
EasyChair Preprint

№ 392

A Grounder From Second-Order Logic To QBF

Matthias van der Hallen and Gerda Janssens

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 2, 2018



A Grounder From Second-Order Logic To QBF

Matthias van der Hallen and Gerda Janssens

KU Leuven firstname.lastname@kuleuven.be

Abstract. Recent solver research has developed powerful QBF solvers.
Alas, we know of few tools that provide a modelling language on a higher
level, translating this to QBF. This is surprising, as in the closely related
field of SAT solvers, research has gone hand in hand with the develop-
ment of such systems.
This extended abstract on work in progress reports on a system that
allows the use of second-order logic as a high-level modelling language
and that grounds (translates) models written in such a language to a
QBF formula. We provide an example encoding, outline the grounding
process and propose further research and experiments.

1 Introduction

In the research of solvers, many effort and progress has been made in the area
of solving boolean formulas. One example is SAT, but the more expressive QBF
is also the subject of more recent research. This has led to the development of
powerful techniques, such as QDPLL with conflict-driven clause learning and
solution-driven cube learning [6] or CEGAR [8].

While for years, the research in SAT has driven the development of systems
that interface SAT solvers with a higher-level modelling language, e.g. IDP, this
does not seem to be mirrored by the research into QBF. To our knowledge,
the only system that does this for a QBF solver is SAT-to-SAT [5] grounder
so2grounder using second-order logic (SO logic) as modelling language [4]. As
such, we identify the following contributions for our system:

– Extend the traditional rules used in grounding first-order (FO) logic with
rules handling the SO quantifications.

– Improving on SAT-to-SAT by:
• Lifting syntactical restrictions imposed on the second-order logic model

by so2grounder. so2grounder translates the alternation of SO quan-
tifiers by nesting SAT solver calls, while FO quantifiers are handled by
a regular FO grounder. As a result, so2grounder must bring all SO
quantifiers to the front. However, it will not push an FO quantification
past an SO quantification when their quantors differ. For example, with
x an FO variable and Y an SO variable, it does not transform ∃x : ∀Y : ϕ
as this would require changing the signature of Y to accept x as an ar-
gument. Likewise, it will not transform ∀x : ∃Y : ϕ.

• Interfacing with arbitrary QBF solvers by providing qdimacs [1] output,
which is a widely accepted standard.



2 Matthias van der Hallen and Gerda Janssens

• Supporting arithmetic.

Section 2 introduces SO logic and shows an example encoding. Section 3,
briefly sketches our approach to grounding. In Section 4 we indicate ongoing
work, such as an experimental evaluation.

2 Second-Order Logic as a Modelling Language

First, we informally define second-order logic as the well known first-order logic,
extended by allowing variables in quantifications to not only represent domain
elements, but also let them represent predicates and functions over those domain
elements. For convenience while modelling, we also extend SO logic with types.

The choice for second-order logic as a modelling language has two major
advantages: It is expressive and intuitive.

To illustrate the intuitiveness of second-order logic as a modelling language,
we refer to Bogaerts et al. [4], who discuss other research fields that use SO
modellings to describe their problems, such as argumentation theory. Further-
more, we note that within QBF research Ansotegui et al. already use an SO-like
notation in their description framework for adversarial games in QBF [3]. They
discuss how adversarial games introduce the need for cheat variables. These
variables complicate writing encodings and their presence lowers the efficiency
of many QBF solvers. Our tool could reduce the need for such variables as many
cases are covered by the use of implications and functions, and in time will
be able to automatically use the techniques that Ansotegui et al. describe to
minimize the computational cost of these kind of constructions.

Our final argument regarding the intuitiveness of second-order logic lies in
the popularity and success of systems allowing first-order logic, such as the IDP
system [7]. As such systems generally look for an interpretation of free symbols
within the FO model, modellings correspond with existential second-order logic
(SO∃). However, SO∃ is much more limited w.r.t. to expressive power than QBF.
As such, second-order logic, which has a descriptive complexity in PH [9], is a
prime candidate as the replacement for FO (or, computationally, SO∃).

2.1 Example

To illustrate the style and syntax of a model in SO logic, Listing 1.1 shows how
to model reachability or transitive closure of a graph. This well-known prob-
lem is not expressible in FO, and while other constructs exist (e.g. inductive
definitions), it is an easy yet educational problem to express in SO.

First, lines 1-3 specify a vocabulary, which contains a single type T containing
the possible nodes. To reduce the number of quantifications, vocabularies can
also contain symbols that will be existentially quantified within the entire model,
such as r and g. Line 4 specifies that g actually has a fixed interpretation with
3 connections.

Now, we finally discuss the first expressions in SO logic. Line 6 specifies that
for any combination of nodes a and b, r only holds iff a and b are either directly



A Grounder From Second-Order Logic To QBF 3

connected or when another node exists that is connected with both. Furthermore,
an additional disjunct is added to make r symmetric. Line 7-8 express that no
other predicate over T that is a subset of r (not equal and contained, line 7)
satisfies the reachability rules (line 8).

For convenience, we have highlighted existential SO quantifications in yellow
and universal SO quantifications in orange. This shows that our SO language
can model problems with alternating SO quantifiers.

Listing 1.1. A second order modelling of reachability within a graph
1 type T = {a;b;c;d;e;f;g;h} # type of nodes

2 g :: (T,T) # graph predicate

3 r :: (T,T) # reachability predicate

4 g = {a,b;b,c;a,d} # input of graph predicate
5
6 ∀a::T : ∀b::T :r(a,b) ⇔ (g(a,b) ∨ [∃z::T : r(a,z) ∧ r(z,b)] ∨ r(b,a)).

7 ¬(∃subs::(T,T) : subs ̸= r ∧(∀a::T : ∀b::T : subs(a,b) ⇒ r(a,b)) ∧
8 ∀a::T : ∀b::T : subs(a,b) ⇔ [g(a,b) ∨ (∃z::T : subs(a,z) ∧ subs(z,b)] ∨ subs(b,a))).

3 Grounding to QBF: A first approach

Our initial approach to grounding SO specifications to QBF proceeds as fol-
lows: After pushing negations inward until they only appear in front of atoms,
we rewrite quantifications over functions, s.t. uniqueness (yellow) and existence
(orange) are enforced: with → indicating a transformation, we have ∃f : ϕ →
∃f : F (f ) ∧ ϕ and ∀f : ϕ→ ∀f : F (f ) ⇒ ϕ with

F (f) ≡ ∀x : ∃y : f(x) = y ∧ ∀y′ : (f(x) = y′ ⇒ y = y′)

We then hand off the resulting specification to a standard FO grounder [10],
modified only to ignore second order quantifications. This eliminates all con-
structs except for SO ∃/∀, ∧ and ∨, producing a CNF.

When the FO grounder is finished, we introduce unique names for every
remaining (second order) quantification, e.g.:

∀f : ϕ ∧ ∃f : ∀g : f(x) ∨ ψ → ∀f : ϕ ∧ ∃f ′ : ∀g : f ′(x) ∨ ψ
After introducing unique names for every SO variable, we repeatedly use

the rules from Fig. 1 to pull SO quantifiers to the front. By switching between
applications of rule (1) or rule (2) only when we cannot further apply the active
rule, we minimise the number of quantifier alternations. For example ∀a : (∃b :
∃c : (ϕ ∨ ∀d : ψ)) ∧ (∀e : ϕ′ ∨ ∀f : ∃g : ψ′) becomes ∀a, e, f : ∃b, c, g : ∀d :
(ϕ∨ψ)∧ (ϕ′ ∨ψ′). Note how ∀e and ∀f are pulled to the level of ∀a by rule (2),
whereas ∀d is blocked from being pulled to that level by the quantifications ∃b
and ∃c, as no rule allows switching the order of ∀ and ∃ quantifications.

(∃α : ϕ) ∧ ψ → ∃α : (ϕ ∧ ψ)
(∃α : ϕ) ∨ ψ → ∃α : (ϕ ∨ ψ)

(1)
(∀α : ϕ) ∧ ψ → ∀α : (ϕ ∧ ψ)
(∀α : ϕ) ∨ ψ → ∀α : (ϕ ∨ ψ)

(2)

Fig. 1. Rules for pulling quantifications to the front.

Now that all quantifiers are pulled to the front, we introduce a proposition
for each possible predicate atom p(x) and possible function atom f(x) = y. By



4 Matthias van der Hallen and Gerda Janssens

replacing atoms with their corresponding propositions in the entire SO model,
we effectively produce a qdimacs encoding.

4 Ongoing work

Currently, our grounder does not implement advanced grounding techniques
from FO such as Ground With Bounds or Lifted Unit Propagation [10] as for
these techniques, ignoring SO quantifications does not suffice. In addition, we
see great value in supporting binary quantifications, which allow the user to
restrict quantifications to instantiations for which a certain formula (the gener-
ator) would be satisfied. We are currently working towards an implementation
of these advanced techniques, which will lead to a reduction in grounding sizes.

We also work towards an evaluation of our grounders current performance,
and propose the following experiment: We model the Strategic Companies prob-
lem, as submitted to QBFLib [2] by Faber et al. (a working draft of which can be
found on https://bit.ly/2KnN2Zg) and use their probabilistic method described
in [11] to generate problem instances for strategic companies similar to the ones
in QBFLib. We will use these problem instances to generate QBF encodings
using both our tool, as well as the instantiation scheme used for QBFLib. We
will then report running times for our tool, combined with #literals, #clauses
and solving time as comparative methods for both resulting QBF encodings.

References

1. Qdimacs standard, http://www.qbflib.org/qdimacs.html, last accessed 27 Apr 2018
2. Stategic companies - qbflib, http://www.qbflib.org/suite_detail.php?suiteId=19,

last accessed 30 Apr 2018
3. Ansótegui, C., Gomes, C.P., Selman, B.: The achilles’ heel of QBF. In: AAAI. pp.

275–281. AAAI Press / The MIT Press (2005)
4. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Declarative solver development: Case

studies. In: KR. pp. 74–83. AAAI Press (2016)
5. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested SAT

solvers. In: AAAI Workshop: Beyond NP. vol. WS-16-05. AAAI Press (2016)
6. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate

qbf and its experimental evaluation. J. Autom. Reasoning 28(2), 101–142 (2002)
7. de Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate

logic as a modelling language: The IDP system. CoRR abs/1401.6312 (2014)
8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: CAV. Lecture Notes in Computer Science, vol. 1855,
pp. 154–169. Springer (2000)

9. Immerman, N.: Descriptive complexity. Graduate texts in computer science,
Springer (1999)

10. Jansen, J.: Advanced Techniques for Grounding and Solving in the IDP Knowledge
Base System. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium (2016)

11. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics
in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms
63(1-3), 70–89 (2008)


