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Abstract. This paper proposes a simple method for rockfall detection
from terrestrial LIDAR point clouds. The method consists of four steps:
registration, subtraction, clutter removal, and spatial clustering. The pa-
per contributes a straightforward method for clutter removal based on
grid density, which is computational complexity inexpensive compared to
the standard method based on nearest neighbor distance. Experimental
results show that both are comparable in terms of identifying rockfall
events. The proposed method can detect 21 events from 27 events from
our simulations, and a conventional method can detect 23 events. The
false-positive events of the proposed and conventional methods are 1 and
15, respectively. In contrast, for 52,000 points, the proposed method is
about 16 times faster. Also, this paper suggests a simple means to esti-
mate the parameters used in the spatial clustering algorithm.

Keywords: Rockfall detection, terrestrial LiDAR point cloud, Clutter
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1 Introduction

A rockfall is a free fall movement of a detached segment of bedrock from a cliff
or a very steep slope [4]. It can be considered as the faster type of landslide.
Rockfalls cause damages not only to properties but also to lives. The former
is mostly by impeded transportation and commerce due to blocked highways
and waterways. The latter is as direct casualties from falling rocks [8]. The
rockfall phenomena can be studied in a number of approaches, such as historical
inventories, susceptibility assessment, frequency estimation, hazard assessment,
and risk assessment [12]. Recently, a terrestrial laser scanner (TLS) has been
used to study geological phenomena due to its advantage in acquiring high-
resolution data [3][5][12][10]. For example, the TLS with the density-based spatial
clustering of applications with noise (DBSCAN) has been applied in studying
geomorphology of a rock glacier [10]. The similar technique has also been applied
for rockfall detection [3][5][12]. A typical framework used to detect rockfalls from
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two point-cloud datasets, which are obtained from the TLS, consists of three
parts: preprocessing, clutter removal, and spatial clustering [12], and a standard
clutter removal algorithm is based on the nearest-neighbor-related approach,
such as the nearest neighbor clutter removal (NNCR) [6]. However, the algorithm
like NNCR has one problem concerning the computational time when the number
of data points is large. Therefore, this paper aims to propose and discuss a
comparable but more straightforward method for removing the clutter.

The rest of this paper is organized as follows. Section 2 provides background
information used in the proposed method. Section 3 describes the detail of the
proposed method. Section 4 reports experimental conditions and results. Discus-
sion is made in Section 5, and Section 6 concludes this work.

2 Background

This section provides background information concerning an open-source soft-
ware tool used to preprocess data points (i.e., CloudCompare) and a standard
density-based spatial clustering method, called DBSCAN. Both are used together
with our proposed clutter removal based on grid density.

2.1 CloudCompare

CloudCompare is an open-source 3D point cloud editing and processing software
[2]. It was firstly designed to compare two point-cloud datasets directly. It can
also perform many tasks, such as image registration, resampling, segmentation,
and some statistical computation. One of its advantages is that CloudCompare
can process more than 10 million data points on a standard laptop. In this work,
CloudCompare is used to preprocess data in two steps: image registration and
surface subtraction.

2.2 Density-based Spatial Clustering of Applications with Noise
(DBSCAN)

DBSCAN is one of the most common spatial clustering algorithms, which is
based on data point density [7]. The algorithm collects points that are close
to each other together (i.e., the points in high-density regions) and assigns the
collection as a cluster. For points that lie in low-density areas or those not in
the cluster, they are designated as noise. The DBSCAN concept and algorithm
are briefly reviewed in this subsection for the completeness in itself.

Let p and ¢ are points in a database D, and d(p, ¢) denotes a distance between
points p and ¢ with regard to a distance function d, e.g., Euclidean distance or
Manhattan distance. The e-neighborhood of a point p, denoted by N.(p), is
defined as a set of points of which their distances to the point p is not greater
than e. That is, No.(p) ={q¢ € D | d(p,q) <e}. A point p is said to be directly
density-reachable for a point ¢ if it satisfies two conditions. First, p € N.(q).
Second, N.(q) has at least minPts points, i.e., |Nz(¢)| > minPts, where minPts
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is a positive integer. Note that the point ¢ that satisfies the second condition is
called a core point [7].

A point p is said to be density-reachable from a point g if there is a sequence
of points p1, pa, . .., pn, where p1 =q, p, =p, and p;11 is directly density-reachable
from p;. A point p is said to be density-connected to a point g if there exists a
point from which the point p and ¢ are density-reachable.

Based on the concepts of density-reachability and density-connectivity, the
DBSCAN algorithm groups together points in D and assigns them to members
of a cluster C', which is a non-empty subset of D, if the following conditions are
satisfied. First, for any points p and ¢, if p€ C and q is density-reachable from p,
then g€ C. Second, for all points p and all points ¢ in C, p is density-connected
to q. According to the definition of the cluster, the DBSCAN algorithm can
discover a cluster by choosing a core point first and then retrieving all points
that are density-reachable from that core point [7]. All other points that do not
belong to any cluster are considered as noise. The abstract DBSCAN algorithm
can be summarized in three steps [11]. First, find N.(p) for all points p in D
and identify core points. Second, join neighbor core points into clusters, ignoring
all non-core points. Last, for each non-core point, add to a nearby cluster if the
cluster is an e-neighborhood; otherwise, assign it to noise.

3 Proposed Method

The proposed method is similar to the conventional rockfall detection method
[12] based on DBSCAN with the nearest neighbor clutter removal (NNCR) [6]
in the sense that it consists of the same four processes: surface registration,
subtraction, clutter removal, and DBSCAN, as shown in Fig. 1 (left and middle).
However, instead of deploying NNCR, which is computational time expensive,
we propose a simple grid-density-based process to do the same task in the clutter
removal.

The proposed method’s inputs are two 3D point-cloud surfaces, and the pro-
posed method can be summarized as follows. First, two point-cloud surfaces
are registered before comparison so that both are geometrically aligned. Fig-
ure 1 (right) shows an example of two input point-cloud surfaces. Second, the
difference between the two surfaces is determined. Note that the Cloud Com-
pare software performs these first two steps. In order to determine the difference,
a threshold value is set. The result of this subtraction is a set of data points of
which their differences are above the threshold. Third, considered only in 2D,
the subtraction result from the previous step, which is called a surface-difference
image, is divided into equal square boxes of size w, as shown in Fig. 2 (b). Then,
the number of data points in each box is counted. Let cgay and cpi, are maximum
and minimum numbers of data points in a box, respective. According to our ob-
servation, data points in any box with less than (cpay — ¢nin)/2 data points can
be considered clutters. All clutters are then removed from the surface-difference
image. Fourth, the clutter-removed surface-difference image obtained from the
previous step is clustered by DBSCAN to identify rockfall events.
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Fig. 1. Proposed method (left) and the conventional method (middle). Example of
two input point-cloud surfaces: before rockfall events (right-top) and after the events
(right-bottom). The rockfall events are marked by characters from a to g.

4 Experiments and Results

This section provides details of the datasets used in our simulation, experimental
conditions, experiments, and results.

4.1 Data

Our experiments’ point cloud dataset is taken from an open dataset provided
by Abellan et al. [3][12] and available online [1]. The data points were acquired
by a terrestrial laser scanner, Optech Intelligent Laser Ranging and Imaging
System (ILRIS3D), from the Puigcercos cliff, Catalonia, Spain, as shown in
Fig.3. The wavelength of the infrared laser pulse of ILRIS3D is 1,535 nm.
The distance d between the cliff’s surface and the instrument is determined
by the flight time At of the pulse, ie., d = cAt/2, where ¢ is the speed of
light [9]. The points’ positions are initially recorded in the spherical coordinate
system, i.e., (radial distance r, azimuthal angle 6, polar angle ¢). Later, they
are converted to coordinates in the Cartesian system (z,y,z) by the equation
(x,y,2) = (rsinf cos ¢, rsin  sin ¢, r cos §). Not only the coordinate, but the in-
strument also records the reflective-light intensity for each data point as well.
Thus, the standard format of each data point record can be represented by a
quadruple (z,y, z,I), where I is the intensity. The maximum range of ILRIS3D
is 700 m, with an error of 0.7 cm at 100 m.

In order to evaluate the performance of the proposed method, two datasets
are required: one representing the surface before rockfall events and another
representing the surface after the events. In this work, we generated the latter
from the former by the following steps so that we can know the number and
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locations of the rockfall events exactly. First, P percent of the data points are
randomly selected. Second, all selected points are randomly shifted in the +z-
axis direction for a certain value (in cm) in an interval [a,b]. These two steps
can represent natural noise in the measurement process and an error due to the
instrument’s installation, not at exactly the same locations, at two times. Third,
a few simulated hemispherical holes with various diameters are added to the
surface by modifying some y values of the data points. Some holes are generated
by two to five partially-overlapped hemispherical holes. These holes can represent
the deformation of the surface after the rockfall events. An example of the holes
is shown in Fig. 1 (right). Note that in order to reduce the computational time
in our simulation, 3D point-cloud inputs used in experiments are subareas or
regions of the image in Fig. 3 (middle), as shown in Fig. 3 (bottom). The numbers
of data points of all five regions are 15,718, 41,466, 33,645, 13,898, and 5, 385
points, for region numbers running from 1 to 5.

4.2 Experimental Conditions

The numbers of rockfall events in all five regions were as follows. Note that some
events were generated from two to five hemispheres. These events are marked
with the asterisk, as shown in Table 1. In region 1, there are 7 events from a to
g with the largest radii of 25, 20, 7, 20, 60, 50, and 25 cm, respectively, and the
smallest radius of f is 20 cm. In region 2, there are 9 events from a to i with
the largest radii of 60, 40, 15, 40, 25, 40, 20, 30, and 60 cm, respectively, and
the smallest radii of a and d are 25 and 20 cm, respectively. In region 3, there
are 7 events from a to g with the largest radii of 7, 18, 10, 20, 50, 25, and 40
cm, respectively, and the smallest radius of e is 35 cm. In region 4, there are
7 events from a to g with the largest radii of 3, 25, 40, 40, 40, 25, and 20 cm,
respectively, and the smallest radius of e is 10 cm. In region 5, there are 5 events
from a to d with the largest radii of 4, 5, 14, and 25 cm, respectively, and the
smallest radius of d is 18 cm.

The conditions used in our simulations are as follows. The parameter P,
which is the percent of data points that are randomly selected for shifting, was
set to 90%. The shifting interval [a,b] was set to [1,2] because the resolution
of ILRIS3D is around 2 cm. The box’s size w was set to 10 cm because we
assume that a rockfall event with a diameter less than 10 cm might not of
importance in this work. The DBSCAN parameters used here are 10 and 5 for
¢ and minPts, respectively. Note that these parameters’ values are suggested by
the conventional method [12].

4.3 Experimental Results

Comparisons of data points detected in rockfall events between the proposed
method and the conventional method [12] are shown in Table 1. It can be seen
that, in a total of 34 events, the proposed method could identify 30 events, and
the conventional method could detect 27 events. The conventional method is
slightly better than the proposed method in this aspect. The proposed method
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Fig. 2. Comparison of the results of the proposed method and the conventional method
[12]: (a) surface-difference image from the subtraction process, (b) grid of equal square
boxes of size w, (c) clutter-removed surface-difference image obtained from NNCR, (d)
clutter-removed surface-different image obtained from the proposed grid-density-based
method, (e) detected rockfall events when the surface-difference image is put as the
input of DBSCAN (with parameters suggested by the conventional method) directly,
(f) detected rockfall events when applying only DBSCAN with parameters estimated
by the proposed grid-density-based method (without the clutter removal), (g) detected
rockfall events by the conventional method, (h) detected rockfall events by the proposed
method, and (i) ground truth.
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Fig. 3. 3D point cloud dataset (middle) scanned from the Puigcercos cliff (top), Cat-
alonia, Spain [3][12][1], and five regions used in our simulations (bottom).
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could not detect some events, except the event c in region 3, because the sizes
of the simulated hemispheres are smaller than the box’s size w. In other words,
the smallest event the proposed method can detect has a size of w. These results
are not beyond the expectation and can be solved by reducing the box’s size.
However, in terms of false-positive detection, the proposed method is better, i.e.,
the proposed method infrequently identified rockfall when there is no rockfall
compared to the conventional method. Example of detected rockfall events is
shown in Fig. 2.

Figure 4 shows the comparison of the computational time complexity between
the proposed method and the conventional method when the number of data
points increases. It can be seen that the proposed method is faster.

Table 1. Comparison of data points detected in rockfall events between the proposed
and the conventional methods [12]. Note that nFP is a number of false-positive points.
Note also that the numbers in parentheses are radii.

Region 1
a(25) b(20) c(7) d(20) e(60) f*(50) g(25) nFP
Ground truth| 153 97 14 111 768 1060 160 0
Conventional | 161 100 13 129 el 1084 174 15
Proposed 97 65 0 95 501 948 121 7

Region 2

a*(60) b(40) c(15) d*(40) e(25) £(40) g(20) h(30) i(60) nFP

Ground truth| 1087 | 548 | 61 | 471 | 198 | 568 | 144 | 308 | 1546 | O
Conventional | 1099 | 554 | 60 | 476 | 203 | 576 | 145 | 313 | 1568 | 16

Proposed 173 | 245 | 11 0 77 | 284 | 94 | 155 [ 1389 | O
Region 3
a(7)  Db(18) c(10) d(20) e*(50) £(25) g(40) nFP
Ground truth| 8 81 27 100 769 163 482 0
Conventional 0 80 25 102 776 170 487 56
Proposed 0 62 0 42 420 85 294 0
Region 4
a(3) b(25) c(40) d(40) ex*(40) f(25) g(20) nFP
Ground truth 3 197 501 520 859 194 135 0
Conventional 0 204 510 530 877 199 137 4
Proposed 0 165 462 497 775 161 126 0
Region 5
a(4) b(5) c(14) d*(25) nFP
Ground truth 7 10 74 234 0
Conventional 0 0 76 243 0
Proposed 0 0 48 202 0

5 Discussion

In this section, we discuss the potential of using grid density to estimate the
parameters of DBSCAN. As mentioned in Section 2.2, the DBSCAN algorithm
requires two reasonable parameters to cluster data points effectively. Those pa-
rameters are € and minPts. The parameter ¢ is a distance to a point p that
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Fig. 4. Comparison of the computational time between the proposed method and the
conventional method [12].

defines a set N.(p), and the parameter minPts is an integer that defines the core
point, the point that lies in high-density areas. Hence, if the smallest distance
between two points on a laser line can be approximated (e.g., by the instru-
ment’s resolution), and the size w of the box of the grid is set to the laser line
scanner resolution, the maximum number of points in the box (i.e., cpay) can
be reasonably used to approximate minPts. That is, minPts = cyay, and € = w.
Figure 2 (f) shows an example of the result of applying DBSCAN with ¢y and
w to a surface-difference image. It can be seen that the resulting image is clearly
better than the image in Fig. 2 (d). This issue will be investigated further. Note
that this result was obtained under the condition that [a,b] is [1,2].

Another critical issue worth discussing in this section is a relationship be-
tween the threshold used in the subtraction process by CloudCompare and the
shifting interval [a, b]. It is clear that the threshold affects the number of points in
the surface-difference image directly. In our simulation, we fixed [a, ] to [1, 2] to
correspond to a possible situation for the laser line resolution of approximately 2
cm. We, therefore, fixed the threshold value to 1.8 cm. This threshold was set to
this value because it resulted in a good performance for the conventional method
[12], to which our proposed method is compared. The relationship between the
threshold and the shifting interval should be studied further as well.

6 Conclusion

This paper proposed a method for rockfall detection based on DBSCAN with
grid-density-based clutter removal from two data point clouds. The method con-
sists of four steps: registration, subtraction, clutter removal, and DBSCAN. The
paper’s contribution is in providing a simple method for clutter removal in com-
parison with the conventional NNCR. The experimental results showed that the
proposed grid-density-based clutter removal worked comparably to the NNCR,
while the computational time complexity reduced reasonably. In addition, this
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paper suggested a straightforward means to estimate two parameters of the DB-
SCAN algorithm based on the laser line resolution and grid density.
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