
EasyChair Preprint
№ 14076

Non-Preemptive SJF Scheduling and the Efficacy
of FIFO in Mitigating Starvation

Krisha Anne Chan, Enrico Baratang, Henry Adorna and
Alfonso Labao

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 22, 2024

Non-preemptive SJF Scheduling and the
Efficacy of FIFO in Mitigating Starvation

Krisha Chan, Enrico Baratang, Henry Adorna*, and Alfonso Labao*

University of the Philippines-Diliman, Diliman QC 1101, PH,
kechan1@up.edu.ph,

WWW home page: https://up.edu.ph/contact-us/

Abstract. Task scheduling is critical for operating system performance,
determining task execution order on the CPU. The Non-preemptive
Shortest Job First (SJF) algorithm aims to enhance efficiency by min-
imizing average waiting and turnaround times. However, SJF can lead
to issues like deadlock and starvation, where tasks are indefinitely de-
layed. This case study models SJF behaviors to simulate and demonstrate
these pitfalls. By defining axioms, functions, and properties, the study
formalizes SJF scenarios and their negative implications. The study also
examines the First-In-First-Out (FIFO) algorithm, showing its effective-
ness in preventing deadlock and starvation by executing tasks in arrival
order. Formal verification of these algorithms ensures system reliability
and guides the development of robust scheduling policies.

Keywords: shortest job first, first-in-first-out, deadlock, starvation

1 Preliminaries

Task scheduling lies at the heart of operating system functionality, determining
the order in which tasks are executed on the CPU. In real-world scenarios, such
as managing a server or handling multiple user requests, efficient scheduling
is paramount for system performance and user satisfaction. The SJF algorithm,
which selects the shortest job (task) first, theoretically minimizes average waiting
time and turnaround time, thus enhancing system efficiency.

However, the implementation of SJF is not without its pitfalls. One major
concern is the potential for endless loops, deadlock, or starvation. Deadlock
occurs when tasks are unable to proceed because they are waiting for resources
held by other tasks, resulting in a system halt. Starvation happens when a task is
perpetually delayed or denied access to resources it needs due to the scheduling
algorithm’s biases.

The aim of this case study is to more formally demonstrate this issue by first
building a model that emulates the behaviors of a SJF task scheduler and then
simulating the conditions that cause the starvation of low-priority tasks.

In our formal model, we define axioms, functions, and properties that capture
the essence of SJF scheduling. Axioms may include assumptions about task
arrival times, execution times, and resource availability. Functions represent the

2 Krisha Chan, Enrico Baratang, Henry Adorna*, Alfonso Labao*

behavior of the scheduling algorithm, such as selecting the shortest job from the
ready queue. Properties describe desirable system behaviors, such as absence of
deadlock or fair allocation of resources. Specifically, we focus on scenarios where
SJF may lead to deadlock or starvation. By formalizing these scenarios and
proving their implications within our model, we aim to highlight the limitations
of SJF and demonstrate the effectiveness of alternative scheduling algorithms
like First-In-First-Out (FIFO) in avoiding these issues. FIFO, a non-preemptive
algorithm, ensures fairness by executing tasks in the order they arrive, thereby
mitigating the risk of deadlock and starvation associated with SJF.

In summary, the formal verification of scheduling algorithms like SJF is cru-
cial for ensuring the reliability and robustness of operating systems. By applying
formal methods, we can identify potential pitfalls, validate system behaviors, and
inform the design of scheduling policies that meet performance and correctness
requirements.

2 Formal Specification in ADT

With this section, the preliminaries are over, and we begin to formalize specifica-
tions using Abstract Data Types (ADT) as outlined in Alagar and Periyasamy’s
(2011) book, and the Coq proof assistant. To give context, an Abstract Data
Type (ADT) is a concept in computer science used to define data structures in
a way that abstracts away the details of their implementation. Think of it as a
blueprint for a data structure that specifies what operations can be performed
on the data and what those operations should do, without worrying about how
these operations are implemented.

2.1 Task

A task is a unit of work that needs to be processed by the CPU. Conceptually,
each task is characterized by several attributes:

– id: A unique identifier for the task.
– arrivalTime: The time at which the task arrives in the queue – the cost by

which the tasks may be ranked when using SJFscheduling.
– executionTime: The time required for the task to complete execution once

it starts.

Consider the ADT of the Task below:

1 extend Nat by
2 s o r t s Task
3
4 ope ra t i on s
5 Task : Nat x Nat x Nat → Task
6 id : Task → Nat
7 arr iva lTime : Task → Nat
8 executionTime : Task → Nat

SJF Scheduling 3

9
10 axioms
11 f o r a l l t : Task , i : Nat , a : Nat , e : Nat
12 id (Task (i , a , e)) = i
13 arr iva lTime (Task (i , a , e)) = a
14 executionTime (Task (i , a , e)) = e

The axioms ensure that for any task t created with identifier i, arrival time
a, and execution time e, the functions id, arrivalTime, and executionTime

will return i, a, and e respectively.

2.2 Queue

The behavior of accessing a queue is first-in-first-out and as such this will
serve as our means of demonstrating FIFO scheduling as well as the default
list-esque container for tasks. All of the functions on queues shown depict quite
typical queue behavior.

1 s o r t s Queue
2
3 ope ra t i on s
4 emptyQueue : → Queue
5 enqueue : Task x Queue → Queue
6 dequeue : Queue → Queue
7 f r on t : Queue → Task
8 isEmpty : Queue → Bool
9

10 axioms
11 f o r a l l q : Queue , t : Task
12 isEmpty (emptyQueue) = true
13 isEmpty (enqueue (t , q)) = f a l s e
14 f r on t (enqueue (t , emptyQueue)) = t
15 f r on t (enqueue (t , enqueue (t1 , q))) = f r on t (enqueue (t1 , q))
16 dequeue (emptyQueue) = emptyQueue
17 dequeue (enqueue (t , emptyQueue)) = emptyQueue
18 dequeue (enqueue (t , enqueue (t1 , q))) = enqueue (t , dequeue (

enqueue (t1 , q)))

The General Case: Empty Queue
The emptyQueue operation creates an empty queue, denoted by the fact that
line 12 is always true. This operation establishes the initial state of a queue
where no tasks are present.

The Adding Case: Enqueue
Adding a task t to any queue q results in a non-empty queue (line 13). Now,
if you enqueue a task t to an empty queue, t becomes the front task (line 14).

4 Krisha Chan, Enrico Baratang, Henry Adorna*, Alfonso Labao*

The Removing Case: Dequeue
Removing a task from the front of an empty queue or a queue with a single task
returns the queue to its empty state (line 16-17). For a queue with multiple
tasks, the correct task is removed while maintaining the order of the remaining
tasks (line 18).

2.3 Scheduler

1 s o r t s Scheduler
2
3 ope ra t i on s
4 Scheduler : Queue x Maybe Task x L i s t [Task] → Scheduler
5 readyQueue : Scheduler → Queue
6 currentTask : Scheduler → Maybe Task
7 completedTasks : Scheduler → L i s t [Task]
8 emptyScheduler : → Scheduler
9 addTask : Task x Scheduler → Scheduler

10 executeNextTask : Scheduler → Scheduler
11
12 axioms
13 f o r a l l s : Scheduler , t : Task
14 readyQueue (Scheduler (q , c , l)) = q
15 currentTask (Scheduler (q , c , l)) = c
16 completedTasks (Scheduler (q , c , l)) = l
17 emptyScheduler = Scheduler (emptyQueue , None , [])
18 addTask (t , Scheduler (q , c , l)) = Scheduler (enqueue (t , q) ,

c , l)
19 executeNextTask (Scheduler (q , None , l)) =
20 i f isEmpty (q) then Scheduler (q , None , l)
21 else
22 l e t t = s e l e c t Sho r t e s t J ob (q) in
23 Scheduler (dequeue (q) , Some t , t : : l)
24 executeNextTask (Scheduler (q , Some t , l)) = Scheduler (q ,

Some t , l)

The Scheduler is a system that manages and executes tasks using a structured
queue, as defined in 2.2. The executeNextTask operation is pivotal in this
process. When called, if no task is currently being executed and the queue is
non-empty, it selects the shortest job from the queue (adhering to the Shortest
Job First scheduling algorithm), sets this task as the current task, and moves it
to the list of completed tasks. If the queue is empty or a task is already being
executed, the scheduler’s state remains unchanged. The axioms governing the
scheduler’s behavior focuses on optimal task execution.

SJF Scheduling 5

2.4 Shortest Job First (SJF)

1 ope ra t i on s
2 s e l e c t Sho r t e s t J ob : Queue → Task
3
4 axioms
5 f o r a l l q : Queue , t : Task
6 s e l e c t Sho r t e s t J ob (enqueue (t , q)) =
7 i f executionTime (t) < executionTime (f r on t (q)) then t
8 else f r on t (q)

The operation selectShortestJob is designed to identify the task with the
shortest execution time from a given queue. The axioms define its behavior:
for any queue q and task t, when t is added to q, the operation checks if the
execution time of t is less than the execution time of the task at the front of the
queue. If it is, t becomes the selected task; otherwise, the task currently at the
front remains the selected task.

3 Formal Specification in Coq

Overview of What Has Been Established So Far

1 SORT Task
2 SORT Queue
3 SORT Scheduler
4
5 OP emptyQueue :→ Queue
6 OP enqueue : Task x Queue → Queue
7 OP dequeue : Queue → Task
8 OP SJFSchedule : Queue → Scheduler

In this ADT, we define a Task sort to represent tasks, a Queue sort to represent
the queue of jobs awaiting execution, and a Scheduler sort to represent the
scheduling algorithm. We also define operations for manipulating the queue,
such as emptyQueue to create an empty queue, enqueue to add a job to the
queue, and dequeue to remove a job from the queue. Finally, we define the
SJFSchedule operation to specify the behavior of the SJF scheduling algorithm.

To specify this behavior or prove a theorem formally, we use a tool called Coq
Proof Assistant. Coq is somewhat like a program that helps automate and facil-
itate methods of mathematical proof. It allows you to write out your proof and
checks the validity of your statements as you go. It provides an interactive envi-
ronment where you can incrementally develop your proofs, receiving immediate
feedback on each step. This interactivity ensures that any mistakes or incomplete
steps are identified and corrected in real-time.

6 Krisha Chan, Enrico Baratang, Henry Adorna*, Alfonso Labao*

Translating this ADT to Coq gives us:

1 Inductive Task : Type := (*Represents a task *)

2 | TaskType.
3
4 Inductive Queue : Type := (* Represents a queue of tasks *)

5 | EmptyQueue

6 | Enqueue (t : Task) (q : Queue).
7
8 Inductive Scheduler : Type := (*Represents the scheduling algortihm *)

9 | SJFSchedule (q : Queue).

Now, let’s define some properties of our scheduling algorithm in ADT language:

1 PROP NonEmptyQueue : Queue → bool
2 MEASURE length : Queue → Nat
3 AXIOM DequeueEnqueue : ∀ t : Task , ∀ q : Queue ,
4 dequeue (enqueue (t , q)) = t .
5 AXIOM SJFOptimality : ∀ q : Queue , NonEmptyQueue(q) →{∀ t :

Task | t ∈ q }
6 s e l e c t Sho r t e s t J ob (q) ≤ t .

We define a property NonEmptyQueue which checks if a queue is non-empty,
and an axiom DequeueEnqueue stating that dequeuing after enqueuing a job re-
sults in the same job. The axiom SJFOptimality specifies that the SJF schedul-
ing algorithm selects the shortest job in the queue.

We translate this into Coq:

1 Require Import Coq.Arith.Arith.
2 Require Import Coq.Lists.List.
3 Import ListNotations.
4
5 (* Define the type for tasks *)

6 Inductive Task : Set :=
7 | TaskElem : nat → Task.
8
9 (* Define the type for queues *)

10 Inductive Queue : Set :=
11 | EmptyQueue : Queue
12 | Enqueue : Task → Queue → Queue.
13
14 (*Function to calculate the length of a queue *)

15 Fixpoint length (q : Queue) : nat :=
16 match q with

17 | EmptyQueue ⇒ 0
18 | Enqueue _ q’ ⇒ S (length q’)
19 end.
20
21 (* Function to check if a queue is non-empty *)

SJF Scheduling 7

22 Definition NonEmptyQueue (q : Queue) : bool :=
23 match q with

24 | EmptyQueue ⇒ false

25 | _ ⇒ true

26 end.
27
28 (* Function to enqueue a task in the queue *)

29 Definition enqueue (t : Task) (q : Queue) : Queue :=
30 Enqueue t q.
31
32 (* Function to dequeue a task from the queue *)

33 Fixpoint dequeue (q : Queue) : option Task :=
34 match q with

35 | EmptyQueue ⇒ None

36 | Enqueue t EmptyQueue ⇒ Some t

37 | Enqueue _ q’ ⇒ dequeue q’
38 end.
39
40 (* Function to get the shortest task in the queue for SJF Scheduling *)

41 Fixpoint SJFSchedule (q : Queue) : option Task :=
42 match q with

43 | EmptyQueue ⇒ None

44 | Enqueue t EmptyQueue ⇒ Some t

45 | Enqueue t q’ ⇒
46 match SJFSchedule q’ with
47 | None ⇒ Some t

48 | Some t’ ⇒
49 match t, t’ with

50 | TaskElem len1, TaskElem len2 ⇒
51 if Nat.leb len1 len2 then Some t else Some t’
52 end

53 end

54 end.

4 Formal Property Verification Using Coq

As briefly mentioned before, starvation is the state wherein a task is perpetually
delayed because higher-priority tasks keep getting executed first. Think of it like
a hobby that you never get to work on because you always seem to have more
important things to do. The hobby is less important, and thus lower priority,
than all the other tasks that get introduced into your life — like work, school,
errands, etc, and as such, these tasks take precedence over the hobby and get
addressed first. FIFO does not have this. Intuitively, if there is no mechanism
of priority wherein one task can take precedence over another, where the addition
of a new task cannot cause an older task to be pushed back on the to-do-list,
then you cannot have an issue where an older task keeps getting pushed back,
and going unaddressed.

8 Krisha Chan, Enrico Baratang, Henry Adorna*, Alfonso Labao*

4.1 Proof that FIFO can prevent starvation

1 Require Import Coq.Arith.Arith.
2 Require Import Coq.Lists.List.
3 Import ListNotations.
4
5 (* A record for representing a process *)

6 Record Process := {
7 pid : nat; (* process identifier *)

8 exec_time : nat (* execution time *)

9 }.
10
11 (* A function to insert a process into a sorted list of processes *)

12 Fixpoint insert_process (p : Process) (ps : list Process) : list Process :=
13 match ps with

14 | [] ⇒ [p]
15 | p’ :: ps’ ⇒ if Nat.leb p.(exec_time) p’.(exec_time)
16 then p :: ps

17 else p’ :: insert_process p ps’
18 end.
19
20 (* A function to sort a list of processes using insertion sort *)

21 Fixpoint sort_processes (ps : list Process) : list Process :=
22 match ps with

23 | [] ⇒ []
24 | p :: ps’ ⇒ insert_process p (sort_processes ps’)
25 end.
26
27 (* A function to retrieve the first process in the list (FIFO) *)

28 Definition get_first_process (ps : list Process) : option Process :=
29 match ps with

30 | [] ⇒ None

31 | p :: _ ⇒ Some p

32 end.
33
34 (* A function to simulate fifo *)

35 Fixpoint execute_fifo (pid_to_watch : nat) (ps : list Process) : nat :=
36 match ps with

37 | [] ⇒ 0 (* Base case: process not found *)

38 | p :: ps’ ⇒
39 (* If this is the process we’re watching, return 1 *)

40 if Nat.eqb p.(pid) pid_to_watch then 1
41 else let steps := execute_fifo pid_to_watch ps’ in
42 S steps (* Increment the number of steps *)

43 end.
44
45 (* List of processes *)

46 Definition list_processes : list Process :=
47 [
48 {| pid := 1; exec_time := 7 |};

SJF Scheduling 9

49 {| pid := 2; exec_time := 5 |};
50 {| pid := 3; exec_time := 1 |};
51 {| pid := 4; exec_time := 4 |};
52 {| pid := 5; exec_time := 3 |}
53].
54
55 (* Prove that any process will eventually be executed under FIFO *)

56
57 (* Helper function to return the position of a process in the list *)

58 Fixpoint position (pid_to_find : nat) (ps : list Process) : option nat :=
59 match ps with

60 | [] ⇒ None

61 | p :: ps’ ⇒ if Nat.eqb p.(pid) pid_to_find then Some 0
62 else match position pid_to_find ps’ with
63 | None ⇒ None

64 | Some pos ⇒ Some (S pos)
65 end

66 end.
67
68 (* Lemma: A process in the list will have a finite position *)

69 Lemma position_finite: forall pid_to_find ps,
70 In pid_to_find (map pid ps) → exists pos, position pid_to_find ps = Some pos.
71 Proof.
72 intros pid_to_find ps H.
73 induction ps as [|p ps’ IH].
74 − simpl in H. contradiction.
75 − simpl in H. destruct H as [H | H].
76 + subst. simpl. rewrite Nat.eqb_refl. exists 0. reflexivity.
77 + simpl. destruct (Nat.eqb_spec p.(pid) pid_to_find) as [Heq | Hneq].
78 ∗ subst. exists 0. reflexivity.
79 ∗ simpl. apply IH in H. destruct H as [pos Hpos].
80 exists (S pos). simpl. rewrite Hpos. reflexivity.
81 Qed.
82
83 (* Theorem: FIFO prevents starvation *)

84 Theorem fifo_prevents_starvation: forall pid_to_find ps,
85 In pid_to_find (map pid ps) → exists steps, execute_fifo pid_to_find ps = steps.
86 Proof.
87 intros pid_to_find ps H.
88 induction ps as [|p ps’ IH].
89 − simpl in H. contradiction.
90 − simpl in H. destruct H as [H | H].
91 + subst. simpl. rewrite Nat.eqb_refl. exists 1. reflexivity.
92 + simpl. destruct (Nat.eqb_spec p.(pid) pid_to_find) as [Heq | Hneq].
93 ∗ subst. exists 1. reflexivity.
94 ∗ simpl. apply IH in H. destruct H as [steps Hsteps].
95 exists (S steps). simpl. rewrite Hsteps. reflexivity.
96 Qed.
97
98 (* Function to Print the Number of Steps for Each Process *)

10 Krisha Chan, Enrico Baratang, Henry Adorna*, Alfonso Labao*

99 Fixpoint print_fifo_steps (ps : list Process) : list (nat ∗ nat) :=
100 match ps with

101 | [] ⇒ []
102 | p :: ps’ ⇒ (p.(pid), execute_fifo p.(pid) list_processes) :: print_fifo_steps ps’
103 end.
104
105 (* Function to extract the PIDs and execution times from a list of processes *)

106 Definition extract_pid_exec_times (ps : list Process) : list (nat ∗ nat) :=
107 map (fun p ⇒ (p.(pid), p.(exec_time))) ps.
108
109 (* Sorting the example list of processes based on execution time *)

110 Definition sorted_processes := sort_processes list_processes.
111
112 (* Function to find the index of a process in a list by PID *)

113 Fixpoint find_index (p : Process) (ps : list Process) (index : nat) : option nat :=
114 match ps with

115 | [] ⇒ None

116 | p’ :: ps’ ⇒ if Nat.eqb p.(pid) p’.(pid) then Some index

117 else find_index p ps’ (S index)
118 end.
119
120 (* Function to create the original_pid → sorted position list *)

121 Definition original_to_sorted_positions (original sorted : list Process) : list (nat ∗ nat) :=
122 map (fun p ⇒ match find_index p sorted 1 with

123 | Some index ⇒ (p.(pid), index)
124 | None ⇒ (p.(pid), 0) (* Should not happen *)

125 end) original.
126
127 (* Execute Sorted List with Positions *)

128 Eval compute in original_to_sorted_positions list_processes sorted_processes.
129
130 (* Execute Fifo Results *)

131 Eval compute in print_fifo_steps list_processes.

If we run that code into the CoqIDE, we will get the following results:

1 = [(1 , 5) ; (2 , 4) ; (3 , 1) ; (4 , 3) ; (5 , 2)]
2 : l i s t (nat ∗ nat)
3 = [(1 , 1) ; (2 , 2) ; (3 , 3) ; (4 , 4) ; (5 , 5)]
4 : l i s t (nat ∗ nat)

We can see that with the following list of processes in lines 46-53 and the
results, there are a few noticeable differences.

• The first result (lines 1-2) executes the job with the shortest execution
time. This means that if a new job is added with a shorter execution time
than those currently in the list, it will be executed first, causing the existing
jobs to wait. If we keep adding jobs with shorter execution times, it creates

SJF Scheduling 11

a starvation problem where jobs with longer execution times are continu-
ously starved or delayed. For instance, the first job in the list, which had
an execution time of 7, was executed last (5th) as shown in (1, 5), while
the third job in the list, with an execution time of 1, was executed first as
shown in (3, 1). The average time complexity for this execution is O(n2)
as each element will need to be compared and potentially shifted about half
of the elements in the sorted portion of the list.

• The second result (lines 3-4), however, does not follow this rule. Instead,
it implements a first-in-first-out execution order, regardless of the job’s exe-
cution time. Therefore, the first job gets executed first − (1, 1), the second
job gets executed second − (2, 2), and so on. This gives us the time com-
plexity of O(1). This is much better if we’re dealing with real life scenarios
where consistent response time is needed. It can particularly be useful for
index lookups in web applications, allowing for fast retrieval of data. In
embedded systems such as automotive control units or medical devices, op-
erations need to be completed within strict time constraints or it might lead
to potentially life-threatening situations.

Now going back to the proof, let’s discuss and break down the FIFO scheduling
algorithm where no process will be indefinitely delayed or starved.

1. Induction: The proof starts by inducting on the list of processes ps. This
means it considers two cases: when the list is empty and when it’s not.

2. Base Case: If the list of processes is empty, it immediately concludes that
the process ID pid_to_find cannot be found in an empty list, leading to a
contradiction. This establishes the base case.

3. Inductive Step: It considers the non-empty list case.

a. If the process ID pid_to_find is the same as the process ID of the first
process in the list, it concludes that pid_to_find will execute in 1 step
because it’s the first process.

b. If pid_to_find is not the same as the process ID of the first process, it
recursively applies the induction hypothesis to the rest of the list of pro-
cesses. It proves that in the remaining list, pid_to_find will eventually
execute after a finite number of steps (represented by steps).

c. It then concludes that in the current list, pid_to_find will execute after
one more step than in the rest of the list, establishing that pid_to_find
will execute in a finite number of steps overall.

By exhaustively considering the cases of an empty list and a non-empty list
and proving that in each case, the process ID pid_to_find will execute in a
finite number of steps, the proof demonstrates that FIFO prevents starvation by
ensuring every process eventually gets its turn to execute.

12 Krisha Chan, Enrico Baratang, Henry Adorna*, Alfonso Labao*

5 Conclusion

The proof, as have been established by the previous sections, likens executing
tasks in a certain order to creating an arranged list of tasks to be executed. For
this proof, the implementations of the sorts defined above are altered and simpli-
fied to help aid in the proof. For instance the implementation of Task, Process,
lacks the arrival_time field because this will be interpreted as its position in
the arranged list.

Assuming the list of tasks to be done behaves like a queue, with new entries
being appended to the end, the use of SJF scheduling could be likened to sorting
the list in decreasing order based on execution_time/cost to create the sched-
ule, and FIFO likened to using the queue as it is.

Basing the arrival time of any task as its position in that arranged list, or sched-
ule, we can see that if we try and track one particular task, let us name this
task “Heavy”, that is strictly more costly than any other task in that list, we
can see that applying FIFO makes it such that Heavy’s arrival time, indicated
by its position in the schedule, is solely dependent on the time or order when it
was added to the queue of tasks to be done.

6 Limitations

So far, we have only established and proved that FIFO executes in a finite
number of steps; hence, effectively preventing starvation. What has yet to be
formally shown is that because SJF always picks the “shortest/lowest cost-task
first”, Heavy, being strictly longer/more costly than the other tasks, always is
picked last. As such its arrival time becomes dependent on how many tasks of
lower cost are in the queue of tasks to be done. So assuming an indefinite amount
of lower cost tasks, analogous to a continuous stream of shorter tasks, Heavy is
made to wait an indefinite amount of time before execution.

References

1. Alagar, V.S., Periyasamy, K.: Specification of Software Systems. Springer, London
(2011). doi:10.1007/978-0-85729-277-3

