernetes. With function level resource
scheduling, FaaS function can be directly dispatched to pre-
warmed containers, which greatly reduces limitations imposed
by Kubernetes and increase system performance. Overall
throughput gets 3 times improvement comparing to Kubernetes
native scheduler based serverless platform. Another novelty of
this framework is the introduction of oversubscription-based
static pre-warmed container pool. This approach eliminates
the necessity of dynamically creating containers during burst
function trigger situation and improve system dynamics. It
also enhances function first time trigger rate by 26% to 80%
comparing to AWS Lambda serverless platform.

REFERENCES

[1] AWS, “Alexa Skills Kit,” https://developer.amazon.com/alexa-skills-kit,
2019, accessed: 2019-06-04.

[2] Tencent, “WeChat Mini-programs Wiki,” https://en.wikipedia.org/wiki/
WeChat, 2019, accessed: 2019-08-21.

[3] Fission, “Open source, Kubernetes-native Serverless Framework,” https:
//fission.io/, 2019, accessed: 2019-06-04.

[4] IBM, “Apache OpenWhisk,” https://openwhisk.apache.org/, 2019, ac-
cessed: 2019-10-06.

[5] Amazon, “AWS Lambda Function,” https://aws.amazon.com/lambda/,
2019, accessed: 2019-04-06.

[6] Kubeless, “Kubernetes native serverless framework,” https://github.com/
kubeless/kubeless, 2017, accessed: 2019-04-06.

[7] Iguazio, “Nuclio,” https://github.com/nuclio/nuclio, 2017, accessed:
2019-04-06.

[8] Microsoft, “Azure Functions,” https://azure.microsoft.com/en-us/
services/functions/, 2019, accessed: 2019-04-06.

[9] G. Cloud, “Google Cloud Functions,” https://cloud.google.com/
functions/, 2019, accessed: 2019-04-06.

[10] V. Soni, Serverless is the next evolution of a microservice architecture:
New Stack Serverless Survey, 12 2018.

[11] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson, Cloud Programming
Simplified: A Berkeley View on Serverless Computing, 2019. [Online].
Available: http://arxiv.org/abs/1902.03383

[12] M. Stein, The Serverless Scheduling Problem and NOAH, 9 2018.
[13] O. Alqaryoutia and N. Siyamb, Serverless Computing and Scheduling

Tasks on Cloud: A Review, 2018.
[14] Google, “Build Actions to help users to get things done with the

Google Assistant,” https://developers.google.com/actions/, 2019, ac-
cessed: 2019-06-04.

[15] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, Peeking Behind
the Curtains of Serverless Platforms, Boston, MA, 2018. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/wang-
liang

[16] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, Cold Start Influencing
Factors in Function as a Service, 10 2018.

[17] T. K. Authors, “Kubernetes,” https://kubernetes.io/, 2019, accessed:
2019-04-06.

[18] OpenFaaS, “Open FaaS,” https://www.openfaas.com, 2019, accessed:
2019-10-06.

[19] Google, “Google Kubernetes Engine (GKE),” https://cloud.google.com/
kubernetes-engine/, 2019, accessed: 2019-10-04.

[20] AWS, “Amazon Elastic Kubernetes Service (EKS),” https:
//aws.amazon.com/eks/, 2019, accessed: 2019-10-04.

[21] Microsoft, “Azure Kubernetes Service (AKS),” https:
//docs.microsoft.com/en-us/azure/aks/, 2019, accessed: 2019-10-04.

[22] G. C. David Jackson, An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions, 11 2018.

[23] Dominic Kim, “OpenWhisk Scheduling Proposal,” https:
//cwiki.apache.org/confluence/display/OPENWHISK/Autonomous+
Container+Scheduling+v1, 2018, accessed: 2019-10-06.

[24] Amazon, “AWS Serverless Application Model,” https:
//aws.amazon.com/serverless/sam, 2019, accessed: 2019-04-06.


