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Abstract. In this paper we present an instance of the weak supervision
paradigm, the multi-uncertain learning scenario. Our multi-uncertain
scenario has three facets, all which are related to instance labels and
their corresponding human labelers: there are multiple labels per in-
stance, the gold standard label may not be included in this label set,
and the identity of the labelers is unknown. In order to avoid dispos-
ing of expensive and potentially useful labels, we outline a method of
adding informed labels to a label set by using label propagation. Under
the smoothness assumption, we are able to introduce new, informative
labels into an existing training label set to improve performance under
highly uncertain constraints. For complex classification tasks with three
or more classes, we report that this method of adding informed labels is
capable of producing classifiers with high accuracy and low complexity,
despite being trained on these multi-uncertain datasets.

1 Introduction

In a typical supervised learning scenario, a chosen classifier is trained on a set of
instances for which there is feature information and an associated gold standard
or ground truth label. Realistically speaking, these gold standard labels are ex-
pensive, and sometimes impossible, to obtain. This is often the case in medical
settings, such as in diagnosing lung cancer, where a radiologist may perform a
diagnosis from a Computed Tomography (CT) scan of a suspicious lung nodule.
In cases for which follow up information is not available, multiple experts may be
asked to annotate (i.e. provide labels for) the same scan to formulate a stronger
reference truth, which may or may not reflect the true gold standard.

In this paper we analyze a realistic learning problem, which we term a multi
uncertain scenario, for which each instance is associated with a set of multiple
labels, these labels are reference truths, and information on annotator identity
is not available. The Lung Image Database Consortium (LIDC) is a real life
example of this sort of learning scenario [1].

Multi-uncertain data sources such as the LIDC are becoming increasingly
common with the onset of resources like Amazon’s Mechanical Turk. These large
data sets are characterized by their uncertain label sets, which when utilized,
may result in inaccurate classifier performance. Research in the weak supervised
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learning paradigm has attempted to address this problem. Weak supervision
attempts to unify and de-noise noisy data sets that may consist of disagreeing
label sets, obtained from sources of varying reliability [12].

The weak learning paradigm may be broken into three standard modeling
tasks: learning the accuracies, modeling correlations between weaker supervision
sources, and modeling expertise (information on the accuracy of each labeler).
The task of learning accuracies assumes no labeled data and a model structure
and learns the weights of the model. This is inappropriate for our scenario,
which includes labeled data from radiologists. Furthermore, it is not possible to
monitor expertise in our scenario, in which we assume the source of each label
in the data set is unknown (radiologists anonymously label CT scans). Thus,
our task is reduced to that of modeling correlations. Specifically, our goal is to
impose a structure that draws correlations between the behavior of the data in
the feature space and the corresponding labels.

We outline a novel approach to adding what we term informed labels to a
multi-uncertain label set for training classifiers. Within the weak supervision
paradigm, we impose the smoothness assumption, which states that observa-
tions with similar features will have similar labels. We propagate informed labels
within clusters to unify and de-noise existing label sets. We show that this sim-
ple strategy allows simple classifiers to match the performance of more complex
classifiers by introducing informative, and potentially gold, labels to an uncer-
tain label set. We provide an analysis of our method on five different classifica-
tion methods and six University of California at Irvine (UCI) machine learning
datasets. We consider accuracy, computational cost, interpretability, and confi-
dence in assessing the quality of these classifiers for this weak learning problem.
Using these evaluation criteria, we demonstrate that adding informed labels has
the ability to produce the best classifier for datasets with a low saturation of
gold labels, and in some cases, across all levels of uncertainty.

2 Related Work

2.1 Partial learning scenarios

We begin by reviewing current approaches to weakly supervised learning prob-
lems associated with multiple annotators. Otherwise known as a partial learning
scenario, this is a case in which each training example is associated with a set
of candidate labels, only one of which is the ground truth. This is similar to
the semi-supervised multi-view learning problem discussed by Ceci et al. that
combines multiple outputs of classifiers for better classification [4]. However,
their work was tailored towards gene regulatory network reconstruction which
was solely a binary classification problem with only positive and unlabeled data,
while we define a multi-class problem. Partial learning problems make the strong
assumption that the ground truth is included in the candidate set, one relaxed
by our own multi-uncertain problem.
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Modeling expertise In the case of inferring the ground truth from a set of
novice annoated labels, Smyth et al. first introduced an implementation of the
Expectation-Maximization (EM) algorithm [5]. Jin and Ghahramani also ap-
plied EM to instead learn a probabilistic classifier whose predicted probabilities
match the probability distributions of the reference truths [7]. Other variations
of this EM algorithm [16, 13, 19, 14, 17] attempt to learn better classifiers from
noisy label sets by modeling the expertise of the annotators. Raykar et al. first
incorporate annotator accuracies by modeling ground truth labels as latent vari-
ables in this model [13]. Yan et al. include active learning in this framework by
attempting to identify the most useful annotator to label a given instance[7]. Ro-
drigues et al. explore the advantages of including annotator accuracies as latent
variables [14]. All of these works take advantage of annotator identities to build
stronger classifiers. However, these strategies are not applicable to our multi-
uncertain learning scenario because they require labeler identities and assume
the presence of a gold standard label in the candidate set.

Correlation Modeling Recent work has focused on taking advantage of infor-
mation available in the feature space to model their correlations with the corre-
sponding label sets, thus resulting in disambiguated candidate label sets [20, 22].
These papers make the smoothness assumption, which assumes instances closely
packed in the feature space are likely to share the same label. We maintain
this assumption in our attempt to reduce uncertainty using label propagation.
However, disambiguation strategies are easily misled by the false-positive labels
that occur with the gold standard in a candidate set. In other words, for a high
number of annotators per instance, these strategies are distracted from the gold
standard. [21]

2.2 Improving label quality and label propagation

Instead of identifying an algorithm that will distinguish high quality labels in an
otherwise uncertain set, we consider strategies to improve the quality of the label
set itself [15]. Brodley and Friedl create classifiers that serve as noisy filters on
training data with potentially mislabeled instances [3]. In a more recent study on
removing noise prior to training, Northcutt et al. use rank pruning to estimate
error rates within the data set and remove mislabeled instances based on these
error rates [11].

In practice, it does not make sense to disregard expensive, expert provided
labels. We approach this challenge of improving label quality by adding informed
labels rather than removing noisy ones.

Propagation is the process of extending information from a well known in-
stance to a lesser known instance. It is often applied in a semi-supervised learning
scenario, where known labels are extended unlabeled points that are nearby in
the feature space. Zhu et al. proposed an algorithm that uses the labeled points
to “push” labels to unlabeled instances [23] . Wang et al. presented a similar
idea based on a linear neighborhood model [18]. Kang et al. expanded this idea
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to the multi-label problem, where each instance can have multiple correct labels
[8]. Note the difference between the multi-label problem and uncertain labels.
In multi-labels, each instance may have more than one correct label (such as
with categorizing an image); in uncertain labels, the gold standard label may
not exist in an instances given label set.

Rather than propagating labels exclusively to unlabeled points, we propagate
labels to all points and add them within their uncertain label sets. This way
we may leverage label information within the existing label set to extrapolate
new, informed labels to train classifiers. Our contribution reduces noise within
uncertain label sets without the need for annotator identities or filtering labels.
To our knowledge, we are the first to apply this method of appending propagated
labels to training sets that fall in the multi-uncertain scenario.

3 Methodology

3.1 Formal Definition of the Multi-Uncertain Scenario

In a standard supervised learning scenario, the training set D = {(xi, yi)}Ni=1

contains N instances, where xi ∈ X is a feature vector of length M and yi ∈ Y
is the corresponding known label. In machine learning literature, yi is typically
referred to as the gold standard or ground truth label G. In a training set with
noisy labels, R different annotators, or experts, provide a set of labels, yi =
{yi

1,yi
2, ...,yi

R} for every ith instance. A training set consists of reference truths
when the gold standard yG is not guaranteed to be included in a given label set,
or, Pr(yG ∈ yi) 6= 1. We make no assumptions for the label sets. We do not
assume that the same R annotators are labeling each instance. For each instance
we only have a set of labels which may or may not contain the gold standard
yG.

We reserve the term multi-uncertain for training sets that possess these three
characteristics: 1) the ground truth is unknown, 2) the reference truth is uncer-
tain or noisy, and 3) annotator identity is independent between instances.

We define the gold inclusion percentage PG as the frequency at which the
gold standard appears in the label set for the entirety of the training data.

Specifically, PG =
∑N

i=1 1(yG∈yi)

N where 1(·) is the indicator function.
It is apparent that a simple majority voting strategy alone will not suffice for

datasets with low values of PG. In the following sections we discuss a strategy
for adding adding informed labels that will improve the accuracy of classifiers.

3.2 Informed Labels

We present a method of introducing a new set of labels yg within the train-
ing data to map Y ⇒ Y ′ where y′i = {yi

g,yi
1,yi

2, ...,yi
R} for every instance

y′i ∈ Y ′. We use a cluster-based method that leverages label information from
points surrounding an instance to derive a new label. Given a dataset with N
instances and M features, we denote xi as a feature vector of length M for a
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given instance i. We start with a hierarchical clustering of the set of feature
vectors xi ∈ X and prune the resulting dendrogram from the bottom-up. This
pruning method searches for a set of clusters, {C1, C2, ..., Ck}, that are densely
packed with respect to a minimum number of features, F .

Definition 1. Let D be the distribution of all normalized values for a feature
in a cluster, C. C is densely packed with respect to that feature if the standard
deviation of D is no greater than a threshold, t.

Each cluster Ci ∈ {C1, C2, ..., Ck} must meet the requirement in Equation
1. The expression within the first set of brackets of the equation represents
Definition 1. The pruning method has two input parameters, F and t, where
F is the minimum number of densely packed features in a cluster and t is a
specified threshold. We define F = M

2 and t = 1
3 in our experiments. For the

LIDC data, a parameter analysis showed our choice of t resulted in clusters that
were characterized by similar features and of appropriate size.

M∑
j=1

1

(
σ

( ⋃
∀xi∈Ci

xi,j

)
≤ t
)
≥ F (1)

where xi,j is the jth feature of the ith instance.
The entire set of labels within a cluster is then used to assign a unanimous

label to all instances in the cluster. For a given Ci we consider the set of all
uncertain labels, l = yCi

, where |l| = R|Ci|. The mode of this set l is used as the
informed label: ygCi

= mode(l).

3.3 Generating Noise

In order to measure the uncertainty of the label set for a given instance, the
golden standard for that instance must be known. In our analysis we generate
uncertain label sets from a set of baseline, supervised classification data sets.
Note that these supervised data sets will have a gold standard for every obser-
vation, (xi, yi) for all instances in X.

Uncertain label sets are generated by first parameterizing a distribution from
the known pairs of observations and gold standards, (xi, yi) . Let V be the set of
all possible values for all labels in the dataset. The distribution fxi

from which
each label is randomly drawn is

fxi(y; p) =


p y = yi
1−p
|V | y 6= yi and v ∈ V

0 otherwise

(2)

In this definition, p is a parameter for the probability that the golden standard
is included in the label set yi. This value is adjusted to alter the probability that
the true label appears in the overall uncertain label set, PG.
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Definition 2. PG is the proportion of label sets within a data set that contain
the gold standard label, yG. Formally, this is denoted as

PG =

∑N
i=1 1

(
yG ∈ yi

)
N

for a data set X with N observations.

More specifically, for a given uncertain label set yi = {yi
1,yi

2, ...,yi
R} for

every ith instance, P (yG 6∈ yi) = (1 − p)|yi|. Thus, increasing p decreases the
uncertainty for all generated uncertain label sets. Because we are given the gold
standard for every observation, we can directly observe what proportion of the
uncertain label sets contain their respective gold labels, or PG. Adjusting p
indirectly controls this value of PG while maintaining independence with respect
to the method in which random labels are selected.

The overall method of generating a multi-uncertain data set from a super-
vised data set is described by Algorithm 1.

Algorithm 1: Generation of multi-uncertain label sets

input: probability of gold standard p
Result: Uncertain label set yi for all xi ∈ X

1 for xi ∈ X do
2 set distribution fxi

(y; p) as defined by Equation 2;
3 choose R labels from this distribution to form a label set yi;

4 end

Line 2 defines a parameter as described in Equation 2. In Line 3, labels
are drawn R times from this distribution to simulate receiving labels from R
annotators.

4 Experiments

4.1 Experimental Data

We apply our methods to six UCI datasets: breast, iris, wine, class, e. coli,
and yeast [6]. We chose well-known datasets within the UCI Repository that
consisted of continuous features and discrete classes. Each data set is treated as a
classification problem with nominal classes. The datasets vary in dimensionality
and in the number of classes, as described in Table 1. We transform the gold
standard labels into uncertain datasets as in 3.3. In testing, we use the original
gold standard from the pair (xi, yi) to assess accuracy.

4.2 Classification Methods

We apply informed labels in training four different classification methods: CART,
SVM, logistic regression, and the EM prior algorithm implemented in Jin et al
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Dataset Features Classes Instances

Breast 30 2 569

Iris 4 3 150

Wine 13 3 150

Glass 10 5 214

E. Coli 7 7 336

Yeast 8 10 1484

Table 1: Information about six UCI datasets used in the experiments.

[7]. Every classification algorithm is a supervised classifier. We use these classi-
fiers because they are well-known and used classification techniques. We train
the classifiers on the mode of each label set yi. The EM prior algorithm utilizes
the raw, uncertain label sets. The accuracies reported in this paper are always
with respect to the gold standard included in the UCI datasets.

We implement the EM prior algorithm described by Jin et al. because it does
not attempt to learn labeler accuracies but still remains relevant and effective
in the task of identifying the gold label. We expect to improve the performance
of this algorithm for instances where the gold label is not guaranteed to be in a
label set. We implement the EM prior algorithm rather than the EM algorithm
because it is more appropriate for our label sets which will have prior class
distributions, as a result of the process described in Section 3.3.

Logistic regression and EM prior models have no hyper-parameters to tune.
CART trees are pruned through cross validation within the training set. SVMs
are also tuned via a validation set with a tuning grid of C × Γ , where C =
{10i}3i=−3 and Γ = {10i}3i=−3.

4.3 Performance Evaluation

In addition to accuracy, we evaluate the classification performance using runtime,
transparency, confidence, and interpretability. The runtime for each classifier was
derived on a Dell Optiplex 7020 Desktop computer as the average of ten runs
reported for each of the six UCI datasets. Transparency refers to how easily the
principle of a classification method is understood by human intuition [2], whereas
interpretability is the level of clarity to a user on how a classification method
derived a prediction from training information [10]. The values for these two
arguably subjective standards are provided by [2] and [9], comparative studies
on different supervised algorithms. Finally, the confidence is measured through
the probabilistic outcome of the learning algorithm itself. Statistical algorithms
are specially considered, as predictions are associated with a level of confidence
for which a given label can be assessed.



8 Shin et al.

5 Results and Discussion

In this section, we compare the classifiers using the soft performance evaluation
metrics described in 4.3, contrast results between simple and complex classifica-
tion problems, and make a special comparison to the EM prior classifier.

5.1 Comparing Classifiers

We present graphs for each classifier displaying the accuracy as a function of
PG, as defined in 3.1 . Consider Figure 1. There are two lines for each classifier:
one for the classifier trained on the mode of the uncertain label set Y (dotted
line) and the other trained on the mode of the uncertain label set with informed
labels Y ′(solid line). All accuracies on a scale of [0,1] reported in the y-axis are
with respect to the known golden label set for the data. The classifier curve for
this figure is a polynomial fit of degree three on the accuracy data. The method
of generating classifier curves and coloring shown in Figure 1 is maintained for
the remaining graphs in this paper. Costs of each classifier are shown in Table 2.
EM Prior is considered separately in a later section, but is included in the Table
2.

Metric CART SVM Logistic EM Prior
Regression

Runtime (ms) 2.600 3292.413 5.017 1065.173

Transparency Excellent Average Excellent Poor

Confidence
Probabalistic No No Yes Yes

Interpretability Excellent Poor Excellent Excellent

Table 2: Cost analysis of the classification methods used in the experiments

In Figure 1, it is clear that informed labels do not significantly improve
classifier performance on simple classification problems. Note that the breast,
iris, and wine datasets are simpler classification tasks with only 2-3 possible
classes. We expect that the best achievable accuracy will be similar for these three
datasets regardless of classification method and that the resulting classification
curves will remain close to one another. The plot of all classifier curves in for
each dataset in Figure 2 shows tightly packed, nearly indistinguishable curves
for these three datasets . However, the curves for the glass, e. coli, and yeast
datasets maintain separation with the addition of informed labels, indicating a
clear accuracy boost from these labels. Because of this distinction in behavior
between simple and complex classification problems, we continue the comparison
of these datasets by splitting them into simple (breast, iris, wine) and complex
(glass, e. coli, yeast) categories for the remainder of this discussion.

Significance Tests Table 3 shows the result of adding a single informed label
to an uncertain label set for varying numbers of R annotators. In order to asses



Expanding annotated data with informed labels for weak supervision 9

CART SVM Log. Reg

Breast

Iris

Wine

Glass

E. coli

Yeast

Fig. 1: Graphs of accuracy with respect to varying levels of PG for all UCI datasets and
classification methods for R = 3. The dotted line is without informed labels and the
solid line is with informed labels.

the effect of informed labels applied to various levels of PG, we “bin” the values
PG into three groups: [0, 0.5), [0.5, 0.7), and [0.7, 1]. This evenly breaks up each
graph in Figure 1 into three groups for performing a t-test amongst a similar
range of data. Each cell is the p-value of a t-test for the difference of means
between each group of classifiers trained on Y and the corresponding Y ′ within
the same bin. Let µn be the accuracy of the classifier trained on Y and µi be
the accuracy of the classifier trained on the Y ′. We are testing Ho : µn = µi and
Ha : µn < µi. We perform 72 tests here, so we use a Bonferroni correction and
set α = 0.05/72 ≈ 0.0007.

In Table 3, for complex problems with two and three annotators, we see a
significant increase in accuracy across the values for CART trees and logistic
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Simple Complex

breast glass

iris ecoli

wine yeast

Fig. 2: Plot of fitted curves for all classifiers and all datasets where R = 3.

R Classifier Simple Complex

[0, 0.5) [0.5,0.7) [0.7,1.0] [0, 0.5) [0.5,0.7) [0.7,1.0]

2

CART 1.000 0.722 0.0000 0.000 0.0000 0.000

SVM 1.000 0.745 0.0000 0.0215 0.0000 0.0000

LR 1.000 0.150 0.0000 0.0000 0.0000 0.0000

EM 0.819 0.448 5.94e-02 7.21e-01 9.78e-01 9.97e-01

3

CART 0.376 0.452 0.287 0.0000 0.0000 0.0000

SVM 0.698 0.170 3.29e-01 0.0000 0.0000 7.17e-03

LR 0.587 0.222 2.34e-01 0.0000 0.0000 0.0000

EM 0.977 0.144 1.59e-01 2.97e-01 7.34e-01 1.000

4

CART 1.73e-01 0.000 0.000

SVM 9.54e-01 2.71e-02 0.0000

LR 3.07e-01 0.0000 0.0000

EM 2.57e-01 3.81e-01 1.000

Table 3: p-values of t-test for difference in means of classifiers trained on Y and Y ′

regression. Support vector machines also follow this trend with a few exceptions.
We believe that the optimization of the SVM parameters narrowed the window
of improvement for the informed labels.

When R = 4 there are fewer improvements. For all tests we train the models
on the mode of Y or Y ′. However, we add only one informed label per uncertain
set. We expect that if a larger number of informed labels were added to R = 4
we would see performance similar to that of R = 2 and R = 3.
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5.2 Comparison to Weak Supervised Classifier: EM Analysis

We specially consider EM prior because it was developed specifically for noisy
label set scenarios and is a correlation-based weak supervised classifier. Across
all instances, the addition of informed labels does not improve the performance
of the EM classifier. The graphs in Figure 3, which display the result of the
EM classifier with and without informed labels, confirm this notion. However,
because the EM models defined by Jin et al. were designed specifically for noisy
label sets where the gold standard is guaranteed, or PG = 1, we expect that our
classifiers will achieve similar accuracies as the EM prior for low values of PG.

Breast Glass

Iris E. coli

Wine Yeast

Fig. 3: Graphs of accuracy with respect to varying levels of PG on EM prior classification
method for all UCI datasets and for R = 3. Axes, distinguishing colors/lines/shapes,
and scaling are all the same as in Figure 1.

Using our method, simple classification models such as CART trees and lo-
gistic regression are able to achieve an similar accuracy as EM prior in label sets
with high levels of uncertainty. This is outlined in Table 4 and Figure 4, where
it is clearly visible that a classifier trained on Y jumps to meet the EM prior
curve when trained on Y ′. As discussed previously, Table 4 and Figure 4 perform
comparisons related to EM Prior only for the complex classification problems.
According to the classification costs in Table 2, CART trees and logistic regres-
sion models are considerably cheaper than EM prior but maintain comparable
accuracy rates when trained on Y ′.

In Table 4, we perform a t-test for the difference of means between the
accuracy of the EM prior algorithm and other classification models trained on
Y ′ where R = 3. The binning for these tests is identical to the binning performed
in Table 3. Let µEM be the accuracy of the EM prior model trained on Y and µn
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CART SVM Logistic

Glass

E. coli

Yeast

Fig. 4: Graphs of classifier performance compared to EM prior performance for complex
datasets.

be the accuracy of the model trained on Y ′. Then, each cell represents a p-value
for Ho : µEM = µn and Ha : µEM > µn. Table 4 shows that for the lower range of
values PG = [0, 0.5) our method paired with a simple classification method, such
as decision trees, achieves the same accuracy as the EM prior model on complex
classification tasks. Furthermore, Figure 4 shows the effect of our informed noise
on various classifiers compared to the EM model.

Classifier [0,0.5) [0.5,0.7) [0.7,1.0]

CART 0.0933 1.48e-04 0.0000
SVM 0.3040 1.11e-01 0.0000

Logistic 0.0981 0.0000 0.0000
EM Prior 0.7030 0.266e-1 1.46e-04

Table 4: p-values of t-test for difference in means of EM prior model and classifiers
trained on Y ′
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6 Conclusion

In complex classification tasks with three or more classes, we find that our
method of using informed labels in a uncertain label set significantly improves
classifier accuracy across all levels of gold inclusion and annotator numbers for
CART and logistic regression classifiers. For SVM we see a similar improvement
in performance, but this improvement is not unanimous.

In the case of EM prior we demonstrate that informed labels allow other,
simpler classifiers to perform just as well as the EM algorithm in label sets with
low values of PG. Therefore, we assert that by using informed labels, cheap and
accessible machine learning models are able to achieve at least the same, if not
better, accuracy as their costly but high performing counterparts for scenarios
with highly uncertain labels.

We acknowledge the need to experiment with adding more than one informed
label to a set of labels with a large number of R annotators. It would be inter-
esting to explore this relationship between R and the number of informed labels
added to a set. In addition, there is much potential for probabilistic classifiers
to be used in deriving these informative labels.
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