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Abstract. The integration of business process management with blockchains across
organisational borders provides a means to establish transparency of execution and
auditing capabilities. To enable process analytics, though, non-trivial extraction and
transformation tasks are necessary on the raw data stored in the ledger. In this paper,
we describe our approach to retrieve process data from an Ethereum blockchain ledger
and subsequently convert those data into an event log formatted according to the IEEE
Extensible Event Stream (XES) standard. We show a proof-of-concept software artefact
and its application on a data set produced by the smart contracts of a process execution
engine stored on the public Ethereum blockchain network.
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1 Introduction

Blockchain offers a new prospective environment for the execution of inter-organisational
processes [24]. On top of a distributed execution environment, blockchains collate transactions
onto a push-only stack (ledgers) within backward-linked blocks [25]. Participants are pro-
vided with an up-to-date version of the entire blockchain via broadcast after a new block has
been added following a consensus algorithm. The utilisation of the blockchain in processes
covering a number of participants prevents the necessity of a central orchestrator and provides
trust among mutually untrusted parties [31]. Additionally, the decentralised database stores
transactional information triggered by smart contracts containing the state and execution
details of distinct cases [24]. Data can be retrieved that contains, inter alia, interacting process
participants, (discrete) time and duration of the interaction, execution costs on the blockchain
as well as the state details of a limited, recurring set of activities. This information enables
process monitoring [7], process compliance [32], and process conformance checking [23,26]
via process mining [29,30]. In addition, the information is also valuable for the analysis of the
efficiency and effectiveness of process executions, i.e., for performance mining [15,11,19,4].

In order to make proper use of that information, manual effort is required to convert
the data from individual blocks into an appropriate format, which causes a variety of chal-
lenges [27]. To mention but a few, the information retrieved from the blockchain is represented
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in hexadecimal and numeric formats; timestamps are approximate as the finest granular unit
of time in blockchains is at the level of blocks; the structure of data payloads attached to
transactions is for the most part arbitrary. Process mining tools, on the other hand, present clear
constraints on data types and their required representation. In order to localise and convert the
data, a profound understanding of the data model represented on the blockchain is essential.

In this work-in-progress paper, we follow the Design Science research methodology
to devise a framework that retrieves process data from blocks and transforms the process
data into an event log, formatted according to the IEEE Extensible Event Stream (XES)
standard. The software artefact is reflected in an implemented prototype, which is applied on
a real-world case study. The XES output file is used as an input for existing tools in the ProM
toolkit. Additionally, we discuss the challenges and opportunities pertaining to data extraction,
transformation and interpretation of blockchain data to drive future work in this area. To the
best of our knowledge, this work is the first one retrieving and transforming blockchain data
into a standardised format that can be used in process mining tools. Consequently, our work
is the first that enables process monitoring, process conformance and process compliance
checking with process mining on blockchain-based process executions.

The remainder of this paper is structured as follows. In Section 2, the notions backing
our research work are provided. Section 3 describes our approach. Section 4 describes the
experiment conducted with a real-world case study. The paper concludes with Section 5
including implications for further research.

2 Background

A blockchain consists of a distributed ledger of transactions [25]. Blockchains operate on top
of a peer-to-peer network, where each peer stores a local copy of the ledger’s transactional data.
The transactions are collated in blocks, which are sequentialised as an append-only chain. Com-
pact identification and storage of data, as well as the backward-linking of blocks in the chain,
are based upon hashing algorithms such as the SHA-3 compliant algorithm KECCAK [6].
Appending new blocks in a trustworthy manner is enabled by a combination of consensus-
making, cryptography, and market mechanisms [25]. A central authority is thus not necessary
to that extent, making it advantageous for processes containing a set of untrusted and unknown
participants [31]. More recent blockchain protocols such as Ethereum [33] enable programma-
bility of the platform through the smart contracts. Ethereum distributions come endowed with
dedicated smart-contract programming languages such as Solidity [10], an object-oriented,
high-level programming language. Ethereum smart contracts are executed in a decentralised
environment named Ethereum Virtual Machine (EVM). Their function signatures and public
attributes are exposed through a humand- and machine-readable interface called Application
Binary Interface (ABI). The execution of smart contract operations is associated to a price
expressed in terms of gas, exchanged at a variable rate with the Ether cryptocurrency. The
invocation of smart contracts’ functions occurs via transactions that are stored on the ledger.

Blockchain for business process execution. Smart contracts allow for the codification of
business process logic on the blockchain [12], as shown in the seminal work of Weber
et al. [31] and later on with tools like Caterpillar [22] and Lorikeet [28]. As several mod-
ern Business Process Management Systems (BPMSs) do, Caterpillar and Lorikeet adopt a
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Fig. 1: The choreography Business Process Model and Notation (BPMN) model of an
incident management process [31].

Model-Driven Engineering (MDE) approach to let the process analysts provide graphical
representations of the process and turn it into executable code enacting it. They take as input
models that are specified in the BPMN language [15]. Figure 1, e.g., illustrates the BPMN
choreography model of the incident management process introduced by Weber et al. [31] to
evaluate their execution engine for inter-organisational processes.4 The process begins with
an issue raised by a customer. The key account manager registers the problem description.
Until a solution is not found, the ticket escalates to the 1st level support, then to the 2nd level
support, and finally to the developer. After the solution is found, a feedback is given and the
solution explained to the customer.

The workflow routing of blockchain-based process execution engines is performed by
smart contracts generated by compilers that translate BPMN diagrams into smart contract
code (e.g., Solidity). Once deployed on the blockchain, the contract instances are identified
by the hexadecimal address of their account, which serve as a key for querying the state of
the process instances.

The transactional storage of interactions among the actors operating on the blockchain
and with smart contracts enables traceability of processes [13]. Our aim is to extract the
process data from the ledger and turn it into a readily processable format for process mining
tools, in order to enable analysis and auditing of processes run on the blokchain.

Event logs for process mining. Process mining makes use of the sequential data stored by
BPMS and other process-aware information systems such as Enterprise Resource Plannings
(ERPs) or Customer Relationship Managements (CRMs) in order to discover, analyse and
enhance existing processes [1]. As such, process mining is a valuable means to conduct
auditing and forensics on existing process data [18]. The standard data structure with which
those data are stored is named event log, or log for short. An event log consists of a collection of
traces, where every trace represents a process run (or process instance) and activity executions

4 Diagram in Fig. 1 courtesy of Ingo Weber.
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Table 1: An event log excerpt.
Case ID Event ID Activity name Timestamp Resource . . .

1 1 Customer has a problem 2016-03-22T14:06:22.000Z Key Account Manager . . .
1 2 Get problem description 2016-03-22T14:06:35.000Z Key Account Manager . . .
1 3 Ask 1st level support 2016-03-22T14:07:20.000Z Key Account Manager . . .
1 4 Ask 2nd level support 2016-03-22T14:08:38.000Z 1st Level Support . . .
1 5 Provide feedback for 1st level support 2016-03-22T14:09:04.000Z 2nd Level Support . . .
1 6 Provide feedback for account manager 2016-03-22T14:09:14.000Z 1st Level Support . . .
1 7 Explain solution 2016-03-22T14:09:22.000Z Key Account Manager . . .

2 8 Customer has a problem 2016-03-22T14:37:45.000Z Key Account Manager . . .
2 9 Get problem description 2016-03-22T14:38:00.000Z Key Account Manager . . .

. . . . . . . . . . . . . . .

32 250 Customer has a problem 2016-03-22T12:46:01.000Z Key Account Manager . . .
32 251 Get problem description 2016-03-22T12:46:21.000Z Key Account Manager . . .
32 252 Ask 1st level support 2016-03-22T12:47:16.000Z Key Account Manager . . .
32 253 Ask 2nd level support 2016-03-22T12:47:53.000Z 1st Level Support . . .
32 254 Provide feedback for 1st level support 2016-03-22T12:48:09.000Z 2nd Level Support . . .
32 255 Provide feedback for account manager 2016-03-22T12:48:40.000Z 1st Level Support . . .
32 256 Explain solution 2016-03-22T12:49:17.000Z Key Account Manager . . .
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Fig. 2: The meta model class diagram representation of the XES standard [17].

are represented by events (each mapped to an activity name). Event logs may contain additional
information in the form of event attributes, such as the timestamp or the resource carrying out
the related activity. Table 1 shows an excerpt of event log that may originate from the execution
of the process in Fig. 1. Process analytics toolkits such as ProM [2] or Apromore [20] take
as input event logs that are formatted according to the XML-based IEEE standard XES [17].
Figure 2 illustrates the original version of the standard. The top level element of XES is a
log containing trace nodes (one per process instance). Traces incorporate event nodes. Data
are stored in attributes, which are represented as key-value nodes. The XES standard defines
attribute data types and semantics through an extension mechanism. Every extension has a
name, a prefix, and a reference Uniform Resource Identifier (URI). For example, extension
Concept, with prefix concept:, and URI http://www.xes-standard.org/concept.xesext, is used to
name elements such as event (typically with the corresponding activity label) and traces. Other

http://www.xes-standard.org/concept.xesext
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Fig. 3: Approach for the extraction of process data from a blockchain and transformation
into an event log.

extensions we make use of are, e.g., identity, to denote the unique identifiers of elements,
organizational (prefix: org) for resources, time for event time-stamping, lifecycle for the
status of activities, and cost for execution costs.

3 Approach

Figure 3 illustrates our approach for the extraction and transformation to XES of process data
from the blockchain. We remark that we use only information that is stored on the blockchain.

We begin with the analysis of the smart contract implementing the business process. With
this analysis, we aim at producing information to identify transactions that are associated with
the execution of process tasks. To that end, we rely on the fact that the payload of an Ethereum
transaction stores the function selector, i.e., the first four bytes in the SHA-3 hash of a string en-
coding the function signature. For instance, let us consider task Customer has a problem, which
is implemented by a function with signature Customer Has a Problem(). The selector for
such function is 0xefe73dcb, because the SHA-3 hash for Customer Has a Problem()

is 0xefe73dcb348c11a7ab31ce1620102e63c94e84ab393a78f187d1485c8a2c72cc.
For convenience, we keep a hash-table to associate task names with their corresponding
function selectors, as we use it to generate and enrich the event log.

Blockchain-based BPMSs such as Caterpillar and Lorikeet use the factory pattern to
control the creation of process instances: a factory contract deploys, for each new process
instance, a smart contract that enacts the business process. We observe that the address of the
factory contract is included in the metadata of the transaction associated with the creation of
a new process instance as the originator of such transaction, i.e., within the attribute Trans-

action.from. Therefore, if we assume that the address of the factory contract is provided,
we can identify the address of each of the process instances created by the factory contract
and later each one of the transactions associated with a process instance. We inspect the
blockchain data model of blocks and transactions as illustrated in Fig. 4. We identify the hash
as a unique identifier for every block and every transaction.
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Fig. 4: The data model of blocks and transactions. We depicted the attributes used for the
extraction of blockchain data.

The transactions included in a block can be obtained in the Block.transactions field
of a block. The UNIX timestamp represented in the block can be used as a basis to derive
the timestamps of the activities therein. The transactions are allocated to an enumeration
denoting the order of the process executions and saved into a data structure. In order to provide
completeness of the dataset, we decode the hash values and save both the function signatures
and activity names in a human-readable format. In order to add the activity name, we compare
the data from the transaction input field with the signature hash saved in the data structure,
which is denoted as Function signature data store in Fig. 3. For consistency reasons, we use
the transaction data from the data structure denoted as Instance transactions data store to
add additional information such as the costs of the process instances in Ether or fiat currency
like US dollars. Finally, the data extraction and processing is finalised and the result can be
transformed into an event log that is compliant with the XES format.

To transform the instance transactions data store into a log that complies with
XES standard, we map the attributes in the data store to XES event and trace at-
tributes. Whenever suitable, we append XES extension declarations to our file to
enrich events with additional information, such as cost or time, declared into the
header of the XES document. For example, we use the mentioned transaction hash
0x656252f3ecee102d981520ca9e0ca0f7048bce99e4f6fead89d358cdbedd6156 as
the id node of the event. We use the function selector, i.e., the first four bytes of the
Transaction.input field (0xefe73dcb) as a custom activity id attribute. Timestamp
2016-03-22T13:44:22.000Z is mapped to the event with the key time:timestamp.

4 Case Study

In this section, we present a case study for our approach. We extract process data from a public
blockchain and transform the process data into a XES log. The software project, including
the Jupyter notebook for our case study,5 is openly available as a public GitLab repository.6

4.1 Extraction of an event log from the public Ethereum blockchain

To evaluate our approach, we analyse the transactions stored on the public Ethereum network
by the execution engine described by Weber et al. [31]. Figure 1 illustrates the BPMN choreog-
raphy model of the incident management process they implemented. The process is enacted by

5
https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper/

incident_management_process.ipynb
6
https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper

https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper/incident_management_process.ipynb
https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper/incident_management_process.ipynb
https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper
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Table 2: Mapping between event log elements and blockchain data fields in our case study.
Event log attribute Blockchain data field

Case ID Transaction.to
Activity ID Transaction.input[2:10] (function selector)
Event ID Transaction.hash
Activity label Reverse-engineered from contract ABI and function selector in Transaction.input
Event timestamp Block.timestamp (plus sorting by Transaction.index)
Event cost Transaction.gas
Event resource Transaction.from

{ blockHash : 0 x1eca7ae74de59dff4f553b052a0e8346b1fc1587cf76ca5ee5b22da84f87822b ,

blockNumber : 1196772 ,

from: 0 x1387e74982055e3e1d235aad579350813b329b2b ,

gas: 1000000 ,

gasPrice: 20000000000 ,

hash: 0 x656252f3ecee102d981520ca9e0ca0f7048bce99e4f6fead89d358cdbedd6156 ,

input: 0xefe73dcb ,

nonce: 227,

r: 0 xf26831a097ee1a3cf64364a07ff80fa816dd8604461482921a81be74276b5e7b ,

s: 0 x60a41b999ccd10461565d604cd063c299a5b1006a9ed8b0fcc84e5cfa9960f8d ,

to: 0 x0E6e0313dBe1Ba7A8bCb622EE7A77EaCBc9eF73f ,

transactionIndex : 3,

v: 28,

value: 0 }

Listing 1: Key-value representation of the transaction data denoting the execution of an activity.

a smart contract to be run on the blockchain, which we henceforth refer to as process contract.
Every activity corresponds to a function, whose signature is exposed by the contract ABI.

The process instances implemented on the blockchain are initiated by a factory smart
contract at address 0x09890f52cdd5d0743c7d13abe481e705a2706384. The factory con-
tract deploys a new instance of process contract for every new run. To retrieve the process data,
we access the Etherscan Ethereum blockchain explorer and analyse the list of transactions
having the factory smart contract as the sender, i.e., such that the factory address occurs in
their Transaction.from field. Those transactions amount to 32 in our case.7

Table 2 summarises the mapping between the event log elements and the blockchain data.
The Transaction.to field of each of the transactions from the factory contract identifies a
process instance, thus 32 process instances were run on the blockchain. Using again Etherscan,
we retrieve the transactions directed to every such process instance contract. Listing 1 shows
one of those transactions. To identify which of those correspond to an activity enactment, we
operate as follows. Considering the set of activities of the process, we find the corresponding
function names in the ABI of the called contract. Thereupon, we compute the KECCAK hash
for each of the function signatures of interest and save the hexadecimal representation of its
first four bytes, as shown in Table 3. We thus select the transactions denoting the activity enact-
ment by selecting the ones that have those four bytes as the prefix of their Transaction.input
field. The transaction of Listing 1, e.g., corresponds to activity Customer has a problem.

Finally, we turn the extracted transactions into a XES document. Every process instance
contract corresponds to a trace. Therefore, we use its hash as the trace identifier (id). Ev-
ery (activity-related) transaction towards that contract maps to an event therein, so its hash
represents the id of the event. As an additional attribute we add XES-defined standard

7
https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384

https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384
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Table 3: The activity names, their associated smart contract’s function signatures, and the
first four bytes of the KECCAK hash of those signatures, for the process in Fig. 1.

Activity name Function signature Function selector

Customer has a problem Customer Has a Problem() 0xefe73dcb

Get problem description Get problem description(int32 x) 0x92ed10ef

Ask 1st level support Ask 1st level support(int32 y) 0x82b06df7

Explain solution Explain solution() 0x95c07f19

Ask 2nd level support Ask 2nd level support() 0x63ad6b81

Provide feedback for account manager Provide feedback for account manager() 0x58a66413

Ask developer Ask developer() 0xecb07b8c

Provide feedback for 1st level support Provide feedback for 1st level support() 0x3b26a0ea

Provide feedback for 2nd level support Provide feedback for 2nd level support() 0x9ec3200a

<event >

<string key="id" value=" i0x656252f3ecee102d981520ca9e0ca0f7048bce99e4f6fead89d358cdbedd6156 " />

<string key=" concept:name " value="Customer has a problem" />

<string key=" activity_id " value=" e0xefe73dcb " />

<string key=" cost:currency " value="USD"/>

<date key=" time:timestamp " value="2016 -03 -22 T13:44:22 .000Z"/>

<string key=" lifecycle:transition " value="complete"/>

<float key=" cost:total " value="0.1754522"/>

<int key="blockNo" value="1196772"/>

<string key="from" value="0 x1387e74982055e3e1d235aad579350813b329b2b "/>

<float key="feeEth" value="0.0011393"/>

<float key=" pricePerEth " value="10.96"/>

<string key=" org:resource " value="0 x1387e74982055e3e1d235aad579350813b329b2b "/>

</event >

Listing 2: XES event corresponding to the transaction of Listing 1.

extensions such as the event time:timestamp, which we approximate by considering the
Block.timestamp. We use the Transaction.index to sort events, which belong to the same
block. In addition, we include the activity cost:total attribute, on the basis of the consumed
gas, plus a correction factor provided by Etherscan for the conversion in US dollars. Further-
more, we include the address of the sender account of the transaction as the org:resource
attribute. Listing 2 shows the event extracted from the transaction in Listing 1. The entire
generated XES file is available online.8

4.2 Analysis of the event log with ProM

We used the generated event log as an input for ProM to test its usage for process mining.
A full investigation and analysis of the event log goes beyond the scope of this paper. This
preliminary experiment shows the possibilities opened up by our approach, which extracts
and trasforms data stored on the blockchain to make it readily available for process mining.
Figure 5 illustrates the event log imported in ProM and visualised through the Dotted Chart
plug-in. The id of traces is on the y axis and on the x axis we see the timestamp of events.
Traces are sorted by the timestamp of their first event. The colour of dots corresponds to
the name (activity label) of events. It can be noticed that the process instances were run

8
https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper/

incident_management_process.xes

https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper/incident_management_process.xes
https://gitlab.com/MacOS/extracting-event-logs-from-process-data-on-the-blockchain/tree/paper/incident_management_process.xes
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Fig. 5: Dotted Chart visualisation of the incident management log in ProM.

Fig. 6: The incident management process mined via Inductive Visual Miner on ProM.

Fig. 7: Conformance checking of the incident management process on the log.

sequentially at close distance in time. Figure 6 depicts the output of the Inductive Visual Miner
discovery plug-in using the standard set-up [21]. Considering the original model in Fig. 1,
we can observe that all instances were such that the 2nd-level support resolved the issue as
activities Ask developer and Provide feedback for 2nd level support were never executed.
Our observation is confirmed by the application of the conformance checking plug-in of
Adriansyah et al. [3] on the log and on a Workflow net that simulates the behaviour of the
original process [1], as illustrated in Fig. 7. As it can be noticed in the information panel on
the left-hand side, the model is 100% fitting with the recorded traces. Indeed, the border of
all activities (transitions, graphically depicted as boxes) are surrounded by a green line. The
background colour of transitions indicates whether the corresponding tasks were executed
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(blue) or not (white). Notice that, as expected, the two activities at the bottom of the diagram
(Ask developer and Provide feedback for 2nd level support) did not occur.

A full-fledged quantitative analysis of the process is beyond the scope of this paper.
However, the presented outcome hints at the possibilities that the creation of event logs out
of transaction data on the blockchain opens up.

4.3 Discussion and limitations

The described approach shows promising results. However, we acknowledge limitations that
are inherently bound to the data analysis we conduct. For process mining, the information
found on the blockchain is required to include at least unique identifiers for process instances,
timestamps of executions as well as identifiable activity denotations. In our case study, we
detect unique identifiers and activity names by considering a smart contract function call as
the unit of execution, i.e., the event. However, we understand that smart contract functions
may not match process activities. This calls for more advanced techniques to relate smart
contract transactions to process task executions [5]. Also, we associate process instances to
smart contract life-cycles. This assumption holds when every process run corresponds to one
and only one contract. Blockchain BPMSs that adopt other architectural patterns than the
factory one could make our assumption not valid any longer, thus requiring more sophisticated
reference reconciliation mechanisms, or necessitating transaction payloads to bear a unique
identifier for instances. Furthermore, we approximate event timestamps with the block time,
although the level of granularity may not be sufficient and fully reliable. Information stemming
from off-chain sources should be retrieved from certified sources such as the so-called
oracles [34]. This opens up new challenges for future work, aimed at mixed on-chain/off-chain
information retrieval approaches. In general, our work depends on the data model retrieved
from the transactions. In fact, for different cases an adjustment to the corresponding data model
may be necessary. In future research endeavours, algorithms from semantic technologies could
be leveraged to circumvent manual adjustments [16,8]. Also, we observe that our solution
stores the generated event logs off-chain. This could make their synchronisation and update
with new process runs harder and potentially hinder run-time monitoring. To circumvent this
issue, we envisage solutions that lie at the core blockchain architecture or leverage the support
of additional data stores: an extension of blockchain protocol implementations with on-node
storage of state and event information [9], or the adoption of hash-based links connecting
transaction data with distributed file systems such as InterPlanetary File System (IPFS).9

5 Conclusion

In this paper, we described an approach to generate XES-compliant event logs out of process
data stored on the blockchain. Our approach provides a blueprint to retrieve process data
from the transactions ledger. As a proof-of-concept, we implemented a software prototype
applying our approach on a case study, based on a blockchain-enabled process run on the
public Ethereum network.

Our approach shows promising preliminary results, on the basis of which we envision
a number of future research avenues. From a practical perspective, we are developing further

9
https://ipfs.io

https://ipfs.io
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software artefacts to apply our approach on other blockchain-based BPMSs such as Cater-
pillar [22]. Furthermore, we aim at investigating how to extract and process information stem-
ming from other Distributed Ledger Technnologies (DLTs) such as Hyperledger Fabric [14].

We argue that the main challenge in mining processes from the blockchain is the mapping
between the process-specific data and their model and the concrete representations on the
blockchain. Challenges arise if that mapping does not ensure traceability. Future research
should thus be devoted to the creation of a modelling language describing how blockchain-
based process interactions are mapped onto blockchain data, so as to automate the manual
adjustments required by injecting such knowledge in the extraction algorithms themselves.
Furthermore, an interesting problem to tackle is the analysis of process data that are partially
on-chain and partially off-chain, to include also information sources beyond the reach of
blockchains. Novel solutions could build upon the ontology-based data access approach of [8].
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