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Abstract

Graph complexes are graded vector spaces of formal linear combinations of isomor-
phism classes of some kind of graphs, with the differential defined by vertex splitting
(or, dually, edge contraction).

In this paper a generalization, where vertex splitting (i.e. insertion of the complete
graph on two vertices) is replaced by insertion of a complete graph, is introduced. Basic
properties are shown.

1 “Traditional” graph complexes

1.1 Explanations for the IHX-relation

If we consider a 3-regular graph G (every vertex has valency 3) and we collapse an edge e
then the obtained graph Ge has exactly one 4-valent vertex. As the figure below shows, there
are exactly two other graphs whose edge collapse leads to the graph Ge.

Figure 1: The numbers represent the four parts of the graph that get connected at e
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The only axiom in the definition of a Lie algebra, in addition to the bilinearity and skew-
symmetry of the Lie bracket, is the Jacobi identity. Picturing the Lie bracket as a rooted
Y-tree with two inputs and one output, the Jacobi identity can be encoded by the next figure:

Figure 2: The Jacobi identity

Labeling the root, Figure 2 may be redrawn with the position of the labeled univalent
vertices fixed as follows:

Figure 3: The IHX-relation (because of its appearance)

The above explains results of Maxim Kontsevich [1− 2] in his study of the formality con-
jecture, which introduced the most basic graph complexes. These complexes are formed by
vacuum Feynman diagrams of a topological field theory (alternatively, it governs the defor-
mation theory of En operads in algebraic topology [3]).

Dirk Kreimer et al. [4] showed how gauge theory amplitudes can be generated using only
a scalar field theory with cubic interaction, i.e. all graphs relevant in gauge theory can be
generated from the set of all 3-regular graphs by means of operators that label edges and
cycles.

1.2 Definition

Let G be a connected graph. Let V (G), E(G) denote its set of vertices, and edges, and
denote by

hG : the number of loops, or genus, of G,
eG : the number of edges of G,
degNG = eG −NhG : the degree of G for a fixed non negative integer N .

An orientation on G is an element

η ∈ (

eG∧
ZE(G))×.

If the edges of G are denoted by e1, . . . , en, where n = eG, then an orientation is equal to
either e1 ∧ · · · ∧ en or its negative. Thus, an orientation is simply an ordering of the edges
up to the action of even permutations (interchanging any two edges reverses the orientation).
As proved in [5], this definition of orientation is equivalent to the definition given by Maxim
Kontsevich.
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Let GCn be the abstract vector space over Q spanned by equivalence classes of pairs (G, o),
where G is a connected non empty graph with n vertices and o is the orientation of G.

GC =
⊕
n

GCn.

The differential d : GCn −→ GCn−1 is given by

d(G, o) =
∑

e∈E(G)

(G/e, oG/e),

where G/e is the graph obtained from G by contracting the edge e and oG/e is the induced
orientation obtained by moving the edge e in the first place and then removing it.

By an edge contraction, it means an operation of the following form (see also Figure 1):

Figure 4: An edge contraction

The complex (GC, d∗), where d∗ is the dual differential, carries the structure of a dg Lie
algebra. The differential d∗ is defined by

d∗(G) =
∑

v∈V (G)

split(G, v),

where split(G, v) is the operation that replaces the vertex v by two vertices connected by an
edge and reconnects edges that were connected to the vertex v to the two new vertices in all
possible ways.

A feature characterizing the cohomology of GC is that it depends on the parity of N in
the degree of a graph G [3, 6].

The cohomologies of the various graph complexes are highly related. Obviously, the graph
complexes with disconnected graphs are symmetric products of the complexes of connected
graphs. Moreover, it was shown in [3] that adding the trivalence condition changes the co-
homology of the graph complexes only by a list of known classes, and the omission of graphs
with tadpoles does not change the cohomology further. Notice also that graphs with multiple
edges always have sign-reversing automorphism (flipping two parallel edges) and they vanish
modulo defining relationships.

Although graph complexes are simple objects easy to define, their cohomology is still
largely unknown [3].

Remark 1. “The finite type invariants” in Knot theory can be recast in terms of “hairy
graphs” (ordinary graphs with external legs (“hairs”)). When all vertices are trivalent, this
gives rise to the Vassiliev invariants [2][7].

Remark 2. Graph complexes give special classes in diffeomorphism groups of spheres. Maxim
Kontsevich’s characteristic classes are invariants of framed smooth fiber bundles with homology
sphere fibers [2][8].

Remark 3. Lie decorated graph complexes describe the cohomology of the automorphisms of
a free group [2][9].
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2 Generalization

The complex (GC, d∗) suggests a generalization, where vertex splitting (i.e. insertion of the
complete graph on two vertices) is replaced by insertion of the complete graph on k ≥ 1
vertices (a complete graph is a graph in which each pair of graph vertices is connected by an
edge; the case k = 1 means adding a loop (an edge that connects a vertex to itself); the case
k =∞ is also meaningful). Let mk be the corresponding map.

Figure 5: Complete graphs on n vertices, for n between 1 and 5

Remark 4. The blowup of a graph is obtained by replacing every vertex with a finite collection
of copies so that the copies of two vertices are adjacent if and only if the originals are. If every
vertex is replaced with the same number of copies, then the resulting graph is called a balanced
blowup. It comes from complete bipartite graphs (a graph whose vertices can be partitioned
into two subsets such that no edge has both endpoints in the same subset, and every possible
edge that could connect vertices in different subsets is part of the graph).

Proposition 1. For any i, j ≥ 2

[mi,mj] = (j − i) ·mi+j.

Proof. From the definition of mk and the properties of a complete graph (i.e. any permu-
tation is possible) it becomes noticeable. Note that the complete graph with k vertices has
k(k−1)

2
(the triangular numbers) undirected edges.N

Remark 5. Witt algebra?
Note that m1,m2,m3,m4 generate everything.

Remark 6. Contracting an edge of a graph does not change the Euler characteristic as both
the vertex number and the edge number decrease by one.

Similar to an edge contraction, let’s use a vertex contraction:

δ(G, o) =
∑

v∈V (G)

(G/v, oG/v),

where G/v is the graph obtained from G by deleting the vertex v (a vertex-deleted subgraph
is a subgraph formed by deleting exactly one vertex) and oG/v is the induced orientation.

Remark 7. Reconstruction Conjecture in graph theory asks: are graphs uniquely deter-
mined by their subgraphs? It has been shown by Béla Bollobás [10] that almost all graphs
are reconstructible, i.e. the probability that a randomly chosen graph of n vertices is not re-
constructible goes to 0 as n tends to infinity. Check also the paper [11] of Richard Stanley
about switching-reconstructible graphs (for a vertex x ∈ V (G) the graph Gx, obtained from G
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by deleting all edges incidents to x and adding edges joining x to every vertex not adjacent
to x in G, is called a vertex-switching, i.e. to switch a vertex of a graph is to exchange its
sets of neighbours and non-neighbours; Richard Stanley proved that a graph on n vertices is
switching-reconstructible if n 6≡ 0 mod 4).

There is a stronger version of the conjecture. Set Reconstruction Conjecture: any two
graphs on at least four vertices with the same sets of vertex-deleted subgraphs are isomorphic.

If Set Reconstruction Conjecture is true, then δ has inverse.

Reconstruction Conjecture is true if all 2-connected graphs (a connected graph is called
2-connected, if the induced vertex-deleted subgraph for every vertex is connected) are recon-
structible. The conjecture has been verified for a number of infinite classes of graphs, for
example: regular graphs (a regular graph is a graph where each vertex has the same number
of neighbors), trees, circle graphs (a circle graph is the intersection graph of a chord diagram,
i.e. it is an undirected graph whose vertices can be associated with a finite system of chords of
a circle such that two vertices are adjacent if and only if the corresponding chords cross each
other), outerplanar graphs (a finite graph is outerplanar if and only if it does not contain a
subdivision of the complete graph K4 or of the complete bipartite graph K2,3), maximal planar
graphs (all faces (including the outer one) are then bounded by three edges).

Proposition 2. For any k > 2
[δ,mk] = k ·mk−1.

Moreover, we have
[δ,m1] = δ,

[δ,m2] = 2 · cardinality · id,
where the cardinality is the cardinality of the vertex set.

Proof. Rearranging terms in δ ◦mk.N

Remark 8. The notion of a strong homotopy Lie (or L∞) algebra is well-known in
algebraic homotopy theory, where it originated. It is obtained by allowing for a countable
family of multilinear antisymmetric operations of all arities n ≥ 1, constrained by a countable
series of generalizations of the Jacobi identity known as the L∞ identities. This notion admits
specializations indexed by subsets S ⊆ N of arities and which are defined by requiring vanishing
of all products of arities not belonging to S. This leads to the notion of LS algebra. The case
S = {n}, when only a single product of arity n is non-vanishing, recovers the notion of n-Lie
algebras, see [12] for more details.

Remark 9. Let ml
k denote the corresponding map, where vertex splitting is replaced by in-

sertion of the complete graph on k ≥ 1 vertices with l multiple edges. Hence, Proposition 2,
using differential d from Subsection 1.2 (edge contraction), has an extrapolation.

Proposition 3. Let ∆k
k−2 = [δ, [. . . , [δ,mk] . . . ]], i.e. (k − 2) times, for any k > 2, then for

any l ≥ 0
∆k

k−2 ◦∆k+l
k+l−2 = 0.

Proof. It follows from [δ,mk] = k ·mk−1 in Proposition 2. Note that m2 ◦m2 = 0 [1− 2].N

Remark 10. There is a connection with the study of multiple zeta values and the Kashiwara-
Vergne conjecture [13][14][15].
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