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Abstract—We consider two streams of data or measurements
with disparate qualities and time resolutions that need to be
classified. The first stream consists of higher quality data at a
coarser time resolution, and the other consists of lower quality
data at a finer time resolution. We present a fuser-switch method
that fuses the set of classifiers of each stream separately and
switches between them. We show that this method provides
classification decisions at a finer time resolution with superior
detection and false alarm probabilities compared to individual
classifiers, under the statistical independence and time resolution
ratio conditions. When classifiers are trained using machine
learning methods, we show that this superior performance is
guaranteed with a confidence probability specified by the clas-
sifiers’ generalization equations. We use these results to provide
analytical foundations for previous practical results that achieved
significant performance improvements in classifying Pu/Np target
dissolution events at a radiochemical processing facility.

Index Terms—classifier, fuser, generalization equation, ROC,
time resolution, statistical independence

I. INTRODUCTION

We consider a scenario of two separate streams of data
or measurements with different time resolutions (or rates),
wherein a classification decision is required upon arrival of
each data or measurement. The data at the coarser time reso-
lution (or lower rate) are of higher quality, and are classified
by the set A of binary classifiers. At the finer time resolution
(or higher rate), data are of lower quality and are classified
by the set B of binary classifiers. The receiver operating
characteristic (ROC) curves of A-classifiers are overall higher
than those of B-classifiers, but their classification outputs are
provided at the coarser time resolution or less frequently. We
address the problem of classifying the data of either stream
as they arrive by “combining” the outputs of classifiers. This
formulation is a specific abstraction of the classification [1],
[2] and classifier fusion problem [3], [4]. It is motivated by
the nuclear dissolutions application [5], and is a special case
of the well-studied information fusion problem [6] applied to
multi-rate [7] and multi-resolution [8] sensors or data sources.
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Fig. 1: Fuser-switch utilizes fusers of individual classifier sets
and switches between them for improved ROC performance.

A straight-forward method is to choose the “best” classifier
from each set and use them to classify the corresponding
data items as they arrive. We present a superior approach
that provides the classification performance better than the
best classifier from each set with quantified confidence. We
employ a fuser-switch method that first fuses the classifiers
within sets A and B, and uses the fused classifiers to classify
the corresponding items of coarse and fine time resolution,
as illustrated in Fig. 1. We show that this method provides
superior detection and false alarm probabilities compared to
the best classifiers of A and B with confidence probabilities.

We analyze the performance of this method in two steps.
First, under (ideal) statistical independence conditions, we
utilize the classical fusion results (Condorcet Jury theorem [9]
and Chow’s fuser [10]) to establish the superior performance
under sufficiently high percentage of the higher quality, coarser
time resolution data. The solutions in this case require a
complete knowledge of the detection and false alarm probabil-
ities. Second, under more general conditions, we consider that
the classifiers and fusers are selected using machine learning
(ML) methods [11] that utilize training sets. Consequently,
the statistical independence property is not guaranteed and
the underlying detection and false alarm probabilities are
known within confidence bounds based on their generaliza-
tion equations [12], [13]; in particular, the best classifier
can only be approximately identified [14]. We derive the
conditions for the superior performance of our fuser-switch
method using fusers that satisfy the isolation property [15],
and derive the confidence probabilities using distribution-free
generalization equations of the classifiers that characterize
their performance [16]. For this problem, the existing multi-
rate, multi-resolution methods require the knowledge of the
underlying system or distributions models [6]–[8], and ML



methods without those requirements [11] do not provide the
needed generalization equations.

We apply these results to provide analytical insights and
justification for a solution that was developed for the classi-
fication of events associated with the Plutonium/Neptunium
(Pu/Np) targets being dissolved at a radiochemical facility
using gamma spectral measurements of effluent streams [5],
[17], [18]. In this scenario, previous experiments showed very
promising results that when a diverse set of 8 classifiers
are fused and switched based on measurement time-windows,
the classification performance is significantly improved, from
70% detection rate at 20% false alarm rate in [5] to 95%
detection rate at 5% false alarm rate in [17]. These practical
results motivated our two-step analytical study of this ap-
proach: ideal cases provide basic insights into the performance
improvements using classical results, and their generalizations
to correlated, finite sample conditions make them applicable
to more recent multiple (smooth, non-smooth, statistical and
structural) ML classifiers that are being increasingly used in
several applications [1], [12].

The organization of the paper is as follows. The problem
formulation is described in Section II, and our overall ap-
proach is described in Section III. The performance equations
are derived under the statistical independence conditions in
Section IV. Performance equations of the fuser-switch classi-
fiers are presented in Section V. The experimental results of
dissolution classification problem are related to the analytical
results in Section VI. Conclusions and directions for future
work are presented in Section VII.

II. PROBLEM FORMULATION

A binary classifier C : <d 7→ {0, 1} maps the input X ∈ <d

to Boolean output Y = C(X) ∈ {0, 1}. We consider that
two separate sets of classifiers are used for two data streams:
a set of classifiers A = {A1, A2, . . . , AnA

} handles data
items at a coarser time resolution with time interval tA, and
a complementary set of classifiers B = {B1, B2, . . . , BnB

}
handles data items at a finer time resolution with time interval
tB < tA. The rates of classification output from classifiers
A ∈ A and B ∈ B and ΓA,B are 1/tA, 1/tB , respectively.
The rate fraction of A is ρ = 1/tA

(1/tA+1/tB) = tB/(tA + tB)
such that a larger value represents more frequent higher quality
data and vice versa. A classification decision is required at the
arrival of every data or measurement, namely, at a minimum
time interval tAtB/(tA + tB). For discussions that apply to
both sets of classifiers, we use a generic set of classifiers
C = {C1, C2, . . . , CnC

}.
Let DC(F ) of classifier C denote its detection probability

at the false alarm probability F . The operating point (OP)
of C is given by PC = (FC , DC (FC)), simply denoted by
(FC , DC). We consider that ROC DC(F ) as a function of F
is non-decreasing. The classifier Ci is superior to classifier Cj

in terms of ROC if for all F

DCi(F ) ≥ DCj (F ).

(a) improvement region of a classifier

(b) ROC curves and OPs of individual and switched classifiers, and fusers

Fig. 2: Enhancement regions and comparison of operating
points and ROC curves of classifiers and fusers.

This condition implies that at any false alarm probability, the
detection probability of Ci is at least as high as that of Cj , and
combined with the non-decreasing property of DC(F ) implies
that at any detection probability, the false alarm probability of
Ci is no higher than that of Cj . We consider that the classifier
set A to be superior to B if Ai is superior to Bj for all
i = 1, 2, . . . , nA, and j = 1, 2, . . . , nB . Let ΓCi,Cj

denote
a switch classifier that outputs those of two classifiers Ci and
Cj corresponding to their individual data as their arrive. 1/tA,
1/tB and 1/tA + 1/tB , respectively. The rate of classification
output from ΓA,B is 1/tA + 1/tB , since it outputs every time
its either constituent classifier outputs. The detection and false
alarm probabilities of ΓA,B are

DΓA,B
= ρDA + (1− ρ)DB = (tBDA + tADB)/(tA + tB),

FΓA,B
= ρFA + (1− ρ)FB = (tBFA + tAFB)/(tA + tB),

respectively, for ρ ∈ [0, 1].

III. CLASSIFIERS: ENHANCEMENT AND FUSION

Our method consists of fusing the outputs of classifier sets
A and B using fusers FA and FB , respectively, and reporting
the output at the corresponding time resolution. The overall
classification result is produced at the finer time resolution by
the fuser-switch classifier ΓFA,FB

, which is at least as frequent
as that of classifiers in B.

A. Classifier Enhancements: Overall Approach

Our overall approach is based on developing both fusers
FA and FB that are superior to the corresponding individual
classifiers, and then utilizing a fuser-switch classifier ΓFA,FB

with suitable ρ value, as illustrated in Fig. 1. The superiority
is characterized with probability 1 by utilizing the statistical
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C = {C1, C2, . . . , CnC
} : generic set of classifiers/fusers

C∗, Ĉ and C̃ : expected best, empirical best and ML estimate of classifier C, respectively
FC : false alarm probability of classifier C

DC(F ) : detection probability of classifier C at false alarm probability F
EC : enhancement region of C at F

PC = (FC ,DC(FC)) = (FC ,DC) : operating point of classifier C
IC and ÎC : expected and empirical error of classifier C, respectively

FC : function class of ML method for classifier C
A = {A1, A2, . . . , AnA

} : set of coarse resolution classifiers
B = {B1, B2, . . . , BnB

} : set of fine resolution classifiers
tA and tB : interval of coarse and fine time resolution, respectively

ρ = 1/tA
(1/tA+1/tB) : rate fraction of A
FA and FB : fuser of classifier sets A and B, respectively

ΓA,B : generic switched version of classifiers A and B
ΓF̃A,F̃B

: fuser-switch of computed fusers of classifier sets A and B
ΓF̂A,F̂B

: fuser-switch of empirical best fusers of classifier sets A and B
ΓF∗A,F∗B : fuser-switch of expected best fusers of classifier sets A and B

TABLE I: Notation

independence conditions and known detection and false alarm
probabilities in the ideal case using the classical results (Sec-
tion IV), and with confidence probability 1 − δ based on the
isolation property under more general conditions using more
recent finite sample results (Section V).

The enhancement region EC of a classifier C is the rect-
angular region with lower false alarm and higher detection
probabilities than those of C as shown in Fig. 2(a), and that
of a set of classifiers is the intersection of their enhancement
regions as shown in Fig. 2(b). Our overall approach is to
utilize combinations of fusers and switching to improve the
performance within each set such that the resultant operating
point is within the intersection of enhancement regions of A
and B, as illustrated in Fig. 2(b). For instance, outputs of the
two fusers are switched by ΓFA,FB

so that their detection
and false alarm probabilities are linear combinations with
coefficients that reflect the rate fraction ρ. For a suitably high
ρ, the operating point of ΓFA,FB

can be made to lie within
the intersection of enhancement regions of both fusers with
certain probability at the expense of more higher quality data.

B. Fused Classifiers

The fusers FA and FB are considered to be I, J-superior
to the corresponding individual classifier subsets if for i ∈ I
and j ∈ J ,

DFA
≥ DAi and FFA

≤ FAi

DFB
≥ DBj and FFB

≤ FBj

with certain probability; they are simply called superior if
the subsets are the entire classifier sets. When all classifiers
have an identical operating point, the above are true with
probability 1 for all i = 1, 2, . . . , nA and j = 1, 2, . . . , nB ,
under the statistical independence condition (Section IV-A).
They are similarly satisfied but with a confidence probability
if a fuser F : [0, 1]n 7→ [0, 1] is chosen from a class FF , as
in the case of ML methods, under the isolation property [15]

such that it contains Fi, i = 1, 2, . . . , n, where Fi(X) = xi
for X = (x1, x2, · · · , xn). Analytical bounds are derived for
the confidence probability of ΓFA,FB

using the generalization
equations of the classifiers in Section V.

C. Switching Classifiers

The conditions for ΓFA,FB
to be in the intersection of

enhancement regions of the best individual classifiers are

DΓFA,FB
≥ max{DA∗ , DB∗}

and
FΓFA,FB

≤ min{FA∗ , FB∗},

where DA∗ = max
i
DAi

, DB∗ = max
j
DBj

, FA∗ = min
i
FAi

,

and FB∗ = min
j
DBj

.

This detection probability condition depends on the rate
fraction ρ, and is given by

ρDDFA
+ (1− ρD)DFB

≥ max {DA∗ , DB∗}

or equivalently ρD ≥
max{DA∗ ,DB∗}−DFB

DFA
−DFB

. The correspond-
ing false alarm probability condition is given by

ρF ≤
min {FA∗ , FB∗} − FFB

FFA
− FFB

.

These individual detection and false alarm probabilities cor-
respond to different time resolutions, which should be taken
into account when comparing them. In general, these two
conditions may not be simultaneously satisfied, but they are
under some statistical independence conditions, as shown in
the next section.

IV. STATISTICAL INDEPENDENCE CONDITIONS

We now consider simple cases to illustrate the basic con-
cepts behind the performance of ΓFA,FB

when the classifiers
are statistically independent, namely, for two classifiers Ci and
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Cj , the joint detection and false alarm probabilities are given
by DCiDCj and FCiFCj , respectively.

A. Identical Classifiers

We consider classifiers with identical detection and false
alarm probabilities, denoted by DA > 1/2 and FA < 1/2,
respectively for A, and DB > 1/2 and FB < 1/2, respectively
for B; their operating points are denoted by PA = (FA, DA)
and PB = (FB , DB). We use the majority fusers MA and MB

for A and B, respectively. We apply the classical Condorcet
Jury theorem [19] separately for the detection and false alarm
probabilities. For set C = A,B, and classifier C ∈ C, we have

DMC
> DC and FMC

< FC , and furthermore,
DMC

→ 1 and FMC
→ 0 as nC →∞.

The first property is referred to as the increasing probability
which ensures that the fuser’s detection probability is larger
and false alarm probability is smaller than individual classifier,
respectively, when nC is larger. The second weaker property is
referred to as the asymptotic improvement which ensures that
the detection probability goes to 1 and false alarm probability
goes to 0 when nC goes to infinity. The first is often called
the non-asymptotic part and the second is often called the
asymptotic part of the jury theorem.

The application of the increasing probability property to the
detection and false alarm probabilities results in the fusers’ op-
erating point in the enhancement regions of the corresponding
classifier set. Then, the detection and false alarm probabilities
of the fuser-switch classifier are given by

DΓ
MA,MB

= ρDMA
+ (1− ρ)DMB

and
FΓMA,MB

= ρFMA
+ (1− ρ)FMB

,

respectively. Also, for its operating point, we have(
FΓMA,MB

, DΓMA,MB

)
→ (0, 1) as nA → ∞ and nB → ∞.

This case is illustrated in Fig. 3(a). When classifiers are non-
identical, the majority and linear fusers are shown to be
superior to some of the individual classifiers [20] but not
necessarily the best individual classifier, as shown in Fig. 3(b).

B. Non-Identical Classifiers

For classifiers with different detection and false alarm
probabilities, we use Bayes fuser [10], [21] that minimizes
the expected error, which is the sum of missed detection
and false alarm probabilities. Bayes fuser takes a linear form
wherein the decisions are combined with linear weights and
compared with a threshold. The weights are computed based
on the ratios of various probabilities. For a set of classifiers
C = {C1, C2, . . . , Cn}, the optimal fuser has the linear form:

output of 1 if
n∑

i=1

wiCi(X) ≥ τ and 0 otherwise, where

wi = log
(

DCi
(1−FCi

)

(1−DCi
)FCi

)
, and τ =

n∑
i=1

log
1−FCi

1−DCi
.

The Bayes fuser does not guarantee the superiority over the
best classifier, and can be analyzed by examining two general
cases of the Condorcet Jury Theorem.
• Strong Competence: Consider that the false alarm proba-

bility FCi < 1/2 and detection probability DCi > 1/2 for

(a) identical classifiers: increasing probability

(b) dissimilar classifiers: increasing average probability

Fig. 3: Statistical independence leads to asymptotic improve-
ment.

all Ci, which indicate that the performance of classifiers
are all better than random. A generalization of the jury
theorem under strong competence and conditional inde-
pendence together imply the asymptotic improvement but
not the increasing probability [22].

• Average Competence: Consider that the average of detec-
tion (false alarm) probabilities is slightly greater (smaller)
than half, or converges to a value above (below) 1/2.
Then, the jury theorem generalizations in [23] show
that average competence and conditional independence
together implies the asymptotic improvement but not the
increasing probability.

When the competence levels of the classifiers are known, the
simple majority rule may not be the best decision rule. There
are various works on identifying the optimal decision rule that
maximizes the group correctness probability.

The classical results and their generalization provide in-
sights into the performance of fusers under the statistical inde-
pendence conditions, which are not guaranteed to be satisfied
in several applications, including the scenario in Section VI.
Furthermore, the detection and false alarm probabilities are not
precisely known when ML solutions are obtained using finite
training samples; rather, they are probabilistically specified by
the generalization equations of ML classifiers [13].

V. MACHINE LEARNED CLASSIFIERS

For classifiers based on ML methods, the detection and
false alarm probabilities are characterized using generalization
equations that provide a confidence probability bound δ(ε, l)
for ensuring that their generalization errors are within a
precision parameter ε of the optimal, based on l training
examples [16]. We now derive the generalization equations
for the computed fuser-switch classifier ΓF̃A,F̃B

based on lA
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and lB training examples for the classifier sets A and B,
respectively.

A. Classifier Generalization Equations

Let C(X) be the classifier output based on input X that
corresponds to output Y distributed according to an unknown
distribution PX,Y . The classifier C is chosen from a function
class FC according to a cost criterion. Its expected error is
defined as

IC =

∫
(C(X)⊕ Y ) dPX,Y ,

where ⊕ is the exclusive-OR operation. The false alarm
probability is FC = IC under Y = 0, and the missed
detection probability is 1 − DC = IC under Y = 1,
thus, we have IC = FC + 1 − DC . Given the training set
(X1, Y1), (X2, Y2), . . . , (Xl, Yl), the empirical error is

ÎC =

l∑
i=1

(C(Xi)⊕ Yi) .

The best classifiers that minimize the expected and empirical
error are denoted by C∗ and Ĉ, respectively. Thus, for any
C ∈ FC , IC ≥ IC∗ and ÎC ≥ ÎĈ . In general, C∗ is unknown
since the underlying distribution PX,Y is unknown, and Ĉ
is not precisely computable due to its complexity (e.g. NP-
hard) or limitations of the computing systems. In practice, we
consider a computed classifier C̃ that achieves the minimum
empirical error within ε̂C̃ such that

ÎC̃ = ÎĈ + ε̂C̃ ; IC̃ = IC∗ + εC̃

The performance of a computed classifier C̃ is characterized
by its generalization equation

Pl
X,Y {IC̃ − IC∗ > ε+ εC̃} < δFC

(ε, l),

where l is the number of training samples, and ε and δ
are precision and confidence parameters, respectively. In the
special case, the computed C̃ minimizes empirical error, that
is, C̃ = Ĉ, the above equation simplifies to

Pl
X,Y

{
IĈ − IC∗ > ε

}
< δFC

(ε, l).

This result is derived from the uniform convergence of means
and expectations given by

Pl
X,Y

{
sup
C∈C

∣∣∣ÎC − IC∣∣∣ > ε

}
< δFC

(ε/2, l)

or equivalently Pl
X,Y

{
sup
C∈C

∣∣∣ÎC − IC∣∣∣ < ε

}
> 1−δFC

(ε/2, l).

B. Fuser Improvement

For set of classifiers C, with each classifier Ci chosen from a
function class FCi

, the corresponding expected best, empirical
best, and computed versions are denoted respectively by

C∗ =
{
C∗1 , C

∗
2 , · · · , C∗nC

}
, Ĉ =

{
Ĉ1, Ĉ2, · · · , ĈnC

}
,

C̃ =
{
C̃1, C̃2, · · · , C̃nC

}
.

Fig. 4: Optimal expected C∗, optimal empirical Ĉ, and com-
puted C̃ versions for classifier/fuser C ∈ {Ai, Bi,FA,FB}.

For each i, the expected best C∗i , empirical best Ĉi and
computed C̃i are all chosen from the same function class FCi

such that in terms of notation we have

FCi
= FC∗i

= FĈi
= FC̃i

.

These classifiers are fused by a fuser FC : {0, 1}nC 7→ {0, 1}
chosen from class FFC . Let F∗C∗ , F̂Ĉ , and F̃C̃ represent
the expected best, empirical best and computed fuser of
the expected best, empirical best and computed classifiers,
respectively. The expected fuser improvement is defined as

∆FC =
nC

min
i=1

ICi
− IFC ,

which represents the difference between the expected error of
a best classifier and the fuser. The corresponding empirical
fuser improvement is defined as

∆̂FC =
nC

min
i=1

ÎCi
− ÎFC .

The expected best, empirical best and computed versions of
the fuser chosen from fuser class FFC are denoted by F∗C , F̂C
and F̃C , respectively.

We consider the best expected fuser improvement as

∆∗F∗
C∗

=
nC

min
i=1

IC∗i − IF∗C∗ ,

which represents the difference between the expected error
of best of the expected best classifiers and their expected
best fuser. Under the isolation property of the class FFC , it
consists of a function that makes it identical to C∗i for each
i. Consequently, ∆∗F∗

C∗
are non-negative, since the expected

error is minimized by the expected best classifiers and fusers.

1) Fuser Generalization Equations: The closeness of the
empirical best classifiers and fusers in terms of the best
expected fuser improvement ∆∗F∗

C∗
is probabilistically guar-

anteed by the following result.

Theorem 5.1: Let the fuser F̃C̃ be the computed fuser
trained with lFC

samples based on the computed classifiers set
C̃ each trained with lC samples. Under the isolation properties
of fuser and all classifier classes, we have

P
{
IF̃C̃
−

nC

min
i=1

IC∗i + ∆∗F∗
C∗

> ε+ ε̃

}
< δ∆F̂

Ĉ

(ε, lC , lFC
),
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where ε̃ = ε̃F̂Ĉ
such that IF̃C̃

= IF̂Ĉ
+ ε̃F̂Ĉ

and

δ∆F̂
Ĉ

(ε, lC , lFC
) = δFFC

(ε/2, lFC
) +

nC∑
i=1

δFCi
(ε/(2nc), lC) .

Proof: We first show that

P
{
IF̂Ĉ
−

nC

min
i=1

IC∗i + ∆∗F∗
C∗

> ε+ ε̃

}
< δ∆F̂

Ĉ

(ε, lC , lFC
).

The condition
{
IF̂Ĉ
−

nC

min
i=1

IC∗i + ∆∗F∗
C∗

> ε

}
is the same as{

IF̂Ĉ
− IF∗

C∗
> ε
}

, which implies IF̂Ĉ
− IF∗

C∗
> ε/2 or, for

some i, IĈi
−IC∗i > ε/(2nC). Thus, the probability in theorem

statement is upper bounded by the sum of probabilities of the
above terms, which are upper-bounded by δFFC

(ε/2, lFC
) and

δFCi
(ε/(2nc), lC) for each i, respectively. �

With confidence 1 − δ∆F̂
Ĉ

(ε, lC , lFC
), this theorem en-

sures the expected error of the computed fuser F̃C̃ is within
the precision parameter ε + ε̃ of the best expected error
nC

min
i=1

IC∗i reduced by fuser improvement ∆∗F∗C
. This guarantee

is distribution-free in that it is independent of the underlying
distribution PX,Y , which could be quite complex. The lower
the error ε̃ due to computed fuser, the tighter will be the
precision parameter. Also, the confidence improves in general
with the increasing training sample sizes.

2) Fuser Improvement Estimates: The best empirical fuser
improvement is given by

∆̂F̃C̃
=

nC

min
i=1

ÎĈi
− ÎF̂Ĉ

,

which represents the difference between the empirical error of
the best of empirical best classifiers and their empirical best
fuser. Under the isolation property of the class FFC , both ∆∗F∗C
and ∆̂F̂Ĉ

are non-negative, since the expected and empirical
errors are minimized by the expected and empirical best fusers,
respectively. These two quantities are not computable using
only the computed classifiers C̃i and fusers for two different
reasons: the former due to the approximate minimization of the
empirical error by F̃ and latter due to the lack of knowledge
about PX,Y . Instead, we compute their computable version

∆̃F̃C̃
=

nC

min
i=1

ÎC̃i
− ÎF̃C̃

,

which is not guaranteed to be non-negative even under iso-
lation property of the class FFC , unlike the above two. It is
shown to be closer to ∆∗F∗

C∗
by using the empirically best

estimates in [24], which provides the following result

P
{∣∣∣∆∗F∗

C∗
− ∆̃F̃C̃

∣∣∣ > ε+ ε̃
}
< δ∆F̂

Ĉ

(ε, lC , lFC
),

where ε̃ = ε̃F̂Ĉ
, This result is extended to ΓF̃A,F̃B

in the next
section.

C. Fuser-Switch Generalization equations

We combine the results of the previous section to estimate
the generalization equations of the computed fuser-switch

ΓF̃A,F̃B
.

Theorem 5.2: The computed fuser-switch ΓF̃Ã,F̃B̃
uses the

computed fusers for classifier classes A and B with lFA
and

lFB
samples, respectively. The computed classifiers from A

and B are trained with lA and lB samples, respectively. Under
the isolation properties of fusers and all classifier classes, we
have ∆∗FΓ

≥ 0, and

P
{
IΓF̃

Ã
,F̃

B̃

− IΓF∗
A∗ ,F

∗
B∗

+ ∆∗FΓ
> ε+ ε̃Γ

}
< δ∆F̃A

(ε/2, lA, lFA
) + δ∆F̃B

(ε/2, lB , lFB
)

where ΓF∗
A∗ ,F

∗
B∗

is the switched classifier based on expected
best fusers of expected best classifiers,
ε̃Γ = ρε̃F̂Â

+ (1−ρ)ε̃F̂B̂
and ∆∗FΓ

= ρ∆∗F∗
A∗

+ (1−ρ)∆∗F∗
B∗
.

Proof: The condition{
IΓF̃

Ã
,F̃

B̃

− IΓF∗
A∗ ,F

∗
B∗

+ ∆∗FΓ
> ε+ ε̃Γ

}
implies

IF̂Ã
− IF∗

A∗
+ ∆∗F∗

A∗
> ε+ ε̃F̂Â

or

IF̂B̂
− IF∗

B∗
+ ∆∗F∗

B∗
> (1− ρ)

(
ε+ ε̃F̂B̂

)
.

Thus, the probability in the theorem is upper bounded by
sum of the probabilities of the above two terms, which are
upper-bounded by δ∆F̃A (ε/2, lA, lFA

) and δ∆F̃B (ε/2, lB , lFB
)

obtained by applying Theorem 5.1 to classifiers A and B. �
The result from the previous section is extended following

the approach used in Theorems 5.1 and 5.2 to obtain

P
{∣∣∣∆∗F∗

C∗
− ∆̃F̃C̃

∣∣∣ > ε+ ε̃Γ

}
< δ∆F̃A

(ε/2, lA, lFA
) + δ∆F̃B

(ε/2, lB , lFB
),

which characterizes the closeness between the computed and
best expected fuser improvements.

VI. CLASSIFICATION OF RADIOCHEMICAL DISSOLUTION

We consider a practical problem of classifying events asso-
ciated with the radiochemical dissolution of irradiated Np-237
targets used to produce Pu-238 material (detailed descriptions
provided in [5], [17]). The target dissolution activities take
place at a radiochemical processing facility, and the resultant
gas effluents contain isotopes characteristic of the target mate-
rial. The gamma spectra of the effluent measurements collected
by a High Purity Germanium (HPGe) detector located at
the facility’s off-gas stack contain the related signatures, and
identification of the target based on these measurements is
an important component of the facility analytics needed for
certain scenarios.

The measurements are aggregated every 6 and 24 hours,
and processed and analyzed to estimate 15 isotope counts,
which are used as classifier features. These features and results
produced for this paper are different from various feature
selections reported in [5], [17] and the isotope ratios features
reported in [18]. The overall approach of using fusers and
different aggregation windows is common to all these works,
and resulted in significant performance improvements, which
motivated the analytical formulation of this paper. The 15
isotopes consist of five iodine isotopes, I-131, I-132, I-133,
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Fig. 5: Ensemble fuser combines outputs of classifiers CT,
EOT and kNN with lowest error among eight classifiers [17].

I-134 and I-135; four krypton isotopes, Kr-85, Kr-87, Kr-88
and Kr-89; four xenon isotopes, Xe-135, Xe-135m, Xe-137
and Xe-138; one barium isotope Ba-138; and one cesium
isotope Cs-138. The counts are inherently complex since
they are Poisson distributed both when the target is being
dissolved and at other times, albeit with different parameters.
In particular, the measurements corresponding to small targets
are challenging to discriminate from background since both
are Poisson distributed with (typically unknown) parameters
that may be only slightly different.

A. Fuser Performance

We fuse eight classifiers (as in [17]) for Pu/Np target
signatures with the lower quality measurements every 6 hours
and higher quality measurements every 24 hours, using the
proposed fuser-switch method. Eight classifiers are trained
using different machine learning methods, namely Classifi-
cation Trees (CT), Discriminant Analysis Classifier (DAC),
Error Correcting Output Codes (ECOC), Ensemble of Trees
(EOT), Kernel Method (KM), k Nearest Neighbors (kNN),
Naive Bayes (NB), and Support Vector Machine (SVM); thus,
we have C = { CT, DAC, ECOC, EOT, KM, kNN, NB, SVM }.
These are chosen to represent the design diversity, namely,
smooth (KM and SVM) and non-smooth (CT, EOT and kNN),
and statistical (DAC, ECOC, NB) and structural (kNN), since
there is no single best classification method under the complex,
unknown features based on finite samples [14].

The non-smooth classifiers CT, EOT and kNN perform
significantly better than others, and they are fused using the
ensemble fuser (EOT-F), which satisfies the isolation property.
The ROC plots and OPs of classifiers trained using measure-
ments at 24 hours time resolution (Set A) and those at 6 hours
time resolution (Set B), together with their corresponding
fuser, are shown in Figures 6(a) and (b), respectively. For
measurements at 24 hours time resolution, the data have much
higher quality as indicated by improved performance of the
corresponding classifiers as well as fuser as shown in Fig. 6(a).
Here, the fuser’s OP is inside the enhancement regions of clas-
sifiers under both coarser and finer time resolutions. The fuser
provides an overall superior performance to most classifiers in
these examples but that may not be asserted in general since
the guarantee in Theorem 5.1 is probabilistic.

B. Fuser-Switch Performance

The OPs of classifiers, fuser and fuser-switch at finer
time resolution are shown for all classifiers and top three
classifiers in Figures 7(a) and (b), respectively. To highlight
the effectiveness of fusers, OPs of the switched versions of
classifier i, i.e., ΓAi,Bi

where Ai ∈ A and Bi ∈ B, are also
plotted in these figures. For the top three classifiers and their
fuser, OPs of switched-classifiers and fuser-switch are in their
corresponding enhancement regions as shown in Fig. 7(b).
However, the performance of the switched-classifier is mixed
for other classifiers: it is true for DAC and KM, partially true
for SVM and ECOC with higher detection and also higher
false alarm rates, and NB with lower false alarm rate but
also lower detection rate. By selecting the top three classifiers,
fusing them, and combining them using fuser-switch method,
performance superior to the best of classifiers, switched-
classifiers, and fuser is achieved. Thus, fusers perform superior
to all classifiers, and fuser-switch performs superior to all
fusers and switched-classifiers, namely, with higher detection
rate and lower false alarm rate at finer time resolution and
provides output at time resolution finer than first class.

Theorems 5.1 and 5.2 provide analytical insights into
performance of classifiers and fusers, as well as practical
guidance for the selection of classifiers to be fused. Among
all classifiers, those with lower training errors are associated
with smaller ε̃ values in Theorem 5.2, and hence stronger
performance guarantees. As a result, they are used as inputs to
fusers and subsequently in fuser-switch which provides supe-
rior performance to all classifiers, generic switched-classifiers,
and fusers at the finer time resolution. The classifiers with
higher training error are associated with larger ε̃ and weaker
performance guarantees, thereby are not included.

VII. CONCLUSION AND FUTURE WORKS

In practical scenarios involving multiple sensor systems, the
quality of measurements may vary significantly [6], [25]. We
studied their simplified abstraction using two measurement
streams of different feature qualities and time resolutions. The
proposed fuser-switch method utilizes classifiers for each type,
and fuses and switches between them to provide classification
decisions at a finer time resolution with overall superior
detection and false alarm probabilities. For the practical case
of ML classifiers, this superior performance is guaranteed
with a confidence probability specified by their generalization
equations. These results provide analytical foundations for
performance results achieved in classifying target dissolution
events at a radiochemical processing facility. Our results show
that both fusion and switching parts are essential for the
superior performance, as indicated by both analytical and
experimental results.

This work addresses only a small part of the broader spec-
trum of sensor measurements quality. Future directions include
more complicated fusers across time and feature dimensions,
compared to the simple switching studied here. It would be of
future interest to use this approach in other application areas.
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(a) 24 hours

(b) 6 hours

Fig. 6: ROC plots and operating points of classifiers and fusers
at 24 and 6 hours time resolutions. Notation: A-classifier: big
circle; B-classifier: small circle; fuser: square.
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