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Abstract—Automated theorem provers (ATPs) typically run in
a single thread with any parallelism being through portfolios
where distinct and disjoint strategies are run in parallel. Whilst
there has been some historic exploration of cooperation, the
technical engineering challenge has prevented this from being
fully explored in modern ATPs. This paper describes the (non-
trivial) engineering efforts involved in making the Vampire
theorem prover multi-threaded such that multiple proof attempts
can co-exist in the same memory space. This lays the foundations
for a new generation of proof search techniques able to utilise
fine-grained cooperation between separate proof attempts. As
an initial demonstration, we implement a shared persistent
grounding daemon that receives all clauses generated by all
proof attempts and checks whether a heuristically grounded
version is unsatisfiable. The resulting (extended) multi-threaded
framework achieves introduces limited contention compared to
the previous process-based solution and persistent grounding
improves performance in certain cases.

I. INTRODUCTION

Whilst parallel computational resources have become abun-
dant, and used with effect in many areas of computer science,
they are yet to make a significant impact on automated
theorem proving. We have seen substantial developments in
SAT solving [1]–[3] and progress within SMT [4]–[6] but, to
date, parallel automated theorem proving is typically historic
with no modern implementation [7]–[9], or parallel at the
level of portfolios without shared memory. The popularity of
parallel portfolios is likely due to their ease of implementation
and success — it is common folklore that a good way to
combat explosive proof search is a set of complementary
search strategies — this success goes some way to explaining
why research in other directions has been slow.

In this paper we discuss our initial work on a new shared-
memory architecture for the VAMPIRE automated first-order
theorem prover [10]. VAMPIRE is a saturation-based theorem
prover implementing the superposition calculus, combined
with methods for instance-based reasoning and finite model
building [11]). It has won first-place in the main track of
the CASC competition for over 20 years [12] and implements
advanced reasoning techniques for theory reasoning [13]–[15],
inductive reasoning [16] and higher-order reasoning [17]. It
consists of over 200k lines of C++ with contributions from over
15 developers and a permissive licence [18]. As such, it is a
mature and highly-complex piece of software.

Since 2010, VAMPIRE has supported some form of multi-
process parallelism where a portfolio of strategies could be
implemented by forked processes. This achieves good results,
but limits options for cooperation between proof attempts

due to reliance on inter-process communication. In 2015, we
proposed a concurrent architecture [19] that interleaved proof
attempts within a single process whilst sharing (some) memory
to explore a novel method for cooperation. Our conclusion at
the time was that we need true shared-memory parallelism to
make progress.

The two main contributions of this paper are (1) A de-
tailed discussion of the technical challenges and experience
involved in transitioning a complex, mature theorem prover
from a process-based model to a thread-based, shared-memory
architecture (Section II), and (2) A new persistent grounding
technique designed to take advantage of the shared memory
concurrency provided by the architecture (Section III).

II. CHALLENGES AND EXPERIENCE

This section reflects on the engineering challenges we faced
when converting Vampire into a multi-threaded solver, and the
approach we took to overcome them. We include this discus-
sion to provide guidance for others attempting to complete
a similarly-challenging task. Currently, the implementation is
available in a branch of the VAMPIRE repository1.

A. Design

The architecture is based on the previous process-based ar-
chitecture, which has not previously been described elsewhere.
As illustrated in Fig. 1, the input problem is first parsed into a
set of initial formulas over a signature that is shared between
all proof attempts. A strategy scheduler uses a portfolio of
predetermined (and automatically generated) strategies (sets
of proof search heuristics) to generate a set of k threads.
The parent scheduler supervises the child threads, reporting
success if any child succeeds and spawning new threads to
keep available CPU cores busy.

Each thread preprocesses the problem, potentially extending
the signature e.g. by introducing names for subformulas, and
then performs proof search. This typically involves the use
of complex data structures (called term indices) for storing
and searching for relevant clauses. Two complex parts of the
architecture are currently protected by a coarse-grained lock.
Only one proof attempt should print a proof and this process is
gated such that subsequent successful attempts block forever.
Part of the standard VAMPIRE is a hash-consing structure used
to implement perfect term sharing, i.e. avoid duplication of
terms. In our multithreaded architecture we share this map and
protect it by a lock. The map needs to be able to distinguish

1https://github.com/vprover/vampire/tree/caps



Fig. 1. Schematic of Architecture.

between terms built solely from the shared signature and terms
involving thread-specific symbols: that is, terms that could
be in any attempt versus terms that only have meaning in
one attempt. VAMPIRE’s complex custom memory allocator is
disabled for this work, incurring a small performance hit.

B. Approach

Converting a large, complex and performance-sensitive sys-
tem such as VAMPIRE to work in thread-parallel is not es-
pecially easy. The approach outlined previously [19] in which
proof attempts interleave in a single thread of execution, rather
than exist concurrently, might seem like a good intermediate
step before starting work on a fully thread-parallel, shared-
memory system. However, we found that bugs introduced by
interleaved proof attempts were very difficult to track down,
not least because very often they had no observable effect.

Instead we take a more chaotic approach, leaning heavily on
tooling for developing multi-threaded applications, particularly
tools for detecting data races. Data races, for our purposes,
are execution scenarios in which two threads access shared
memory without synchronisation, and at least one access is a
write. Detection of races is extremely useful in our case as it
provides a good proxy for identifying when one proof attempt
influences the execution of another. Nearly all thread-related
bugs — of which there were many — could then be squashed
by examining the context in which races occur and introducing
synchronisation or data reorganisation as appropriate.

Tools for detecting dubious constructs and execution states
in low-level programming have improved significantly. We
were particularly impressed by the LLVM-based [20] linter
clang-tidy [21], which helped to identify and remove ex-
isting discouraged constructs in VAMPIRE’s codebase, and
the ThreadSanitiser [22] compiler instrumentation for the
detection of data races. Armed with these tools, we simply
introduced threads into VAMPIRE and waited for the tool

reports. Races happened frequently in VAMPIRE at first, where
code written under the implicit assumption of single-threaded
execution breaks down, triggering a ThreadSanitiser report.

In general, data races tend to lead to crashes rather than
unsound behaviour but to avoid the latter we rely on (i)
existing mechanisms for automated testing utilising large sets
of labelled benchmarks [23], and (ii) VAMPIRE’s support for
proof checking which allows us to independently verify the
correctness of proof search [24].

C. Thread-Local Storage, Atomics and Locking

The most common source of the races was the re-use
of heap-allocated temporaries such as stacks or maps, often
used in iterative translations of recursive algorithms present
throughout the system. Reusing these values once allocated
can improve performance in the single-threaded case by
avoiding repeated (de)allocations. The majority of such cases
can be resolved by the use of thread-local storage as a
compromise, incurring one allocation per thread. The 2011
C++ standard [25] provides a thread_local keyword and
associated machinery.

Another problem area is integer counters, often used for
computing statistics and satisfying freshness constraints such
as “select a fresh symbol for the Skolem function”. Usually the
only operation required is “read-and-increment”, but this must
sometimes be reflected across threads to maintain soundness
of e.g. Section III. This operation can be safely achieved
atomically: C++’s <atomic> proved useful here.

Only surprisingly rarely was a full lock required to synchro-
nise compound operations. This relatively-coarse technique
was only required for widely-used modules with non-trivial
internal invariants such as the implementation of term sharing.
Due to the small number of locks, deadlock was mostly
avoided.

D. Data Organisation and Partitioning

Significant headaches can be avoided by carefully choosing
which data are shared between proof attempts. While an
ideal implementation would aggressively share all common
data using a combination of clever algorithms and very fine-
grained synchronisation, in practice this is extremely difficult.
For example, VAMPIRE maintains various indices to quickly
retrieve various syntactic data that sastisfy some condition,
like “retrieve all the literals that unify with L”. In principle
it would be possible to share at least some of these and save
some memory, but in practice this appears to be enormously
difficult to implement efficiently.

Currently, each proof attempt maintains its own clause
space, computed properties and statistics, indices, introduced
definitions, and ground reasoning systems such as those used
in global subsumption [26] or AVATAR [27]. They do however
share synchronised access to creating fresh symbols (although
not all symbols are used in all proof attempts), term sharing,
and persistent grounding (Section III). We feel this is a good
initial trade-off.
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E. Timing and Internal Control
One crucial difference between the multi-processing and

multi-threading approaches to portfolio modes is that pro-
cesses can be signalled to stop execution in a timely manner,
whereas most threading abstractions do not have this ability.
Threaded proof attempts must therefore frequently check for
exit conditions, e.g. another proof attempt succeeded/time is
up. Making these checks can be tricky: too frequently and
there will be some performance impact; too infrequently and
the user will begin to notice. VAMPIRE executes a series of
loops in its internal search routines: each iteration of these
loops can take drastically different lengths of time depending
upon the input problem.

F. Synchronisation and Performance
All the synchronisation measures introduced do incur some

performance impact. Atomic operations are not quite free,
but are very close in practice. Thread-local storage requires
some checks for lazy initialisation, which can occur frequently
if the compiler is unable to elide them, and is therefore
not as cheap as we would like. VAMPIRE uses a global
“environment” structure which was made thread-local: C++

semantics mean that this is considerably more efficient if an
extra level of indirection is added such that the environment is
accessed via thread-local pointer. Locks are currently a major
bottleneck: while contention was expected to be high, another
problem is that the locked sections are typically relatively
short and inexpensive compared to the locking overhead. We
will investigate finer-grained locking and alternative locking
strategies in future.

G. Experimental Evaluation
To validate the resulting system we carry out two experi-

ments using the 500 first-order problems from the 2020 first-
order theorem division of CASC. All experiments in this paper
are run for 60 seconds on a Ubuntu desktop machine with an
8 core Intel i7 and 16GB RAM.

Firstly, we compare the new thread-based architecture
with the previous process-based implementation. The thread-
based architecture solves 413 problems (10 uniquely) and the
process-based architecture solves 424 problems (21 uniquely).
The slight degradation in performance is unsurprising given
the additional contention in the thread-based approach. The
symmetric difference reflects the sensitivity of VAMPIRE to
variations in timing and memory usage. On average, the new
thread-based architecture took 1.25x longer to solve problems.
However, this is heavily influenced by short-running problems.
Excluding problems solved in under 1s the slowdown is 1.02x.

Secondly, we examine the scalability of the thread-based
solution using the same set of problems whilst varying the
number of threads. The results are in Table I. The number
of problems solved peaks for 2-6 threads and we get roughly
linear speedup with 2 and 4 threads and then plateaux (based
on the total time taken to solve the 352 problems solved
by all attempts). The average solution time overall was the
lowest for 6 threads - the lower average solution times for the
intersection of solved problems suggests that these were the
easier problems.

TABLE I
EVALUATING SCALABILITY OF THREADED ARCHITECTURE.

Threads # solved Avg time (s) Total/Avg (s) on ∩ Speedup
1 399 7.05 2187 / 6.21 -
2 413 4.80 987 / 2.80 2.22
4 412 3.49 520 / 1.48 4.21
6 413 2.79 539 / 1.53 4.06
8 402 3.27 533 / 1.51 4.10
10 404 3.26 534 / 1.52 4.10

In summary, performance degrades slightly when replacing
processes by threads (most likely due to contention) but the
overhead is acceptable (∼ 2% on longer running problems).

III. PERSISTENT GROUNDING

As a first step to explore the benefits of the new architecture,
we introduce a lightweight form of clause sharing. All clauses
produced by all proof attempts are shared, grounded, and
passed to a SAT solver in an attempt to detect a form of
global inconsistency e.g. an inconsistency in the full search
space being explored by all proof attempts.

The idea of grounding the search space of a first-order
prover in an attempt to detect inconsistency is not novel [28],
[29] and some methods, such as instance generation [30]
perform grounding as part of proof search already. What is new
in our approach is the persistence of the grounding: grounded
clauses escape from and outlive their thread, allowing clauses
from different proof attempts to interact.

A. Extension to Architecture
We introduce a queue (synchronised by a single lock)

that proof attempts add produced (and grounded) clauses to
and a thread that loops, adding the grounded clauses to the
MiniSAT solver [31] (yielding if the queue is empty) and
checking for unsatisfiability. If the grounding is inconsistent
the thread will report this immediately, interrupting other
threads. Currently, dedicated proof printing is not reported and
only the unsatisfiable core of first-order clauses is identified.
It is work-in-progress to rebuild the derivations that produced
these clauses as a separate post-processing step. We maintain
a (shared) mapping from (ground) first-order literals to SAT
literals such that a fresh first-order literal leads to a fresh
SAT literal (with the mapping stored for later). This relies
on the shared term indexing structure to efficiently identify
clauses that are shared between proof attempts, ensuring they
are represented using the same SAT variables.

B. Grounding Choices
There are numerous ways in which we could choose to

ground first-order clauses. We implement three alternatives:
• fresh: all variables are replaced by a single fresh constant.
• common: all variables are replaced by the most common

constant from the input problem.
• input: the clause is grounded for every constant in the

input problem.
Where the input problem is multi-sorted the above constants
are selected per-sort. We compute constant frequency on
the problem before preprocessing i.e. before subformulas are
copied or reduced.
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TABLE II
PERSISTENT GROUNDING EVALUATION.

# solved (uniq) Best by >1s Avg. time (s)
none 413 (6) - 2.79
fresh 410 (1) 0 3.09
common 411 (2) 5 2.95
input 411 (2) 3 3.11
fresh 410 (2) 4 2.94
active-only 412 (3) 0 3.01
no-splitting 393 (5) 16 3.19
combination of PG 421 (12) - 2.84 (best)

C. Experimental Analysis

We use the same 500 problems and experimental setup as
above to analyse the impact of this new addition. Our first
experiment is to isolate the impact of persistent grounding
from threading by running with a single thread. In this setting,
we solve 399 problems without persistent grounding and
398 with (using the fresh grounding) but with a symmetric
difference of 11 problems - persistent grounding allows us to
solve 5 problems we did not solve without it. Some problems
were also solved significantly faster - for 8 problems the
speedup was >2x with one problem (SWB105+1) solved 15x
times faster (from 25s to 1.6s).

Next, we compare the different grounding mechanisms
(using 6 threads). The results are given in Table II (to 4 rows).
The first observation is that we solve 8 problems that we did
not solve without persistent grounding and each grounding
mechanism solves some problems uniquely. But, the average
time to solve each problem increases. The fresh grounding
mechanism fares the worst with the common grounding
mechanism producing proofs more than a second before other
mechanisms 5 times. Within this there are some notable
interesting cases. For example, GRP667+1 was solved using
input in 15s whilst the others didn’t solve it using persistent
grounding and it was eventually solved in the normal way after
50s. Similarly, ITP006+4 was solved using common in 9s
rather than the 25s elsewhere.

We explore two further variants (rows 5-7 of Table II):
in active-only we restrict persistent grounding only to so-
called active clauses [10] and in no-splitting we turned clause
splitting off for all strategies. Clause splitting introduces
additional (per proof attempt) propositional literals into split
clauses, potentially reducing the amount of sharing between
proof attempts. Active-only solves more problems and (not
shown in the table) enjoys a slight reduction in solving times
in cases where persistent grounding is not used to solve the
problem. Turning clause splitting off solves fewer problems
but is nicely complementary (solving 5 problems uniquely).

In summary, the persistent grounding method can drastically
speed up proof search when it finds a proof but it generally
adds a noticeable overhead. Overall, we solve 12 problems
with variants of persistent grounding that we were unable to
solve without it. The main observation is that it is possible
to prove more by sharing information between proof attempts
than simply running the union of proof attempts separately but
more work is required to make this approach efficient.

IV. REFLECTION AND FUTURE WORK

We describe our initial efforts transforming VAMPIRE to
a multi-threaded architecture and show how this new shared
memory architecture can easily support methods for clause
sharing. Whilst the concepts involved are straightforward, the
engineering effort required to transform a mature codebase
from a process-based single memory architecture to a thread-
based shared-memory one is large. We have described our
experience for others. Our general lessons learned are:

1) It is more important to find a clean way to separate
data and isolate points of sharing than it is to intro-
duce ‘clever’ fine-grained synchronisation. This ensures
that debugging is manageable. We achieved a lot with
thread_local and atomic.

2) In a large codebase like VAMPIRE there are tens or
hundreds of little bottlenecks rather than few big ones
and they interact in complex ways. Simply optimising
one bottleneck rarely gives overall gains, improvements
must be more architecturally focussed.

3) Portfolio strategies are typically very short (often <1s)
so ‘small’ performance hits can have a large impact -
work is required to make portfolios robust to this setting.

The new shared persistent grounding method gave lacklustre
results but only represents a first step in a number of oppor-
tunities presented by the new architecture. Directions we plan
to pursue in the future include:

• Extending the shared signature. Currently, if two proof
attempts introduce a definition for the same subformula
this will be added to each local extended signature and the
overlap will not be shared. A shared definition manager
could increase the size of the shared signature, increasing
the opportunity for cooperation.

• As originally proposed in [19], sharing the SAT solver
used for clause splitting in AVATAR. Within a single
proof attempt, this SAT solver is used to enumerate sub-
problems. When shared, it can share information about
previously proved sub-problems between proof attempts
(similar to sharing learned clauses in parallel SAT [2]).

• Sharing simplification mechanisms (and associated data
structures e.g. term indices). VAMPIRE contains a number
of mechanisms for removing redundant parts of the search
space. By sharing these mechanisms we can import
information from other proof attempts that makes the
current problem easier.

• Other clause sharing mechanisms. Whilst sharing many
clauses risks proof attempts converging (undoing the
complementary power), we can explore methods that aim
to identify useful clauses to share. A simple approach
would be to employ machine learning techniques to learn
which clauses are good to share. Alternatively, we could
take inspiration from SAT’s lazy clause exchange [32]
where clauses are only shared if useful locally. Finally,
it is likely that not all clauses will be equally useful to
all other proof attempts, which suggests a setting where
clauses are pulled rather than pushed based on a local
assessment of usefulness.
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