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Abstract— Non-compositional multi-word expressions
present great challenges to natural language processing
applications. In this paper, we present a method for modeling
non-compositional expressions based on the assumption that
the meaning of expressions depends on context. Therefore,
context words can be used to select documents and separate
documents where the expression has different meanings.
Deviation from a baseline is measured using serendipity (i.e.
the pointwise effect size). We used this statistical measure to
mark which patterns are over- and under-represented and to
take a decision if the pattern under scrutiny belongs to the
meaning selected by the context words or not. We used the
Google search engine to find document frequency estimates.
When used with Google document frequency estimates, the
serendipity measure closely mirrors some human intuitions on
the preferred alternative.

I. INTRODUCTION

Multiword expressions (MWEs) like idioms and colloca-
tions co-occur so often that they are perceived as a linguistic
unit. MWEs typically have a non-compositional meaning, i.e.
their meanings usually cannot be determined compositionally
from the meanings of the individual words. Therefore, they
present a great challenge to natural language processing
applications and are sometimes referred to as “a pain in the
neck” [1]. The identification of non-compositional MWEs
is a crucial subtask for many computational systems. For
instance, machine translation systems need to know if a
sequence of words can be translated word by word or if it has
a special meaning, which requires a particular translation.
Their ubiquity in language may affect the performance of
tasks like parsing and word sense disambiguation [2].

MWEs “are lexical items that: (a) can be decomposed into
multiple lexemes; and (b) display lexical, syntactic, semantic,
pragmatic and/or statistical idiomaticity” [3]. This definition
is useful, as “it states that some form of idiomaticity is
a necessary feature of MWEs” [4]. The term idiomaticity
expresses the markedness or deviation from the linguistic
properties of the component words. This notion applies at
the lexical, syntactic, semantic, pragmatic and/or statistical
levels, as layed out in [5, p.269ff].

For a MWE, lexical idiomaticity occurs when one or more
of its lexical components are not part of the conventional lex-
icon of the language in question. For instance, the expression
ad hoc is lexically marked since none of its components (ad
and hoc) are standalone English words. Ad hominem, and
post hoc (ergo procter hoc) are examples of Latin expressions

that are used with specific meanings in English, without fully
combining with other words.

Syntactic idiomaticity means that the syntax of the MWE
is not derived from that of its components. For example, the
adverbial phrase “by and large” is made up of the anomalous
coordination of a preposition (by) and an adjective (large).

Semantic idiomacity occurs when the meaning of an MWE
is not fully derivable from its component parts. For instance,
the expression middle of the road typically refers to “non-
extremism, especially in political views”[5]. This expression
is semantically marked in the sense that its meaning could
not be readily predicted from the meaning of its constituent
words (middle and road).

Pragmatic idiomaticity means that a MWE is associated
with particular communicative situations or discourse con-
texts. For example, the expression good morning is a greeting
used without irony at the start of the day and it does not
necessarily mean that the morning is good in any of the
senses of “good”.

Statistical idiomacity refers to the situation where par-
ticular combinations of words occur with markedly higher
frequency in comparison to the component words or al-
ternative phrasings of the same concept. For instance, it
would be perfectly correct (linguistically speaking) to say
computer translation instead of machine translation. How-
ever, statistically we find the particular lexicalisation machine
translation far more frequent than computer translation.
Statistical idiomacity includes notions such as collocations
(e.g. powerful car) vs. anti-collocations (e.g. strong car), as
can be noticed reversed in strong breath vs. powerful breath.

In this paper, we propose a statistical method that identifies
non-compositional expressions based on the assumption that
these expressions deviate from some expectations. Such a
deviance is measured using serendipity, as introduced by [6].
Serendipity is the pointwise effect size (i.e. the effect size
per cell), and signals that particular observations or events
deviate from expectations.

A. Related Work

In recent past, several attempts have been made to ad-
dress the automatic classification of MWEs. One method
[7] proposed to compare the mutual information between
the constituents of a non-compositional phrase and that of
a phrase created by substituting the constituents of that
phrase with their similar words. The assumption is that the



mutual information score of the former phrase is significantly
different from that of the latter phrase. However, this system
[7] scored low on both precision (39%) and recall (21%).

Another attempt [8] used distributional semantics and
latent semantic analysis (LSA) to developed a model that
uses the local linguistic context to discriminate the non-
compositional (or idiomatic) from its literal use of a MWE.
Their model also analyses the contexts of a MWE and
the context of the MWE components, which reveals that
such a context comparison can be an important factor for
distinguishing idiomatic from literal use of an expression.

Our final example is a framework [9] based on distribu-
tional vector-space models (“machine learning”) developed
to learn and detect semantic non-compositionality of English
noun compounds. Non-compositional compounds are defined
in that work (ibid.) as those compounds that are not well
modeled (i.e., marked as outliers) by the learned semantic
composition function. It is argued (ibid.) that polynomial pro-
jection and neural networks can model semantic composition
more effectively compared to the previous approaches based
on multiplicative or additive functions.

B. Overview

The paper is structured as follows. Section II presents the
serendipity statistical measure as used in this article. Section
III discusses issues related to the use of Google frequency
estimates. Section IV discusses some examples used in this
study. Section V discusses the results achieved and puts them
in context. Section VI concludes the discussion.

II. SERENDIPITY

A. Cross table analysis

For a better understanding of the serendipity measure, we
need to briefly discuss some prerequisites related to statistical
independence, including cross tables, statistical significance
and effect size.

Cross tables group variables to understand the correlation
between the different variables. A cross table analysis, also
known as contingency table analysis, is an analysis of fre-
quency that tests whether rows and columns are statistically
independent of each other. The most common type of cross
table is a 2× 2 table:

TABLE I
EXAMPLE OF A CROSS-TABLE

a c R1

b d R2

C1 C2 T

R1 and R2 represent the total frequencies for row 1 and
row 2. R1 is obtained by adding a to c. Likewise, R2 is
obtained by adding b and d. C1 (=a+b) and C2 (=c+d)
represent the total frequencies for column 1 and column 2,
and T is the sum total of all the cells. The null hypothesis
(i.e. the “expectation”) is that the rows and the columns are
independent of each other. Consequently, the expected prob-
ability of belonging to row 1 is R1/T . Likewise, belonging

to row 2 is R2/T , belonging to column 1 is C1/T , and
belonging to column 2 is C2/T . Simultaneously belonging
to row 1 and column 1 would be R1

T
C1

T = R1C1

T 2

B. The chi-square Statistic

If the assumption of independence holds, the probability
of belonging to a cell can be obtained by multiplying the
probabilities of the corresponding column and row. Once we
have the cell probabilities we get the expected frequencies
by distributing the total across all cells. Table II shows the
expected frequencies of each cell, after multiplying with the
grand total T , and after simplification.

TABLE II
THE EXPECTED FREQUENCIES

E11 = R1·C1
T

E12 = R1·C2
T

E21 = R2·C1
T

E22 = R2·C2
T

Significant deviations from independence can be assessed
by the difference between the observed and expected fre-
quencies. A positive difference indicates that the cell is over-
represented. A negative difference indicates that the cell is
under-represented. The test of significance works as follows:
for each cell, compute the difference between observed and
expected frequencies, square that difference and divide it
by the expected frequency. Finally, the values for all cells
are added together. This gives the χ2 statistic, which tells
if the observed deviances from the expected deviances are
explained by random chance or not.

χ2 =
∑
i,j

(Oi,j − Ei,j)2

Ei,j
(1)

C. Effect Size

The χ2 statistic answers the question of how likely the
rows and columns deviate from statistical independence.
How large the effect is has to be calculated by the effect
size (φ). For a 2 × 2 contingency table, the φ coefficient is

calculated as φ =
√

χ2

N . If either the rows or the columns are
greater than 2, then the φ coefficient can be generalized using
Cramér’s v =

√
χ2

df∗N , where df (the degree of freedom) is
the smallest number of either rows− 1 or columns− 1.

Any observed difference is assumed to be detected by
sampling variability [10], and with a sufficiently large sam-
ple, a statistical test will find a significant difference unless
the effect size is exactly zero. But very small differences,
even if significant, are often meaningless. For example, if
a sample size is 10 000, we can detect, with significance, a
1% difference from the expected frequencies for two groups.
If that difference is important or not depend on what we
measure and which questions we ask. The effect size is
related to the question of how many observations we need
in order to find out if the observed deviances are significant.
If we only need to make a few observations this could be an
important difference.



Unlike significance, effect size is independent of sample
size. φ is an important tool in reporting and interpreting the
importance of a found difference.

D. Serendipity

Serendipity is the contribution of each cell to the effect
size. Following [6], it can be computed by comparing the
cell’s contribution to the χ2 statistic with the overall χ2.
This will give, for each cell, its proportional contribution to
the effect size. Serendipity in each cell i can be computed
using the formula given in (2), where φ and χ2 are numbers
and Oi−Ei

Ei
are terms in a series, and n is the number of cells.

The proof involves multiplying φ with 1, and rewriting that
1 as χ2

χ2 , and expanding the upper χ2 using the definition
formula. Obviously, φ

χ2 can be multiplied into the sum, to
give the effect contribution per cell.

φ ∗ 1 =
φχ2

χ2
=

φ

χ2

n∑
i=1

(
(Oi − Ei)2

Ei
) (2)

An add-one solution can be applied to handle low cell
frequencies: add 1

n to each cell (this will sum to 1) and divide
by (χ2+1) rather than χ2. This gives some probability space
for the non-observed.

The definition [6] of the (signed) serendipity function
in the R programming language is given below. Note the
multiplication with 100 for readability.

serendipity <- function (x){
df <- min(nrow(x),ncol(x))
if (df>1) df <- df - 1
model <- chisq.test(x,correct=F)
phi <- sqrt(model$statistic/(df*sum(x)))
o <- model$observed
e <- model$expected
s <- sign(o-e)
phi2 <- phi*((1/prod(dim(x))+(o-e)ˆ2/e)

/(1+model$statistic) )
return ( round(100*s*phi2, 2) )

}

III. GOOGLE FREQUENCY ESTIMATES

We need to note that the frequencies we obtain from
Google are estimated frequencies. The estimation procedure
is controlled by Google and may change. However, in our ex-
perience the estimated frequencies are often very humanlike
in that estimates may be higher in a more specific context.
[6] gives the example of an unusual compounding (Slotts
gate) that has a selectively higher frequency if it is combined
by a high frequency word (Oslo) that it is associated with.
Johansson discuss this as a “machine version of the ... Con-
junction Fallacy”. It can be argued that this could be a feature
rather than a bug, as it makes (relative) frequency estimates
that are closer to how humans judge such frequencies in a
given context. Other reasons for using Google estimates are:
coverage, and up-to-dateness. “As a comparison, Kuperman
and Bertram (2013)[11] finds only 27 examples each of apple
sauce and applesauce in a controlled corpus, whereas Google

finds 20 million estimated documents for applesauce versus
28 million for apple sauce...”[6].

Uncertainties of using Google frequencies are connected
to the fact that we do not know the algorithm that is used,
and that algorithm can change at any time. Since it can
be argued that lexical frequencies in context are extremely
useful information for linguistic research it would be highly
desirable to have a machine that can deliver frequencies
over the net with the same or better coverage, and can
provide possibilities for specifying estimation and smoothing
functions. (Google do provide word frequencies (rather than
document frequencies) as a separate resource [12], but this
does not have the same coverage for longer phrases and we
do not get the boost from term specificity, and crucially it
does not allow us to search for context words within the
same document.)

Any search engine will utilize the frequency of a term
in a document in relation to the expected frequency of that
term in general. For example, function words such as “the”
will be present in almost all English documents. This has
been elaborated into a measure of term specificity [13], or
inverse document frequency, that gives a measure relative
to the proportion of all documents containing the specific
term. This can be further elaborated into measures that
are proportional to the probability of a term occurring in
a document. We do not know exactly which algorithm is
used by Google, but the inverse of that measure is likely
used in Google’s reported frequencies. One consequence of
this is that document frequencies of highly correlated and
somewhat unusual (selective) terms may be overestimated
and such terms that are anti-correlated may similarly be
under-reported. One further factor to consider is that the
number of documents that Google may retrieve is not fixed,
but rather fast growing. As the standard user is mostly
interested in the highest ranking documents for a search
query there is typically no need for an exhaustive search,
and the depth of the search may be limited by bandwidth
capacity, which in turn may vary across the day. This means
that Google frequency estimates may vary slightly depending
on other factors than the search query itself.

A. Conjecture Fallacy

It has been argued [6] that Google frequency estimates
may show a “machine version of the [...] Conjunction
Fallacy”, i.e. that the inclusion of an extra search term may
result in higher, not lower, estimated frequencies. An analogy
with the famous “feminist bank teller” [14] is that documents
about feminists are rarely also about bank tellers, and vice
versa, so they are highly anti-correlated. If a woman is
described in terms associated with feminist activists and if we
for a moment think of that description as a search query then
such a query would heavily select documents where the term
bank teller is relatively rare and feminist relatively frequent,
and more so than in the general corpus. One of the context
words used in the original experiment [14] was outspoken.
Consider this as the context word, and regard Table III. The
serendipity measure is given in brackets. As can be seen,



“bank teller” in the context of outspoken is considered under-
represented (-2.78) and should thus be avoided, and feminist
+ “bank teller” is over-represented (0.6) in that context and
could be chosen as it is more frequent than expected in
that context. Thus the serendipity measure used with Google
frequency (sampled June 9, 2018) closely matches human
intuitions [14]. Of course, before the publication [14] the
number of outspoken bank tellers may have been much lower.
However, the example shows that our human reliance on
context rather than logic may be accurately mirrored in our
procedure, though partly depending on how frequencies are
estimated, and affected by term specificity.

TABLE III
GOOGLE CONJUNCTION FALLACY (FREQUENCIES IN THOUSANDS).

pattern alone +outspoken
feminist 94000 (-0.01) 1800 ( 0.22)

“bank teller” 8500 ( 0.05) 23 (-2.78)
feminist “bank teller” 131 (-0.01) 10 ( 0.60)

IV. EXAMPLES

Our sample data contain expressions that can be both com-
positional and non-compositional [8]. For instance, the Ger-
man expression ins Wasser fallen has a non-compositional
interpretation on which it means ‘to fail to happen’ (1) and
a compositional interpretation on which it means ‘to fall into
water’ (2):

(1) Das Kind ist ins Wasser gefallen.
‘The child has fallen into the water.’

(2) Die Eröffnung/(Einweihung) ist ins Wasser gefallen.
‘The opening/inauguration is cancelled.’

Our assumption is that the compositional or non-
compositional meaning of an expression can be modelled
in terms of the words with which it co-occurs (i.e. “das
Kind”, “die Eröffnung”, or “die Einweihung” and the context
words it may be associated with. The context words are
those words that can function as an “implication” (i.e.
effects or consequences) of the multiword expression. For
instance, in its compositional meaning the MWE ins Wasser
gefallen may entail actions like schwimmen “swim”, baden
“bathe” and even ertrinken “drown”. To determine whether
an expression has a compositional or non-compositional
meaning, we compute the effect size for different config-
urations where an argument (referred to as X) co-occurs
with the MWE with and without context. For instance, for
the expression ins Wasser gefallen, the value of X can be
das Kind “the child” or die Eröffnung “the opening”, and
the CONTEXT=(schwimmen|baden|ertrinken). When using
Google Search, we basically get the two following configu-
rations:

1) X + MWE: the phrase X and the MWE occur indepen-
dently in the same document.

2) X + MWE + CONTEXT: Like the previous case, except
we select documents containing specific context words.

We expect compositional MWEs to appear in contexts
more similar to those in which their “implications” appear
than do non-compositional MWEs.

A. Example 1: ins Wasser gefallen

Let X be a variable that can take one of the two values:
x1=“Das Kind” or x2=“Die Eröffnung”. Also, let us consider
MWE be a variable referring to the multiword expression
ins Wasser gefallen, and CONTEXT be a set that contains
one or more of the context words schwimmen, baden and
ertrinken. The Google frequency (June 6, 2018) of x1 and
MWE occurring independently (i.e. x1 +MWE) is 10200
documents against 7320 for x2 and MWE. If we add the
context words, there are 22800 documents for x1 + MWE
+ CONTEXT against 3580 documents for x2 + MWE +
CONTEXT. Table IV shows the frequency and effect size (in
parenthesis) for the phrases “das Kind” and “die Eröffnung”
in combination with the multiword expression “ins Wasser
gefallen” with and without context.

TABLE IV
FREQUENCY AND (EFFECT SIZE) FOR Das Kind/Die Eröffnung

X X + MWE X + MWE
+ CONTEXT

x1=Das Kind 10200 (-4.77) 22800 (3.17)
x2=Die Eröffnung 7320 (14.44) 3580 (-9.59)
x1=Das Kind 10200 (-5.93) 22800 (4.35)
x2=Die Eröffnung 7320 (9.37) 3580 (-6.86)
x3=Die Einweihung 2140 (5.82) 455 (-4.27)

The effect size values provided in Table IV suggest that for
MWE only we should select the non-compositional meaning
(die Eröffnung) if there is no other information (positive
effect size = 14.44). However, the compositional meaning
should be chosen given the context words schwimmen, baden
or ertrinken (positive effect size = 3.17), because it is much
more frequent than expected. Recall that the context words
are chosen to select documents with the combinatorial mean-
ing. If we analyze simultaneously “die Einweihung” as well,
we see that “das Kind” (4.35) is still the over-represented
alternative in the context of water activities, and both the non-
compositional examples behave similarly for proportions of
document frequencies with and without context. Note also
the above mentioned machine version of the Conjunction
Fallacy: there are more documents (22800) found for “das
Kind” with the context words than without them! This might
be because the term is frequent by itself, and that may
lead to a more shallow machine search as enough high
ranking documents are found quickly without the context
words, which in turn forces a deeper search when context is
added. The compositional meaning has a stronger association
with the context words than the non-compositional meaning,
which is strongly negatively associated with those words.
Most of the documents that contain the non-compositional
meaning of the phrase ins Wasser gefallen do not mention
words like schwimmen, baden or ertrinken.



B. Example 2: auf dem Tisch liegen

One complication is that MWEs can occur in many gram-
matical varieties. The following example shows the active
form of the MWE auf dem Tisch liegen “to lie on the table”,
meaning either to be on the table physically or out in the
open, and thus also open for negotiation. Sometimes the two
meanings may coincide, for example when there is a written
proposal that is physically on the table, see example 3 and
4. As Katz & Giesbrecht noted “[...] in the newspaper genre,
highly idiomatic expressions [...] were often used in their
idiomatic sense [...] particularly frequently in contexts in
which elements of the literal meaning were also present”[8,
p.17]. The selection of context words to separate a dining
situation from a negotiation demands specific context words,
and there could be entire procedures for finding context
words that separate two situations.

(3) Der Teller liegt auf dem Tisch.

‘The plate is/lies on the table.’

(4) Der Vorschlag liegt auf dem Tisch.

‘The proposal is in the open / on the table.’

The results in Table V (frequencies estimated June 14,
2018) show that it is possible to separate these two situations
from each other using the right context words. Context A
selects documents that contain Gabel/fork, OR Löffel/spoon,
OR Messer/knife. Context B selects documents that contain
the word verhandelt/negotiated. In context A the literal, com-
binatorial, meaning (der Teller) is over-represented (2.64). In
context B, the non-combinatorial, idiomatic, meaning (der
Vorschlag) is over-represented (1.17). Combining context
A and B shows that context A over-represents the literal
meaning (5.71) and context B the idiomatic meaning (1.58).

The context words may come from the document that is
being analyzed – we would look for terms that are more
specific to our document than to the average document, and
select those that co-occur with the MWE under scrutiny.
There is obviously a need for meta-information about the
MWE-expression to know which is the combinatorial and
non-combinatorial. We need to know one of them to be
able to compare them, and determine if they are the same
or different. This could be accomplished by having stored
prototypical subjects when the MWE is compositional or
non-compositional. In this example, we used “Vorschlag”,
which is one of the non-compositional examples tested
previously for the phenomena [8].

V. DISCUSSION

As we have seen, the use of search engine frequency
estimates are not only useful for coverage, but also when
combined with the serendipity measure they closely mirror
some human intuitions on the most “likely” (i.e. over-
represented) alternative. Processing multiword frequencies
is normally hard due to low coverage even in very large
corpora. However, moving to frequency estimates rather than
actually retrieving examples in context may be one step on

TABLE V
FREQUENCY AND (EFFECT SIZE) FOR Der Teller / Der Vorschlag

X X + MWE X + MWE
+ CONTEXT A

x1=Der Teller 5110 (-1.30) 2990 (2.64)
x2=Der Vorschlag 13500 (0.54) 6110 (-1.10)

X X + MWE X + MWE
+ CONTEXT B

x1=Der Teller 5110 (2.20) 2410 (-3.51)
x2=Der Vorschlag 13500 (-0.74) 9240 (1.17)

X X + MWE X + MWE
+ CONTEXT A + CONTEXT B

x1=Der Teller 2990 (5.71) 2410 (-4.46)
x2=Der Vorschlag 6110 (-2.01) 9240 (1.58)

the way. Such estimates may be based on how terms co-
occur within the frame of a document, as documents have
themes and aboutness. This may help to select different
aspects of words and expressions that can be teased apart
by adding context words that will select for one theme
or meaning over other alternatives. For example, the word
outspoken selected documents in line with how people often
perceive the most likely outcome, and we saw the machine
version of the Conjunction Fallacy. We have also shown how
some German multiword expressions could be identified by
noting that the compositional meaning is more likely when
added context is congruent and collocates with that meaning,
such as adding verbs like “swimming” or “drowning” as
context to “falling into the water”. The context words can
be selected to collocate with the more literal meaning of the
phrase, which can be checked by some excellent available
resources that find relations between content words. One
such resource is the word2vec function [15] as implemented
in the Gensim project [16]. The main obstacles for the
scientific use of search engine frequencies are related to the
nature of commercial search engines. The goal of Google
is not to provide linguistically motivated frequency esti-
mates that can be replicated independently and understood
using open mathematical principles of how the estimation
is performed. However, they provide a useful blackbox for
frequency estimation that can be used for proof of concept
testing, as is done in the present article. Furthermore, since
it is only the frequency estimates we are interested in, the
links to found documents are not necessary.

VI. CONCLUSION

Human intuitions are not necessarily consonant with
formal logic, and may often be prone to logical fallacies
such as the Conjunction Fallacy. We have argued that
such fallacies are part of how we think and reason, and
in communication such fallacies may aid communication
when we assume that words and sentences in a context
were indeed said with an intention. Previously [6] the
serendipity measure has been used to investigate the process
of compounding (and decompounding) when words are
written together (e.g. “toothbrush” and “jaywalker”) or
apart as in “apple sauce”. When we evaluate evidence



in communication we may “think more like gamblers, in
that we value information that changes probabilities more
than we value absolute probabilities” [6]. This may even
help communication if we all have this tendency to use
context for inferring meaning in a communicative situation,
provided that the more helpful context can be detected,
for example by deviations from general expectations. The
modeling presented in this short article is certainly helped
by the effect from term specificity as modeled in search
engines. We have used frequency estimates to find estimates
that consider correlations and anti-correlations between
terms, and thus provide an increased contrast between
background frequencies and contextual frequencies. We
believe that this feature of search engines is a useful
feature. We have used the serendipity measure to mark
which patterns are over- and under-represented, and we use
that measure to take decisions. We suggest that automatic
finding of context words can be achieved using available
resources, for example the word similarity functions in the
Gensim project[16]. Handling ambiguous expressions in
general is a difficult problem for translation, as discourses
within a language often play with triggering more than one
meaning of an expression. However, in translation we are
forced to select one meaning of an expression. Serendipity
may help to indicate several relations between meanings
and the available context words. Handling of multi-word
expressions here also assumes that individual words can
be found with ease. This situation is more complicated in
for example Asian scripts, where space and punctuation
cannot be assumed. However, calculation of the statistics
is language independent once the relevant units are found,
and we suspect that people react similarly to over- and
under-representation independently of their languages.
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