
EasyChair Preprint
№ 5740

RICA: Real-Time Image Captioning Application

Suraj Dahake, Aditya Ohekar, Shubham Ilag and Aasim Shah

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 7, 2021

RICA: Real-Time Image Captioning Application

 Suraj Dahake, Aditya Ohekar, Shubham Ilag and Aasim Shah

 Department of Information Technology
 Datta Meghe College of Engineering, Airoli, Navi Mumbai, India - 400708

 Email: {surajdahake1, adityaohekar, shubham.ilag123, shah.aasim21}@gmail.com

Abstract—Automatically describing the content of an
image is a fundamental problem in artificial intelligence
that connects computer vision and natural language
processing. Image caption generator is a task that
involves computer vision and natural language
processing concepts to recognize the context of an
image and describe them in a natural language like
English. The recent advances in Deep Learning based
Machine Translation and Computer Vision have led to
excellent Image Captioning models using advanced
techniques like Deep Reinforcement Learning. While
these models are very accurate, these often rely on the
use of expensive computation hardware making it
difficult to apply these models in real time scenarios,
where their actual applications can be realised. In this
paper, we carefully follow some of the core concepts of
Image Captioning and its common approaches and
present our simplistic encoder and decoder based
implementation with significant modifications and
optimizations which enable us to run these models on
low-end hardware of hand-held devices. We also
compare our results evaluated using various metrics
with state-of-the-art models and analyze why and where
our model trained on MSCOCO dataset lacks due to the
trade-off between computation speed and quality. Using
the state-of-the-art TensorFlow framework by Google,
we also implement a first of its kind Android application
to demonstrate the real time applicability and
optimizations of our approach.

1. Introduction

For a machine to be able to automatically describe
objects in an image along with their relationships or
the actions being performed using a learnt language
model is a challenging task, but with massive impact in
many areas. For example it could help people with
visually impairment better understand visual inputs,
thereby acting as an assistant or a guide.
Not only must the model be able to solve the computer
vision challenges of identifying the objects in an image,
but it must also be intelligent enough to capture and
express the object’s relationships in natural language.
So, image caption generation has long been considered
as a difficult problem.

Image captioning can be used for a variety of use

cases such as assisting the blind using text to speech
by real time responses about the surrounding
environment through a camera feed, enhancing social
media experience by converting captions for images in
social feed as well as messages to speech. Its
purpose is to mimic the human ability to comprehend
and process huge amounts of visual information into a
descriptive language, making it an attractive problem
in the field of AI. Assisting young children in
recognizing objects as well as learning the English
language. Captions for every image on the internet
can lead to faster and descriptively accurate image
searches and indexing. In robotics, the perception of
the environment for an agent can be given a context
through natural language representation of the
environment through the captions for the images in the
camera feed.

2. Related Work

In this section we take a look at some of the work
previously undertaken in this problem domain. Earlier
image captioning methods relied on templates instead
of a probabilistic generative model for generating the
caption in natural language. Farhadi et al. (2010) [3],
use triplets of <object, action, scene> along with the
predetermined template to generate caption. They
discriminately train a multi label Markov Random Field
to predict the values of the triplets. Kulkarni et al.
(2011) [4], detect objects from the image, predict a set
of attributes and prepositions (spatial information
against other objects) for every object, construct a
labelled Conditional Random Field graph and
generate sentences using the labels and a template.
These approaches do not generalize well as they fail
to describe the previously unseen composition of
objects even if the individual objects were present in
the training data. Also, the problem with template
approach is their proper evaluation.

 3. Architecture

 3.1. Model

In our implementation we follow an approach
similar to Show and Tell [1] by introducing an
encoder-decoder architectural system. We have used
CNN and LSTM algorithms to train the model. The
encoder being the pretrained InceptionV4

Convolutional Neural Network by Google [16] and
. with Long Short Term Memory Cells. Encoder
InceptionV4 is used to transform raw images I into a
fixed length embedding F which represent the
convolved features for the images. These embeddings
are obtained by running a forward pass till the
penultimate layer i.e., the average pool layer of the
InceptionV4 model.

The decoder in our model has two phases, namely,
training and inference. The decoder is responsible for
learning the word sequences given the convolved
features and original caption. The decoder’s hidden
state ht is initialised using these image embeddings
features F at timestep t = 0. Hence the basic idea of
encoder-decoder model is demonstrated by the
following equations.

F = encoder(I); Xt=0 = F; Ot = decoder(Xt:0→t)

The training process in the RNN with LSTM Cell based
decoder works on a probabilistic model in which the
decoder maximizes the probability of word p in a
caption given the convolved image features F and
previous words Xt:0→t. To learn the whole sentence of
length N corresponding to the features F, the decoder
uses its recurrent nature to loop over itself over a fixed
number of timesteps N with the previous information
(features and sampled words at timestep t) stored in
its cell’s memory as a state. The decoder can alter the
memory Ct as it unrolls by adding new state, updating
or forgetting previous states through the LSTM’s forget
ft, input it and output ot memory gates.

3.2. Application

In our implementation we customize and optimize
our encoder-decoder model to function in a real-time
environment and to work on mobile devices. For this
we use Google’s numerical computation library,
TensorFlow and implemented the model in Colab. The
main advantage of using TensorFlow for any Deep
Learning model is its data-flow graphs based
computations, which basically comprise of nodes,
representing mathematical operations and edges,
representing the multidimensional data arrays
(tensors) communicated between nodes. The flexible
architecture of TensorFlow enabled us to deploy our
model’s computation on CPUs and GPUs and thus
helped us utilize inherent parallelism in primitive
operations and computations.

During the training process of the model using
TensorFlow, files related to checkpoints and
computation graph’s definition and metadata are
generated after every training epoch.

 Fig. 2 - Colab model output screenshot 1

 Fig. 3 - Colab model output screenshot 2

4. Experiments

4.1. Dataset

We have used the MSCOCO training dataset with
82780 images, each with five ground truth captions.
For the RICA app, we have currently trained the model
with 30000 images..

4.2. Implementation

We have implemented the model in the Google Colab,
which gives pre-built tensorflow and keras library
features.

We have also used Android Studio as we want to build
and deploy the RICA application.

• Our encoder, InceptionV4, which uses residual
connections, not only performs better than
GoogLeNet used by Vinyals on the ImageNet
task, but is also faster.

• The LSTM’s hidden dimension, word and image
embeddings in our model are all fixed to 256,
instead of 512.

• In our model, the encoder and decoder are
stitched into a single graph, hence only a single
TensorFlow session needs to be loaded to run
the entire model.

• We generate captions using a single trained
model, instead of using an ensemble of trained
models.
• To avoid the overhead of exploring the complete

search space of beam search tree, we
generate captions greedily, hence speeding up
the real-time inference.

During training, we use the average pooling layer
(after the final convolutional layer) from a pre-trained
inceptionV4 to encode the image (resized to 299 × 299
× 3) resulting in a vector of dimension 1536. Currently
our model supports only JPEG and PNG image
formats.

5. Conclusion

We have created a RICA application to introduce
possible use-cases for our model. In the near future,
we will fully train the model and deploy the application.
Its accuracy will be very good after this. By making
use of Inception architecture and by simplifying the
overall flow design, we optimize our model to perform
well in real time (on mobile devices) and manage to
obtain captions.

References

[1] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru
Erhan (2015) Show and tell: A neural image caption generator.
CVPR 1, 2

[2] K. Xu (2015) Show, attend and tell: Neural image caption
generation with visual attention. inProc. Int. Conf. Mach. Learn.

[3] Farhadi A. et al. (2010). Every Picture Tells a Story: Generating
Sentences from Images. Daniilidis K., Maragos P., Paragios N.
(eds) Computer Vision – ECCV 2010. Lecture Notes in
Computer Science, vol 6314. Springer, Berlin, Heidelberg

[4] Kulkarni G, Premraj V, Dhar S, Li S, Choi Y, Berg AC, Berg TL
(2011) Baby Talk: Understanding and Generating Image
Descriptions. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (20-25 June 2011)

[5] R. Kiros and R. Z. R. Salakhutdinov (2013) Multimodal neural
language models. inProc. Neural Inf. Process. Syst. Deep
Learn. Workshop

[6] Andrej Karpathy, Li Fei Fei (2015) Deep Visual-Semantic
Alignments for Generating Image Descriptions. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(April 2017), vol 39, issue 4:664 – 676

