
EasyChair Preprint
№ 6770

Weakly-Supervised Salient Object Detection
through Object Segmentation Guided by Scribble
Annotations

Xiongying Wang, Zaid Al-Huda and Bo Peng

October 6, 2021



Weakly-Supervised Salient Object Detection
through Object Segmentation Guided by Scribble

Annotations
1st Xiongying Wang
School of Computing

and Artificial Intelligence
Southwest Jiaotong University

Chengdu, China
wangxiongying@my.swjtu.edu.cn

2nd Zaid Al-Huda
School of Computing

and Artificial Intelligence
Southwest Jiaotong University

Chengdu, China
eng.zaidalhuda@gmail.com

3rd Bo Peng
School of Computing

and Artificial Intelligence
Southwest Jiaotong University

Chengdu, China
bpeng@swjtu.edu.cn

Abstract—With the advent of Neural Network, Fully-
supervised salient object detection achieves great success.
However, it takes plenty of efforts to obtain precise pixel-level
annotations. In order to reduce human labeling efforts, some
research adapt weak form annotations, but they still fall short
of the fully-supervised. In this paper, we propose a novel
weakly-supervised salient object detection framework, which
can reduce labeling efforts by using scribble annotations. In the
meantime, we also incorporate Deep Convolutional Network to
achieve high performance. To this end, we utilize high-quality
region hierarchies, which are generated by Convolutional
Oriented Boundary (COB) network, to select optimal level
for object segmentation. We build initial saliency maps and
thoroughly annotate the images during the initialization
phase by spreading labels information from scribbles to other
regions. During the training phase, the salient object detection
convolutional network is trained using the initial saliency maps.
Then, we utilize Conditional Random Field (CRF) to refine
saliency maps, which will then be used to retrain the network.
To achieve quality saliency maps, we iteratively optimize the
training process. Extensive experiments on six benchmarks
demonstrate that our proposed method outperforms previous
weakly-supervised algorithms.

Index Terms—Salient object detection, Scribble annotations,
Weakly-supervised, Hierarchical segmentation.

I. INTRODUCTION

Salient object detection (SOD) is to identify the most
appealing parts in an image based on human perception.
To extract saliency, traditional techniques [1] [2] employ
low-level characteristics such as colors and textures. Those
hand-crafted features or human experience only work well
in simple context, but fail in complex ones. Recently,
the development of Deep Convolutional Neural Networks
has boosted salient object detection [3] [4] [5]. However,
the performance of these Convolutional Neural Networks
based approaches come at the expense of large pixel-level
annotations. It is tedious and often takes several minutes for
an expert annotator to label one image. To reduce human
efforts and keep high performance at the same time, several
semi-supervised, weakly-supervised or unsupervised methods

[6] [7] [8] [9] have been introduced. Those approaches have
propensities for interpreting from sparse data [6] [7], or
learning from noise data [8] [9].

On the other hand, recent research has looked into splitting
an image into a multi-scale structure to capture objects at
all scales. Hierarchical segmentation increases the likelihood
of locating a whole or a portion of an object at a certain
hierarchy level. Hierarchical algorithms suffer from instability
as well. Since low-level features are used to build hierarchy
algorithms, results are vulnerable to space and feature
parameters selection (edges, colors, etc.). As a result, the
object’s scale is not enforced to be cohesive. In this paper, we
select the best segmentation level based on the boundary maps
predicted by the hierarchical image segmentation algorithm.

Even though some semi-supervised and unsupervised
methods in literature can address the human efforts problems
in some way, the performance is still far behind fully-
supervised approaches. In order to achieve high performance,
the optimal object segmentation level is selected from
boundary maps predicted by Convolutional Oriented
Boundary (COB) [10]. We also build a mapping model which
use scribbles [5] over the object segmentation. In doing so, we
can capture precise local structure while maintaining object
contour. By mapping foreground scribbles on the contour
map, the initial saliency annotations can be generated. The
initial saliency maps are then used to train a convolutional
network for SOD. The framework is updated by alternately
training, predicting and upgrading the prediction maps. We
apply Conditional Random Field [11] to refine prediction
maps during the alternately iteration process to correct errors.
After it converges, we choose the one with the minimum loss
to predict benchmarks.

The following are the three main contributions of this
paper: (1) We propose a novel weakly-supervised salient map
generation framework; (2) We design an approach to apply





Fig. 2. Top left: Original Image. Top right: Over-Segmentation. Bottom left:
Optimal Level. Bottom right: Under-Segmentation.

level.

1) Generate object segmentation hierarchy: In order to
generate accurate initial annotations, we apply hierarchical
objection segmentation method for good performance.
Considering higher accuracy and clearer boundaries as COB
shows in [19] [20] [21], in this work we also use COB [10]
to generate Ultrametric Contour Map (UCM). It applied deep
neural network to guide the generation process, which means
it has better performance in objection detection, which can in
turn contribute to saliency map generation.

2) Optimal scale selection process: How to choose
the candidate contour level will directly influence initial
annotation results. As it is shown in Fig. 2 (top right), the
low level contour map can capture more details, but with too
much noise, not to mention the cost of computation. However,
in high levels, such as (bottom right), even if it curbs the
noise from the background, foreground parts merges too. So
that vital information gets lost. Neither being too high nor too
low a level is a good candidate, whereas middle levels can
be a good balance. As it is shown in (bottom left), middle
levels tend to curb noise whilst keeping enough information.

In this paper we choose the 30% level from the bottom. The
equation used to calculate the number of regions is given as
below:

N(p) =
1

n

nX
i=1

t(i), (1)

where t(i) is the numbers of regions in one contour map
in a specific level p. n is the total image numbers in the
training data set. Our goal is to find out the suitable level
which satisfies:

l ≤ N(p) ≤ h. (2)

Fig. 3. A illustration of extracting foreground scribble. The first row shows
when both fore-scribble and back-scribble exist. The second row shows result
after extracting fore-scribble.

Empirically, we set l = 30 and h = 40. By applying Eq. (1)
and Eq. (2) in the boundary hierarchy, we find the 30% level
from the bottom would be the best.

3) Scribble-guided object region growing process:
Salience detection is to distinguish the foreground from the
background - it is mutual-exclusive. A pixel could be either
the foreground or the background. However, in an image, the
most intriguing part (foreground) should be highlighted. In
the proposed framework, we extract the foreground scribble
from both fore-scribble and back-scribble. The result of
choosing foreground is shown in Fig.3. The extracted the
foreground scribble will be used to guide the region selection
process.

Algorithm 1 Map foreground scribble to UCM
Input: UCM set U = [u1, u2, ..., un]and Foreground scribble

set F = [f1, f2, ..., fn]
Output: Initial saliency annotation

1: while i 6= n do
2: Pick up one pair (ui, fi)
3: Find out all regions R = [r1, r2, ..., rm] in ui.
4: while j 6= m do
5: Check intersection In = rj ∩ fi
6: if In ≥ θ then
7: Mark rj as salience
8: else
9: Mark rj as background

10: end if
11: end while
12: end while

After obtaining the foreground scribble, we need to map
fore-scribble to the UCM map for the initial saliency annota-
tions. In this process, we need to find out all the closed regions
in UCM. For regions which overlap with the fore-scribble,
they will be assigned as the foreground. After scanning all









Fig. 8. A demonstration of how iterations help with fine-tuning the network, Iter in the figure means Iteration.

how different methods works, the role of UCM in our
framework, and the influence of iteration.

In Fig. 5, we randomly pick out five images from test
dataset to show our strengths compared to other weakly-
supervised/unsupervised or fully supervised methods. As
is shown in Fig.5 (1st row), thanks to boundary correcting
post-processing iterations, our method tends to have clearer
and more complete object limbs. It still holds when it is small
target (2nd row). The alternate post-processing can suppress
noise during iteration. Those weakly-supervised/unsupervised
methods used for comparison are either miss parts or predict
noise when it comes to small objects. Fully supervised
methods tend to predict more facing small objects, since over-
fitting often comes after training too much. Our framework
can do a better job when targets take up most of the image
and is composed of high contrast parts(complex structure)
like zebra in 3rd row. Even facing human-made highly-
semantically-meaningful targets – which other methods don’t
interpret complete, our method can still pull it off (4th row).
Our framework still holds its ground when it’s about small
objects and multiple ones like it is in the 5th row.

To illustrate how UCM contribute to our superior
performance, we randomly pick up a few images from
training data set to show how the result becomes after the
network converges, as is shown in Fig. 7. Thanks to COB
[10] and UCM level choosing process in Algorithm 1, we
can achieve a lot in the following complex scenarios: object
composed with high contrast parts – complex structure; highly
semantic-related mirror; small targets in similar environment;
multiple small objects; many objects; saliency in several
un-salient noise objects; object with irregular boundaries; and
strong semantic-related targets, as shown in Fig. 7, columns
1st, 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th, respectively.

We also illustrate how iterations contribute to our supe-

rior performance in Fig. 8. In general, as is shown, with
iterations(Here the iteration is not epoch; One iteration con-
tains many epochs) alternately going, the network converges
towards a finer result. After each iteration, CRF is applied
to retouch prediction, and it takes about four iterations to
converge. The benefits of our alternately iteration can be
summarized as follows: When more than one salient object
exists and initial input do not catch them completely in Fig. 8
(1st and 2nd row), iteration can fix the missing parts gradually;
as is shown in 3rd row, if the salience exists in a environment
with similar color and texture patterns(unclear boundary), even
though CRF can usher in errors, the iteration can still filter it
out; In the 4th row, alternate iterations also partially solved
one of the biggest problems in weakly supervised saliency –
missing details; Moreover, in 5th row, the iteration process
also shows its ability to catch high level semantic meanings
and suppress errors.

V. CONCLUSION

In this paper, we proposed a weakly-supervised salient
object detection (SOD) framework with supervision from
information-sparse scribble annotations. To overcome the low
information density with scribble, we introduced contour
generation method COB as guidance to generate saliency
map as initial input. With more information-dense initial
saliency map as input, we alternately trained a network. After
applying CRF on predicted saliency maps at each iteration,
our network corrected errors and optimized gradually on
training dataset. Extensive experiments show that on metrics
F-measure, our framework outperforms all the other weakly-
supervised/unsupervised methods. Our method also achieve
the best result on most benchmarks about MAE. The PR-
curves also show robustness of our approach. Furthermore, our
framework is even on par with some fully-supervised methods.




