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Abstract. Face clustering is an important topic in computer vision.
It aims to put together facial images that belong to the same person.
Spectral clustering-based algorithms are often used for accurate face
clustering. However, a big occlusion matrix is usually needed to deal
with the noise and sparse outlier terms, which makes the sparse coding
process computationally expensive. Thus spectral clustering-based algo-
rithms are difficult to extend to large scale datasets. In this paper, we
use the image gradient feature descriptor and scalable Sparse Subspace
Clustering algorithm for large scale and high accuracy face clustering.
Within the image gradient feature descriptor, the scalable Sparse Sub-
space Clustering algorithm can be used in large scale face datasets with-
out sacrificing clustering performance. Experimental results show that
our algorithm is robust to illumination, occlusion, and achieves a rela-
tively high clustering accuracy on the Extended Yale B and AR datasets.

Keywords: face clustering, scalable Sparse Subspace Clustering, image
gradient feature descriptor

1 Introduction

With the development of Internet, the problem of image organization and man-
agement has become an important issue. Naturally, most Internet images contain
human faces.To better understand and manage face images, face clustering be-
comes an essential task.Face clustering aims to group faces which refer to the
same people together. It has many applications, such as a preprocessing step
for face retrieval and face tagging.Many face clustering algorithms have been
reported in recent years [1–3].Although great progress has been achieved, face
clustering algorithms still suffer from large variations in illumination, expression
and occlusion, etc.Spectral clustering-based algorithms can handle noise and out-
liers in data samples and thus have drawn much attention in recent years for
face clustering.
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Enhanced Sparse Subspace Clustering (ESSC) is used to process complicated
face images under variant expressions, illumination or disguise [4]; Conditional
Pairwise Clustering (ConPaC) method learns the adjacency matrix directly from
a given similarity matrix. And ConPaC’s k-NN variant can cluster millions of
face images [5]. The subspace clustering method based on orthogonal matching
pursuit not only has computational efficiency, but also give a subspace-preserving
affinity under broad conditions. The application of face clustering shows that
this method achieves the best trade off between accuracy and efficiency [6]. The
regularized RPCA algorithm based on spatiotemporal sparse spectral clustering
is used for efficient background modeling. The main advantage of this algorithm
is that it can generate an accurate background model even if there are occlusion,
confusion, jitter, and abrupt intensity variations [7].

The first step of spectral clustering-based algorithms is to construct an affin-
ity matrix, and then Normalized Cuts [8] is employed to segment the data sam-
ples into different clusters. Various spectral clustering-based algorithms have
been proposed based on sparse and low-rank representation. The main difference
of these algorithms is construction of the affinity matrix. Sparse Subspace Clus-
tering algorithm [9,10] uses the l1 norm regularization on the coefficient matrix
to find the sparsest representation of each data sample. Low-Rank Representa-
tion algorithm [11–13] employs nuclear norm to seek the lowest rank representa-
tion of all data samples. Least Squares Regression algorithm [14] encourages l2
norm regularization on the coefficient matrix to obtain a block diagonal solution.
In particular, Sparse Subspace Clustering algorithm is well supported by theo-
retical analysis and achieves state-of-the-art results on many publicly available
datasets [15].

There are still some issues to be further addressed for clustering various face
images when using spectral clustering-based algorithms. Most of the spectral
clustering-based algorithms are difficult to extend to large scale datasets because
of the noise and sparse outlying terms in the objective function. For example, if
the dimensionality of features used in Sparse Subspace Clustering algorithm is
4096, then an extra 4096 × 4096 noise matrix is needed. Such a big noise term
will make the sparse coding process computationally expensive and sometimes
even prohibitive when the dimensionality of features is high. While the clustering
accuracy will dramatically down without the noise and sparse outlying terms.
What’s more, the ability to cope with various illumination and occlusion for
spectral clustering-based algorithms still needs to be improved.

Feature descriptors provide a possible solution to deal with the above prob-
lems. A low dimensional yet powerful feature descriptor is very helpful for face
clustering. Recent studies have shown that the image gradient feature descrip-
tor is widely used in many applications: face recognition, face alignment, visual
tracking [16–18]. Compared with pixel based methods, the image gradient fea-
ture descriptor is less sensitive to variations of illumination and occlusion. The
dimensionality of the image gradient feature descriptor is lower compared with
other frequently used feature descriptors. In this paper, we propose a scalable
Sparse Subspace Clustering algorithm for face clustering utilizing the image gra-
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dient feature descriptor. Our algorithm achieves a satisfied clustering accuracy
and can be applied to large scale face datasets.

The main contributions of our work are summarized as follows.
1) We proposed a scalable Sparse Subspace Clustering algorithm for face

clustering utilizing the image gradient feature descriptor.Our algorithm achieves
a better clustering performance than other spectral clustering-based algorithms.
Besides, the computational cost of our algorithm is low, which provides a promis-
ing solution for large scale and high accuracy face clustering problem.

2) The image gradient feature descriptor is first introduced to cluster large
scale face datasets.A name of sorted local gradient pattern is grayscale inversion
and rotation invariant descriptors for texture classification. Image rotation and
linear or non-linear grayscale-inversion changes are highly discriminative and
robust [19].Different feature descriptors are compared for face clustering. Exper-
imental results show that image gradient feature descriptor is very simple but
very competitive compared with other feature descriptors, e.g., HOG, LBP and
Gabor.Another novel color image inpainting algorithm. The novelty lies in the
use of gradient features combined with color features. When the image coexists
with focus and blurry regions, the use of a gradient feature can improve the
results obtained only by the color features [20].

2 Image Gradient Based Subspace Clustering Algorithm

2.1 Image Gradient Feature Descriptor

Given a face image Ii ∈ Rw×h, we compute the gradient and the corresponding
gradient orientation:

Φi = arctan
Hy ∗ Ii
Hx ∗ Ii

, (1)

where Hx and Hy are the differential filters along the horizontal and vertical face
image axis respectively, Hx∗Ii ∈ Rw×h and Hy∗Ii ∈ Rw×h denote the horizontal
and vertical convolution of the face image. We write Φi in lexicographic order
and stack it as a m dimensional vector φi , then we have the image gradient
feature descriptor as follows:

f (φi) =
1√
m

[
cos (φi)

T
+ j sin (φi)

T
]T
, (2)

where cos (φi) = [cos (φi (1)) , ..., cos (φi (m))]
T

, sin (φi) = [sin (φi (1)) , ..., sin (φi (m))]
T

.
Next, we will illustrate that the image gradient feature descriptor is a simple

yet powerful feature descriptors to measure image similarity and thus it is useful
for face clustering. With the image gradient feature descriptor, the correlation
of two face images can be expressed as:

c (fi, fj) = fTi fj =
1

m

∑m

k=1
cos (∆φij (k)), (3)
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where ∆φij = φi − φj is the difference of the feature descriptor between face
image Ii and Ij . The difference of two face images can be written as:

d2 (fi, fj) =
1

2
‖fi − fj‖22 = 1− 1

m

∑m

k=1
cos (∆φij (k)). (4)

Definition 1. If two images Ii and Ij are dissimilar, then ∆φij (k) ∼ U [0, 2π].

Definition 1 has already been verified by [18]. From Eqn.(3)and Eqn.(4), we
can see that if two face images are similar to each other, then c → 1, d → 0.
Note that similar feature descriptor has also been used in [18, 21]. This feature
descriptor is robust to outliers and there is no need to add the noise term in the
sparse coding process.

2.2 scalable Sparse Subspace Clustering

We denote the i-th face image as vector yi ∈ Rm (m = w × h) by stacking its
columns. Then the dataset of n face images can be represented as a matrix
Y = [y1, ...yn] ∈ Rm×n. According to [22], yi can be represented by a linear
combination of other images:

yi = Y xi, xii = 0, (5)

where xi = [xi1, ..., xin]T ∈ Rn×1, xii = 0 avoids writing a face image as a linear
combination of itself. Because the solution is not unique, l0 norm is used as a
constraint to seek the sparse solution of Eqn.(5). Considering the non-convexity
of l0 norm, l1 norm is replaced with the l0 norm and Eqn.(5) becomes:

min ‖xi‖1 s.t. yi = Y xi, xii = 0. (6)

We rewrite Eqn.(6) in matrix form:

min ‖X‖1 s.t. Y = Y X, diag (X) = 0. (7)

In order to deal with the corrupted or occluded face images, the noise term is
usually added in Eqn.(7):

min ‖X‖1 + ‖E‖1 s.t. Y = Y X + E, diag (X) = 0. (8)

Eqn.(8) is first proposed in [9, 10]. However, the noise term prohibits this algo-
rithm using in large scale face datasets.

If we remove the noise term from Eqn.(8) directly, the clustering performance
will decrease dramatically. Fortunately, the powerful image gradient feature de-
scriptor provides an opportunity to remedy this drawback. With the image gradi-
ent feature descriptor, there is no need to use the noise term. Based on the above
analysis, the proposed scalable Sparse Subspace Clustering (sSSC) is formulated
as:

min ‖X‖1 s.t. Y = Y A, A = X − diag(X). (9)



Lecture Notes in Computer Science: Authors’ Instructions 5

Augmented Lagrange Multiplier method is used to solve this problem. The aug-
mented Lagrangian function of Eqn.(9) is defined by:

L (A,X,∆1, ∆2) = min ‖X‖1 + tr
(
∆T

1 (Y − Y A)
)

+tr
(
∆T

2 (A− (X − diag (X)))
)

+µ
2

(
‖Y − Y A‖2F + ‖A− (X − diag (X))‖2F

)
,

(10)

where ∆T
1 , ∆T

2 are the Lagrangian multipliers, tr denotes the trace operator of a
matrix, µ is the penalty term. Eqn.(10) can be minimized through an alternative
strategy with respect to A and X by fixing the other variables and then we
update ∆T

1 , ∆T
2 and µ as the following forms:

Ak+1 = arg min
A
Lµk(A,Xk, ∆k

1 , ∆
k
2), (11)

Xk+1 = arg min
X
Lµk(Ak+1, X,∆k

1 , ∆
k
2), (12)

∆k+1
1 = ∆k

1 + µk
(
Y − Y Ak+1

)
, (13)

∆k+1
2 = ∆k

2 + µk
(
Ak+1 − Ck+1

)
, (14)

µk+1 = ρµk. (15)

Eqn.(11) can be solved by computing the derivative of L with respect to A and
setting it to zero:

Ak+1 =
(
µ
(
Y TY + I

))(
µY TY + µ (C − diag (C)) +∆1 −∆2

)
.

(16)

Eqn.(12) can be solved by the soft threshold method:

Xk+1 = J − diag (J)

J = S 1
µ

(
Ak+1 +

∆k2
µ

)
,

(17)

where S is the soft-thresholding operator. After obtaining the representation
parameter, we define the affinity matrix as

(
|X|+

∣∣XT
∣∣) /2. Then Normalized

Cuts [8] is used to segment the image datasets. In summary, given face images,
we extracted the image gradient feature descriptor (IG). Then we put the feature
vectors to the scalable Sparse Subspace Clustering algorithm (sSSC) to cluster
the face images.

3 EXPERIMENTS

Experiments are conducted on two datasets: the Extended Yale B and the AR
datasets. The Extended Yale B [23] dataset consists of 2,414 frontal face images
from 38 subjects under various lighting conditions. The cropped and normal-
ized 192× 168 face images are captured under various controlled lighting condi-
tions [24]. The AR dataset consists of over 4,000 face images from 126 subjects.
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For each subject, 26 face images are taken in two separate sessions. These im-
ages suffer from different facial expressions (neutral, smile, anger, and scream),
illumination variations (left light on, right light on, and all side lights on), and
occlusion by sunglasses or scarf.

The clustering result is evaluated by the error rate:

error = 1−
∑n
i=1 δ (yi,map(si))

n

where yi and si is the obtained cluster label and the ground truth label, δ is the
delta function, map(si) is the permutation function that maps each cluster label
si to the equivalent label in y. All of the experiments are implemented using
MATLAB on a Intel Core i7-2600 3.40GHZ machine with 16GB memory.

3.1 Experimental Results on the Extended Yale B Dataset

The first 10 subjects of Extended Yale B dataset are used to validate the cluster-
ing accuracy of our algorithm. Different feature descriptors are extracted from
the original cropped images (192 × 168) and then sent to the sSSC algorithm
for face clustering. Similar to other sparse representation algorithms for data
processing, we use l2 norm to normalize all of the feature descriptors. Because
of the high dimensional feature descriptors, PCA is used to project all of the
feature descriptors to k × 6, where k is the number of subspaces (here is the
number of person). The parameter µ is tuned empirically to have the best clus-
tering results across all of the 10 subjects. The compared feature descriptors are
listed as follows.

Local Binary Patterns (LBP) [25]: The standard uniform LBP operator
LBPU2

8,2 is used with the MATLAB source code from [25,26]. Cell size of 8× 8 is
used to form a local histogram of 59 uniform patterns. Histograms of all the cells
are combined to represent the whole image, resulting a 29736 (192/8× 168/8× 59)
dimensional feature descriptor. Gabor Energy Filters (Gabor) [27]: For the Ga-
bor feature descriptor, similar to [28], a filter bank of 5 scales and 8 orientations
are used. We also down-sample the obtained feature descriptor by a factor of
16. Then the combined 40 filters result in a 80640 (192× 168× 40/16) dimen-
sional feature descriptor. Histogram of the Oriented Gradient (HOG) [29]: For
the HOG feature descriptor, we use the toolbox from [30]. The Spatial bin
size is 8 × 8. Four different normalizations are computed using adjacent his-
tograms, resulting in a 9× 4 length vector for each region. Thus a total number
of 18144 (192/8× 168/8× 36) dimensional feature descriptor is extracted from
the cropped image.

The clustering accuracy of different feature descriptors is shown in Fig. (1).
From Fig. (1), we can see that image gradient feature descriptor achieves the
best clustering performance. Besides, LBP feature descriptor performs better
than HOG and Gabor feature descriptors. This may be because LBP feature
descriptor is more robust to illumination changes than HOG and Gabor feature
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descriptors. Although HOG feature descriptor also utilizes image gradient infor-
mation, the quantization process may lose some useful information and lead to
a poor performance on face clustering task.
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Fig. 1. Clustering errors of different feature descriptors on the Extended Yale B dataset
(the less, the better). IG: image gradient feature descriptor, HOG: HOG feature de-
scriptor, LBP: LBP feature descriptor, Gabor: Gabor feature descriptor.
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Fig. 2. Clustering errors of different algorithms on the Extended Yale B dataset (the
less, the better). LBP, Gabor and HOG feature descriptors have poor clustering perfor-
mances on the down-sampled images. So we haven’t reported their clustering accuracy.

Besides, we also compare our algorithm with other subspace clustering al-
gorithms. The compared algorithms are: Sparse Subspace Clustering algorithm
(SSC) [9], Low-rank Recovery algorithm (LRR) [12] and Least Squares Regres-
sion algorithm (LSR) [14]. In order to have a fair comparison, we test all of
the algorithms (including our algorithm) on the down-samples images of reso-
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lution 48 × 42 without performing PCA projection. All of the parameters are
tuned carefully across the 10 subjects to have the best clustering accuracy. The
clustering accuracy of different algorithms is shown in Fig. (2). From Fig. (2),
we can see that our algorithm has the lowest clustering error among all of the
compared algorithms. This result further validates that our algorithm is robust
to illumination changes.

The computational time of different algorithms are listed in Table 1. As shown
in Table 1, the computational time of our algorithm is lower compared with SSC,
LRR. This advantage is exaggerated when the number of subjects becomes large.
Although the computational time of LSR is much lower, its clustering accuracy
is also much lower than other algorithms. Compared with other algorithms, our
algorithm achieves a satisfied clustering results while still maintaining the low
computational cost.

Algorithm SSC LRR LSR IG+sSSC

2 subjects 22 6 0.02 4

5 subjects 46 26 0.08 14

8 subjects 71 68 0.24 29

10 subjects 117 135 0.27 43

Table 1. The computational time (sec.) of different algorithms on the Extended Yale
B dataset.

3.2 Experimental Results on the AR Dataset

In this experiment, we evaluate the robustness of our algorithm on the AR
dataset with different occlusions. A subset of 50 male and 50 female subjects are
selected for this experiment. It contains two separate sessions. In each session,
each subject has 7 face images with different facial variations, 3 face images with
sunglasses occlusion and 3 face images with scarf occlusion. All of the images
are resized to a resolution of 32× 32.

Because of the limited speed of LRR and SSC algorithms, we can’t cluster
all of the images at a time. So two sessions are used separately which is the
same experimental setting as [31]. The first 2 normal face images and 3 face
images with sunglasses of each subject are used for sunglasses occlusion. The
first 2 normal face images and 3 face images with scarf of each subject are used
for scarf occlusion. The clustering accuracy of different algorithms is shown in
Table 2. From Table 2 we can see that the clustering accuracy of our algorithm
is better than SSC, LSR and LRR algorithms. Our algorithm performs better
than [31] for scarf occlusion. While for sunglasses occlusion, [31] performs better
than our algorithm. The possible reason is that there are limited number of face
images for each subject. If the number of images per subject is increased, both
SSC and our algorithm can achieve a better clustering performance.
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Algorithm
Session 1 Session 2

Sunglasses Scarf Sunglasses Scarf

IG+sSSC 0.200 0.182 0.184 0.178

LSR 0.218 0.284 0.200 0.274

LRR 0.228 0.278 0.204 0.254

SSC 0.562 0.594 0.722 0.598

rCIL2 0.148 0.216 0.136 0.188

CIL2 0.188 0.246 0.146 0.210

Table 2. Clustering errors of different algorithms on the AR dataset (the less, the
better). The clustering performance of LSR, LRR and SSC, CIL2 and rCIL2 is reported
in [31].

4 Conclusions

In this paper, we have proposed an efficient scalable face clustering algorithm
utilizing the image gradient feature descriptor. Our algorithm has the advantage
of relatively low computational cost and high clustering accuracy, which provides
a promising solution for large scale face clustering problem.
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