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Abstract
Safe and reliable autonomous driving hinges on robust perception
under challenging environments. Multi-sensor fusion, particularly
camera-LiDAR-Radar integration, plays a pivotal role in achieving
this goal. Different sensors have specific advantages and disadvan-
tages. Existing pipelines are often constrained by adverse weather
conditions, where cameras and LiDAR suffer significant degrada-
tion. This paper introduces the Camera Bi-directional LiDAR-Radar
(CBILR) fusion pipeline, which leverages the strengths of sensors
to enhance LiDAR and Radar point clouds. CBILR innovates with
a bi-directional prefusion step between LiDAR and Radar, leading
to richer feature representations. First, prefusion combines LiDAR
and Radar points to compensate for individual sensor weaknesses.
Next, the pipeline fuses the pre-fused features with camera features
in the bird’s eye view (BEV) space, resulting in a comprehensive
multi-modal representation. Experiments have demonstrated that
CBILR outperforms state-of-the-art pipelines, achieving superior
robustness in challenging weather scenarios.
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1 Introduction
For self-driving systems, it is crucial to develop a fast and accurate
3D object detector that predicts the bounding boxes and categories
of road objects. Nowadays, cameras, LiDARs, and Radars are often
used in advanced systems such as drones, robots and autonomous
vehicles. Many authors only use particular sensors to solve percep-
tion problems. This can lead to a generalization problem, because
there is a high probability that one type of sensor will be more rel-
evant than others for certain real-world scenarios. Each sensor has
advantages and disadvantages. From cameras, we can only obtain
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color and texture information about objects after projective trans-
formation of captured 3D scene into a 2D plane and long stages of
post-processing raw images [23], which is the field of color science.
For this reason, cameras cannot provide accurate depth information
(especially in low light conditions) compared to Radars and LiDARs
that operate directly in 3D space [8, 12]. However, researchers con-
tinue to develop perception algorithms that rely only on cameras
because it is a more cost-effective approach [10, 29].

1.1 Fusion approaches
Sensor fusion is an essential topic in many perception systems. A
lot of papers [28, 31] are devoted to LiDAR-camera fusion because
LiDARs have higher resolution, are less sparse than Radars and can
provide accurate measurements at close range. Since Radar anten-
nas are often installed horizontally, they cannot capture sufficient
vertical height information [26]. For voxel representation, a highly
sparse point cloud means that some voxels contain too few points
for processing.

Although LiDARs can provide accurate geometric information
about a scene, they do not perform as well as Radars at long dis-
tances and can introduce noise when the object is moving [7]. In
[18, 19] the authors use Radar-camera fusion for 3D object detec-
tion and tracking. Since such sensors in many cases have opposite
advantages and disadvantages, it is ideal to use multiple sensors
[3, 13] for robust performance in a variety of scenarios and condi-
tions. We have developed a fusion pipeline focused on improving
sensors that can withstand adverse weather conditions.

There are several strategies for sensor fusion. Early fusion di-
rectly combines sensor inputs before feeding them into shared
feature extractors. Late fusion processes sensor inputs indepen-
dently and then combines the output results. Mid-level fusion [11]
provides an intermediate representation for each sensor before the
final fusion step.

1.2 BEV Perception
A unified representation is necessary to make it easier to transfer
knowledge and combine features from different modalities [9]. The
vast majority of modern perception methods use a bird’s eye view
(BEV) representation to describe a 3D scene [22, 33]. BEV is an in-
formal perception standard for autonomous driving scenarios [12].
The BEV coordinate system is a rotation of the camera coordinate
system, such that the 𝑍 -axis is aligned with the cameras negative
𝑌 direction, and is placed a fixed distance below the camera as
shown in the Figure 1. Data from different modalities are used to
provide complementary knowledge such as precise locations from
point clouds and rich context from images. For example, fusion
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Figure 1: Four main coordinate systems: world, ego - vehicle,
camera and bird’s eye view [22].

algorithms translate features from different sensors into the BEV
representation and then combine them [13].

Cameras are typically mounted on vehicles parallel to the ground
and facing outward. For this reason, images are captured in a Per-
spective View (PV), which is orthogonal to BEV. Objects of the same
shape and size in 3D space can have very different representation
in the image plane because of their distance from the camera. The
BEV representation does not have scale and occlusion problems
compared to PV representation [8]. The transformation from PV
to BEV is the inverse perspective map problem, and it can have
more than one solution. Before the deep learning era, many works
tackled this problem by using a homography transformation matrix
because of its computational efficiency. Inverse Perspective Map-
ping (IPM) has been proposed to address this challenging mapping
problem [16, 17]. IPM-based methods assume that all points are
on the ground plane, sacrificing height variation. In complex real-
world scenarios, 3D objects like vehicles possess height and such
transformations can cause noticeable artifacts.

In recent years, data-driven methods have been widely used in
complex systems such as self-driving vehicles. Data-driven PV-BEV
transformation methods can be divided into three main groups:
depth-based, MLP-based, and transformer-based approaches [16].
Depth-based methods estimate the depth distribution of the each
image pixel along the ray (coming from the camera) that intersects
objects in the environment. This allows to elevate the 2D features
to 3D, and then obtain the BEV representations from 3D through
dimensionality reduction. Depth-based PV-to-BEV methods can be
divided into two classes depending on the using representation:
point-based and voxel-based methods. Point-based methods are
straightforward, they directly utilize depth estimation to convert
pixels into point clouds. Examples: Pseudo-LiDAR [24], Pseudo-
LiDAR++ [27], AM3D [15], PatchNet [14]. Voxel-based method
discretize the 3D space to build a regular structure for feature trans-
formation. The disadvantage of this approach is the loss of detailed
local spatial information within each voxel. The advantage is that
voxels are more effective at covering large-scale scene structure,
they are more efficient for 3D scene understanding.

Another approach is to utilize a variational encoder-decoder
or MLP to learn implicit representations of camera calibrations
to project PV features to BEV. MLP plays the role of a universal
approximator of the mapping function from PV to BEV [16]. MLP-
based methods focus primarily on working with a single image.
The drawback of MLP-based methods is that the learned weights

are fixed and not data dependent:

𝑌 =𝑊𝑋,𝑊 ≁ 𝑋

Transformer-based methods employ a top-down strategy construct-
ing BEV queries and searching corresponding features in perspec-
tive images through cross-attention mechanism. These methods
are more expressive, but hard to train.

1.3 BEV representation vs voxel-based
A voxel-based scene representation cannot provide computational
efficiency because such representation describes a 3D scene with
dense cubic features V ∈ R𝐻×𝑊 ×𝐷×𝐶 where 𝐻,𝑊 , 𝐷 are the spa-
tial resolution of the voxel space and 𝐶 is the feature dimension.
BEV provides the 3D scene with a 2D feature map B ∈ R𝐻×𝑊 ×𝐶

which encodes the top view of the scene. This represents the po-
sitional information of the ground plane by accumulating voxel
features along the vertical 𝑧-axis Figure 2. The height dimension
contains less information than the other two dimensions [5]. It is
important to note that some researches do not directly use the BEV
representation. In [5] for semantic prediction task due to the lack
of z-axis information authors propose Tri-Perspective View (TPV)
representation Figure 2.

Figure 2: Voxel, BEV and TPV representations. Voxel repre-
sentation is more informative, but cannot provide computa-
tion efficiency [5].

1.4 Camera-to-BEV View Transform
Transforming from a camera view to a bird’s eye view is complex
because the depth associated with each camera feature pixel can be
ambiguous. The idea of camera-to-BEV transformation is based on
projective geometry (see Figure 3). The process of monocular depth
estimation involves generating a unique depth value for each pixel
in an image. The state-of-the-art approach involves predicting a
categorical distribution of depth for each pixel in the image [13, 20,
21]. This technique is known as feature lifting [20].

Figure 3: The important stage of Camera-to-BEV View Trans-
form is estimation of a categorical depth distribution [20].
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Figure 4: Frustum generating: each feature pixel F(𝑢, 𝑣) is
weighted by its depth distribution probabilities D(𝑢, 𝑣) of be-
longing to 𝐷 discrete depth bins to generate frustum features
G(𝑢, 𝑣) [21].

In [21], the model utilize the estimated categorical depth distri-
butions to “lift“ an input image in 3D, generating a frustum-shaped
point cloud of contextual features. The frustum feature grid is then
transformed into a voxel grid using specific camera calibration
parameters, and then collapsed into a BEV feature grid. All steps
are well-illustrated in the paper [21]. By associating image features
with estimated depths, image information can be projected into 3D
space using a frustum feature network.

The input to the frustum feature network is an image I ∈ R𝑊𝐼 ×𝐻𝐼 ×3,
where𝑊𝐼 , 𝐻𝐼 are the image width and height. The network output
is a frustum feature grid G ∈ R𝑊𝐹 ×𝐻𝐹 ×𝐷×𝐶 , where𝑊𝐹 , 𝐻𝐹 are
the width and height of the image feature representation, 𝐷 is the
number of discretized depth bins, and 𝐶 is the number of feature
channels. If we have 𝑁 cameras, the full size of the frustum features
is 𝑁 ×𝑊𝐹 × 𝐻𝐹 × 𝐷 .

Let’s denote (𝑢, 𝑣, 𝑐) as a coordinate in image features F and
(𝑢, 𝑣, 𝑑𝑖 ) as a coordinate in categorical depth distributions D, where
(𝑢, 𝑣) is the location of feature pixel, 𝑐 is the channel index, and 𝑑𝑖
is the depth bin index. In order to create a frustum feature grid G,
each feature pixel F(𝑢, 𝑣) is weighted by its associated depth bin
probabilities in D(𝑢, 𝑣). It adds a new depth axis 𝑑𝑖 , as shown in
Figure 4. The outer product can be used to weight feature pixels:

G(𝑢, 𝑣) = D(𝑢, 𝑣) ⊗ F(𝑢, 𝑣) (1)

where D(𝑢, 𝑣) is the predicted depth distribution and G(𝑢, 𝑣) is a
matrix 𝐷 × 𝐶 . The outer product is calculated for each pixel to
generate frustum features G ∈ R𝑊𝐹 ×𝐻𝐹 ×𝐷×𝐶 . The next steps are
voxel transformation using the camera calibration matrix [21] and
collapsing to BEV.

For example, Bevfusion [13] converts camera features into a
point cloud, aggregates it with BEV pooling and flattens it along
the 𝑧-axis. Such algorithms can be related to the Lift-Splat category
[20, 21, 32].

1.5 Motivation
In [30] authors made a detailed review of how autonomous vehicles
perceive the environment under adverse weather conditions. They
summarized the strengths and weaknesses of each sensor in the
chart 5. As we can see, camera sensors are the most sensitive to
environmental conditions. But, not all parts of an image typically
contain destructive information. For example, in the Figure 6 certain

Figure 5: Sensor performance and characteristics [30].

Figure 6: Camera in rain condition.

regions of the image provide crucial details about the objects in the
scene.

Recent works [3, 13] have used a mid-level fusion approach to
aggregate features from all modalities. Combining the representa-
tions of different modalities allows to solve perception problems in
adverse weather conditions (see the Table 1).

Table 1: Sensor fusion and target weather conditions. ”L”,
”C” and ”R” represent LiDAR, Camera, and Radar modalities
respectively.

Sensor fusion Configuration Target weather
Bi-LRFusion (2023) R + L Fog
RadarNet (2020) R + L Rain
MVDNet (2021) R + L Fog
Liu (2021) R + C Rain, fog, nighttime
Rawashdeh (2021) C + L + R Snow
SLS-Fusion (2021) L + C Fog
Radecki (2016) L + R + C Wet conditions

In last time LiDARs and Radars sensors were significantly im-
proved in terms of spatial resolution, accuracy, velocity measure-
ment and resistance to adverse weather conditions [1].

Because images received from cameras may have artifacts and
be overlapped for any reason, using visual transformers may not
be as efficient as convolutional neural networks. Transformers take
and process every patch of an image, even areas that may not be
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Figure 7: The illustration of the FUTR3D pipeline [3].

relevant for the specific task. For this reason, authors prefer to
use convolutional layers first in neural networks as preprocessing
part [3, 12, 13]. Also ViTs require enormous amounts of data and
computation to train, and in some cases have longer inference time.
For this reason, researchers avoid the unwise use of ViTs [2, 3, 12,
13].

2 Related Work
In the mid-fusion approach, features are combined after feature
extraction [4, 11].

FUTR3D. Particularly, in [3] every modality is encoded in its
own coordinate. This framework (see Figure 7) does not assume any
particular modalities and their model architectures. For this reason
FUTR3D can work with any selected feature encoders. Researches
used three types of data: LiDAR point cloud, Radar point cloud, and
multi-view camera images.

VoxelNet was used to encode LiDAR point clouds as multi-scale
Bird’s-eye view (BEV) feature maps

{
F 𝑗

lid ∈ R𝐶×𝐻 𝑗×𝑊𝑗

}𝑚
𝑗=1

, where

𝐻𝑖 ×𝑊𝑖 is the size of the 𝑖-th BEV feature map,𝑚 is the count of
feature maps. Radar points

{
𝑟 𝑗
}𝑁
𝑗=1 ∈ R𝐶𝑟𝑖 are pillarized into 0.8 m

pillars.
Then MLP Φrad is used to achieve per-pillar features F 𝑗

rad =

Φrad
(
𝑟 𝑗
)
∈ R𝐶ro , where 𝐶ro is the number of encoded Radar fea-

tures. In this way the Radar BEV feature map Frad ∈ R𝐶ro ×𝐻×𝑊 is
obtained. It is also assumed that there are N surrounding cameras in-
stalled in the car. It is supposed that each camera has taken𝑚 images.
For image feature extraction ResNet is used. It outputs multi-scale
features for each image, denoted asF 𝑘

cam =

{
F 𝑘 𝑗
cam ∈ R𝐶×𝐻 𝑗×𝑊𝑗

}𝑚
𝑗=1

for the 𝑘-th camera. So, after camera backbone there are𝑚 image
feature maps for each camera.

A transformer decoder uses queries to predict 3D bounding
boxes. The predicted boxes can be repeatedly sent back into the
transformer decoder and MAFS to refine the predictions. Modality-
Agnostic Feature Sampler (MAFS) creates and aggregate features
from eachmodality based on the 3D reference point (initial position)
of each query. The 3D reference point is ground to collect features
from multiple sources. The input of detection head is a set of object
queries 𝑄 = {𝑞𝑖 }

𝑁𝑞

𝑖=1 ⊂ R𝐶 , and features from all sensors, where 𝐶
is the output channel of BEV feature map after processing LiDAR
point clouds with VoxelNet. MAFS updates each query by sampling
features from each sensor feature and fusing them. Object queries
are updated using self-attention modules and FFN.

Figure 8: The illustration of the BEVFusion pipeline [13].

BEVFusion.BEVFusion [13] is the state-of-the-art fusion pipeline
on the nuScenes dataset. It fuses camera and LiDAR sensors in BEV
space to perform 3D detection and tracking simultaneously. BEV-
Fusion uses an effective method of transforming camera images
into a BEV representation and combining them with LiDAR BEV
features using convolutional layers.

Like FUTR3D, BEVFusion provides independent camera and
LiDAR streams (see Figure 8).

Bi-LRFusion. Radar provides long range detection and velocity
hints, while LiDAR is better at capturing the object’s 3D shape [26].
To fully utilize the advantages of combining LiDAR and Radar, the
authors enhance the Radar features to make them more powerful
before the final fusion.

Encoding of LiDAR Features. The LiDAR encoding layer is used
to extract voxelwise features. This process consists of the following
steps:

• dividing LiDAR points into voxels.
• taking all points in the same voxel as input and using a multi
- layer perception (MLP) to extract pointwise features.

• using elementwise max pooling to obtain the locally aggre-
gated features for each voxel.

• 3D Voxel Backbone composed of 3D sparse convolutional
layers and 3D sub-manifold convolutional layers [25].

• producing a LiDAR BEV feature map by stacking volume
features along the Z-axis.

Radar Feature Encoding. By utilizing the Pillar Feature Backbone
[6], the Radar point cloud is converted into a series of pillars. It is
important to note that the Radar point’s value on the z-axis is set
to the height of the Radar sensor by default.

The Bi-LRFusion algorithm consists of the following steps:

• encoding BEV features: the LiDAR feature stream and the
Radar feature stream receive the input LiDAR and Radar
points to create BEV features.

• enhancing Radar features by combining LiDAR raw points
and Radar features through the LiDAR-to-Radar (L2R) fusion
module: due to the lack of height information and sparsity,
the Radar’s local features are enriched by learning important
details from the LiDAR points. To acquire more comprehen-
sive Radar features, for each valid (non-empty) grid cell on
the Radar feature map, the nearby LiDAR data (height and
BEV perspectives) are queried and grouped with the Radar
features.
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Figure 9: The difference between Bi-LRFusion and standard
uni-directional fusion [26].

• the Radar-to-LiDAR (R2L) fusion step: combining LiDAR
features with the enhanced Radar features in a unified BEV
representation.

• predicting 3D bounding boxes for dynamic objects using the
obtained BEV features.

Figure 10: The pseudo height feature formation [26].

Figure 11: The pseudo BEV feature formation [26].

As shown in the Figure 9, the authors propose a bidirectional
fusion scheme. L2R Fusion Module consists of two submodules:
Query-based Height feature Fusion block and Query-based BEV
feature Fusion block, as shown in Figures 10 and 11 respectively.
To form pseudo-Radar height features the LiDAR raw points are ag-
gregated, and the LiDAR BEV features are aggregated into pseudo-
Radar BEV. Then the pseudo-Radar height and pseudo-Radar BEV
are concatenated to the Radar BEV features. The next step is the
Radar-to-LiDAR (R2L) fusion in a unified BEV.

3 Method
Since both LiDARs and Radars operate in 3D space and they are
more reliable than cameras under adverse environmental condi-
tions, we first do their prefusion [26]. The figures 12 and 13 illustrate

Camera 
Backbone

LiDAR 
Feature Stream

Multi-View RGB Images

LiDAR point cloud 

radar points

Radar 
Feature Stream

LiDAR-to-Radar 

LiDAR Features Flatten to BEV LiDAR Features
(in BEV)

Radar Features
(in BEV)

Camera Features Camera-to-BEV 
View Transform

Camera Features
(in BEV)

Figure 12: This is the first part of the pipeline. Transforma-
tion of raw LiDAR, Radar points, and images into a BEV
representation.

...Radar-to-LiDAR 

3D Object Detection

BEV Map Segmentation

Radar Features

LiDAR Features

Camera Features

Concatenation BEV Encoder Fused features

Task-Specific Heads

Figure 13: This is the second part of the pipeline. We fuse all
the BEV representations together, encode the result and then
send it to specific heads.

the concept of our pipeline. We have split the illustration of it into
two parts. First of all, we want to make the feature extraction like in
[13]. Then, we use a specific transformation for a particular sensor
to represent the extracted feature in the BEV. The next steps are
bilateral LiDAR-Radar prefusion and image feature concatenation
for final fusion.

The LiDAR-to-Radar step enriches the Radar points. Similar to
[26], we mix Radar points with LiDAR points before encoding. This
eliminates the lack of Radar points per voxel, especially in the
height direction. LiDAR points are encoded with SECOND [25],
Radar points are encodedwith PillarFeatureNet [6]. As a BEVFusion,
this pipeline can be used for different tasks such as segmentation
and 3D object detection. This article includes a link to GitHub for
more information. It is recommended to match the configuration
file with the pipeline Figures 12, 13.

4 Experiments
The Nuscenes Dataset is widely used dataset for vision-centric
perception with six calibrated cameras covering a 360-degree hori-
zontal FOV, 1 LiDAR and 5 Radars. The camera image resolution is
1600×900. Nuscenes consists of 1000 scenes, each one of them is
20 seconds long. 850 scenes are for training/validation and 150 for
testing.



iWOAR2024, Sep 26–27, 2024, Potsdam, Germany Arthur Nigmatzyanov, Gonzalo Ferrer, and Dzmitry Tsetserukou

The most commonly used criterion for BEV Detection is average
precision (AP) and the mean average precision (mAP) over different
classes. For BEV Segmentation, IoU for each class and mIoU over
all classes. The Average Precision (AP) metric is extended from 2D
to the 3D space:

𝐴𝑃 =

∫ 1

0
max

{
𝑝
(
𝑟 ′ | 𝑟 ′ ≥ 𝑟

)}
𝑑𝑟 (3)

where 𝑝 (𝑟 ) is the precision-recall curve. The difference between
2D AP and 3D AP is the matching criteria between ground truth
and predictions when calculating precision and recall.

Instead of IoU to select TP, NuScenes proposes𝐴𝑃center where a
predicted object is matched to a ground truth object if the distance of
their center locations on the ground (BEV) plane is below a certain
threshold 𝑑 . The 𝐴𝑃center is calculated under different distance
thresholds: D = {0.5, 1, 2, 4} meters. The mAP is computed by
averaging the 𝐴𝑃center over all matching thresholds and all classes
C : mAP = 1

|C | |D |
∑
𝑐∈C

∑
𝑑∈D AP𝑐,𝑑 . NuScenes Detection Score

(NDS) is further proposed to take both 𝐴𝑃center and the error of
other parameters, i.e. size, heading, velocity, into consideration.

In our experiments we compared BEVFusion [13] and BiFusion
[26] with our method (see the Table 2).

Table 2: Results of expirements. ”L”, ”C” and ”R” represent
LiDAR, Camera, and Radar modalities respectively.

Model mAP NDS
Bi-LRFusion (R + L) 62.3 65.54
BEVFusion (C + L) 68.57 71.40
CBILR (C + R + L ) 71.09 73.36

Experiments show that it is important to use all modalities in a
clever way. Combining different modalities helps to overcome the
limitations of individual sensors.

5 Conclusion
This work has demonstrated CBILR, a promising multi-sensor fu-
sion framework that aims to improve perception robustness for
autonomous vehicles. It has addressed the critical challenge of
limited sensor performance in adverse weather conditions, a signif-
icant hurdle on the path to achieving truly autonomous navigation.
CBILR aims to overcome the limitations of existing fusion methods
by using the Bi-LRFusion module. This module promotes a mutu-
ally beneficial LiDAR/radar relationship, allowing each to benefit
from the other’s strengths.

Bi-LRFusion module enrich the sparse Radar point cloud with Li-
dar original points in two directions (R2L submodule) and then add
enhanced Radar feature representation to Lidar feature representa-
tion (L2R submodule). This enriched representation significantly
enhances the overall perception accuracy, especially under chal-
lenging weather scenarios.

The experiments show that using multiple sensors for fusion
increases reliability in challenging weather conditions. Previous
works uniformly combine all sensors together. They do not consider
the weaknesses of different sensors. By utilizing Bi-LRFusion and
promoting a thorough understanding of the environment, CBILR

strives to lead the way into a new era of strong and adaptable
perception. This effort aims to bring autonomous vehicles closer to
the ultimate goal of safe and reliable operation in all conditions.
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