
EasyChair Preprint

№ 499

The Future Mechanism and Information Flow

Security

Farzane Karami, Christian Johansen, Olaf Owe and
Gerardo Schneider

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 12, 2018



The Future Mechanism and Information Flow Security

Farzane Karamia, Christian Johansena, Olaf Owea, Gerardo Schneiderb

aDepartment of Informatics, University of Oslo
bDepartment of Computer Science and Eng., Chalmers University of Technology

Introduction
Security for distributed systems is a critical issue since a large number of

users and systems are affected by such systems. Challenges of information flow
analysis of distributed systems depend on the communication paradigms used
and their semantics. The ”actor paradigm” [1] is a model advocated for design-
ing distributed systems, in particular, it offers modular and compositional de-
sign and analysis. In addition to the actor model, the object-oriented paradigm
has become popular because of its facilities for program structuring and reuse of
code. These two paradigms are combined in the so-called ”active object” model,
where the objects are concurrent and autonomous, communicating with other
objects by “asynchronous methods” [3].

We briefly discuss communication paradigms in active object languages us-
ing the syntax of the ABS (abstract behavioral specification) language [5]. A
synchronous and blocking call of method m on a remote object o has the form
x := o.m(e) where e is the list of actual parameters. The caller is blocked
until the callee returns the value, leading to unnecessary waiting. One way of
avoiding blocking is achieved by using futures proposed in [2] and exploited in
MultiLisp [4], ABCL [8], and several other languages [3]. A future is a read-only
placeholder which eventually will contain the return value from an asynchronous
method call [4, 7]. When a remote method call is made, a future object with
a unique identity is created. The caller may continue with other computations
while the callee is computing the return value. When the return value is com-
puted, it is stored in the future object. The future is then said to be resolved.
In a call statement f := o!m(e), f is a future variable used to hold the future
identity of the call, and the symbol “!” indicates an asynchronous method call.
In the case of first-class futures, a future identity can be passed to objects de-
siring the return value of the corresponding method call, even before the value
is computed. Thus, a future can be distributed to many active objects in a
system.

The prevalence of futures in active object languages [3] highlights the sig-
nificance of investigating inherent security and privacy issues related to futures.
Futures might contain highly sensitive data, while in the case of first-class fu-
tures, any object that has a reference to it can access the content. Inside an

Email addresses: farzank@ifi.uio.no (Farzane Karami), cristi@ifi.uio.no (Christian
Johansen), olaf@ifi.uio.no (Olaf Owe), gerardo@cse.gu.se (Gerardo Schneider)



object, high-sensitive data might be leaked from futures to low-secure variables,
and be transmitted to low-security actors, observable by an attacker. Conse-
quently, it is critical to track futures and analyze their information flow security.

Information flow security challenges regarding futures
Future variables give a level of indirectness in that the retrieval of the result

of a call is no longer syntactically connected to the call, compared to future-free
languages. For instance when the future is received as a parameter, it may not
statically correspond to a unique call statement. One may overestimate the set
of call statements that correspond to this given future parameter, but it requires
access to the whole program. Therefore, when allowing futures as parameters,
static information flow analysis would be imprecise, because the set of external
calls that may result in an actual parameter is not statically given, and these
calls are not uniform with respect to secrecy levels. In this case, one must
consider the worst case possibility (i.e., the highest secrecy level) for the set of
possible corresponding call statements, which is too conservative and severely
limits statically acceptable information passing and call-based interaction, or
requires dynamic checking.

In addition, the future concept comes with a notion of future identity, but
not a notion of associated caller, callee. Identities of the caller and callee could in
principle be incorporated in the future identity, but only at run-time. At static
time there is no information about the caller and the creator of a future. This
opens up for third party information with indirect/implicit handling of sensitive
information. Static information flow regarding futures is too conservative. It
causes unnecessary rejection of programs, especially when the complete program
is not statically known as is usually the case in distributed systems. This is
not desirable for To address this problem, we propose an approach based on
the notion of ”wrappers” [6]. By wrapping futures and all objects receiving
futures (recipient objects) as parameters or return values, we can prevent leakage
of information from futures with high-sensitive data at the cost of dynamic
checking.

We statically identify futures and recipient objects in the program. Then
at dynamic time wrappers around them monitor and control communicated
messages to or from these objects. When a low security object attempts to access
a high secured future, the access should be rejected because of incompatible
secrecy levels.

The idea of wrappers is a permissive and precise dynamic approach, using
the run-time environment to track information flow and monitoring the execu-
tion inside an object to prevent security violations. We modify the run-time
environment, i.e., add another component to the environment to keep the se-
crecy levels of variables and change the operational semantic rules in a way to
track flow-sensitive information flow dynamically. Fig. 1 exemplifies informa-
tion flow analysis regarding futures and wrappers. An asynchronous method
call toward object O creates future f , arrows 1, 2. Then it is passed to object
P as a parameter of a method call. The future f , object O′, and the recipient

2



Figure 1: Information flow security regarding wrappers.

object P are wrapped by wrappers, marked in red, which checks whether it is
safe to let them get the future value.

Conclusion
Futures are invented as a flexible way for sharing results and communication;

however, their security and privacy are problematic. The notion of wrappers has
been developed for safety of objects [6]. We here exploit wrappers for dealing
with information security, by extending the runtime system with secrecy levels
and applying dynamic checking for securing the use of futures.

References
[1] G. A. Agha. Actors: A model of concurrent computation in distributed systems.

Technical report, MIT Press Cambridge, MA, USA, 1986.

[2] H. Baker and C. Hewitt. The incremental garbage collection of processes. ACM
Sigplan Notices, 12:55–59, 1977.

[3] F. D. Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C. Din, E. B.
Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes, et al. A survey of
active object languages. ACM Computing Surveys (CSUR), 50(5):76, 2017.

[4] R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

[5] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In Formal Methods for Components
and Objects, pages 142–164. Springer, 2011.

[6] O. Owe and G. Schneider. Wrap your objects safely. Electronic Notes in Theoretical
Computer Science, 253(1):127–143, 2009.

[7] Y. Yokote and M. Tokoro. Concurrent programming in concurrent SmallTalk. In
Object-oriented concurrent programming, pages 129–158. MIT Press, 1987.

[8] A. Yonezawa, editor. ABCL: An Object-oriented Concurrent System. MIT Press,
Cambridge, MA, USA, 1990.

3


