
EasyChair Preprint
№ 3503

Disjoint Multipath Routing and Failure Recovery
by Maintaining the Colored Trees

R Sudha Abirami

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 30, 2020

DISJOINT MULTIPATH ROUTING AND FAILURE RECOVERY BY

MAINTAINING THE COLORED TREES
 Mrs.R.Sudha Abirami

Assistant Professor, Thassim Beevi Abdul Kader College for Women, Kilakarai

sudha.tbakc@gmail.com, 63799 33676

Abstract

In this paper the Coloured trees are
constructed for routing the packets along link or

node disjoint paths. But maintaining the trees after

link/node failure is difficult. To overcome this

problem an algorithm named, SCT is developed in
this paper that construct and maintains the coloured

trees in an efficient manner and reduces the message

overhead when compared with existing techniques.
For each and every node in the network two disjoint

paths are created. When a node failure occurs in one

path it then reroutes the packets along another path.
It requires fewer messages for reconstructing the tree

after node failures. The above mentioned

improvements are obtained by exploiting the

relationship between DFS numbering, low-point
values, and the potentials employed for maintaining

partial ordering of nodes.

Keywords: low-point value, multipath routing,

reconfiguration

1. INTRODUCTION

The term multipath routing [1] has been used
to describe the class of routing mechanisms that

allow the establishment of multiple paths between

source and destination. Classical multipath routing
has been explored for two reasons. The first is load

balancing [2]: traffic between a source-destination

pair is split across multiple (partially or completely)
disjoint paths. The second use of multipath routing is

to increase the likelihood of reliable data delivery. In

these approaches, multiple copies of data are sent

along different paths, allowing for resilience to
failure of a certain number of paths [3]. In general,

the multiple paths from a source to a destination may

have common links (or nodes) as long as the shared
links (or nodes) have sufficient resources.

To improve the transmission reliability and avoid

shared-link (or node) failures, the multiple paths can
be selected to be link-or node-disjoint. In this case,

the MPR approach is referred to as disjoint multipath

routing (DMPR). DMPR provides better robustness

compared to the generic MPR. If multiple paths are
employed for increased throughput and for secure

communication [5], then the data may be split over

multiple paths.
To reduce the routing table overhead, hence

reduce lookup time, a novel multipath routing

strategy called coloured trees (CT) was developed

[6]. Every node in the network has two preferred
neighbours to the destination: red and blue. A packet

transmitted from a source is marked with one of the

two colours. An intermediate node that receives the
packet forwards it to its preferred neighbour based on

the colour of the packet. Thus, the routing table at a

node has only two entries (for every destination
node). The two paths from a given source to the drain

on the two trees are link/node-disjoint.

A major limitation of the previous path

augmentation technique [7] is that the maintenance
of the trees is difficult in the presence of failures, as

paths are augmented in a sequential fashion. The

failure of a node/link may result in invalidating the
paths for several nodes. While the trees may be

reconstructed entirely after the failure, such a total

reconstruction of the trees is both unnecessary and

results in a high overhead. As all algorithms based on
path augmentation suffer from the above limitation,

this paper develops a new algorithm, referred to as

the SCT algorithm. The SCT algorithm offers four
advantages compared to the earlier algorithms based

on path augmentation: (1) the SCT algorithm reduces

the message overhead required to construct the trees
by 40%; (2) the average path lengths obtained using

the SCT algorithm is lesser than those obtained using

earlier approaches; (3) the number of nodes whose

paths are affected by a failure under the SCT
algorithm will never be more than those affected by

path augmentation based approaches.

2. ROUTING TREE CONSTRUCTION

The SCT algorithm works in three phases for

constructing the routing trees with maximum
disjointedness: (1) distributed DFS numbering and

low-point computation; (2) distributed layering; and

(3) selection of left (blue) and right (red) forwarding

nodes. This paper first produces the path to satisfy
the CT-ND constraint.

mailto:sudha.tbakc@gmail.com

2.1 DETERMINING NODE DISJOINT PATH

2.1.1 Numbering and Low point Computation

Phase:

The first phase of the algorithm is to assign

DFS indices to all the nodes and compute the low-
point value and path for each node. We employ the

generalized low-point concept, developed in [7], in

the SCT.

Fig.1 Phases for Disjoint Path Selection

Traditionally, the low-point value of a node x

is defined as the smallest DFS index node that may

be reached from x by traversing DFS tree edges and

one back edge.

Fig.2 Algorithm to assign DFS-indices to the nodes

and compute glpv value and neighbour

The generalized low-point value (GLPV) of
a node x is the smallest DFS index node that may be

reached from x by traversing nodes in the increasing

order of their DFS indices except the last hop. The

generalized low-point neighbour (GLPN) of a node x
is the neighbour of x in its generalized low-point

path. The steps of the DFS numbering phase are

shown in the given algorithm. The algorithm to
assign the DFS-indices and compute the GLPV and

GLPN is shown in Fig 3. The DFS-indices of all the

nodes are first initialized to -1.

 Fig.3 An example network and DFS numbering

Consider the network shown in Figure 3. We
will use this network to show the working of the

entire algorithm. The network in Figure 3 is two-

node-connected. The number next to a node
represents its DFS index and the number in

parenthesis denotes the GLPV. The solid lines

represent the DFS tree edges. In a two-node-
connected network, the GLPV of a node is strictly

less than the DFS index of its parent.

2.1.2 Layering Phase:
The second phase of the SCT algorithm is to

arrange the nodes into ODD and EVEN layers. To

compute the layer for a node, we define a term called
potential – a bound on the GLPV of a node to be

present in the same layer.The potential of a node x,

denoted by pot(x), is computed as follows for
satisfying the CT-ND constraint:

pot(x)=

otherwise dfs(p(x))

 pot(p(x)); < glpv(x) if pot(p(x))

where p(x) is the identifier of the DFS parent
of x.

The layer of a node is assigned similar to the

potential value as below.

DFS(parent; n; currdfs)

1. if dfs[n] > 0 return currdfs;

2. dfs[n] = currdfs; dfsparent[n] = parent;

currdfs = currdfs + 1;

3. for every neighbor i ≠ parent of n do:

3.A. currdfs = DFS(n, i, currdfs);

3.B. if (dfs[i] < dfs[n]) and (dfs[i] ≤glpv[n])

3.B.i. glpv[n] = dfs[i]; glpn[n] = i; glpd[n] = Cni;

3.C. else if (dfs[i] > dfs[n]) and (glpv[i] < glpv[n])

3.C.i. glpv[n] = glpv[i]; glpn[n] = i; glpd[n] =

glpd[i] + Cni;

3.D. else if (dfs[i] > dfs[n]) and (glpv[i] = glpv[n])

and (glpd[i] < glpd[n] - Cni)

3.D.i. glpn[n] = i; glpd[n] = glpd[i] + Cni;

4. return currdfs;

l(x) =

otherwise l(p(x))~

 pot(p(x)); < glpv(x) if l(p(x))

where ~l(p(x)) denotes the negation of the

layer of node p(x).

If l(p(x)) = ODD, then ~ l(p(x)) = EVEN and
vice versa.

Fig.4 Placement of nodes at different layers

An exception to the above rule is for nodes
whose low point value equals 1. All the nodes whose

low point value equals 1 are placed in the layer next

to drain (i.e. EVEN layer).

2.1.3 Red and Blue Forwarding Node Selection:

The third phase of the SCT algorithm is to

select the left (red) and right (blue) forwarding
nodes, referred to as lfn and rfn, respectively.

Irrespective of how the layering approach is

performed, the selection method for the left and right
forwarding nodes is the same. In the distributed

layering phase we always place the drain at the first

layer (ODD).

If node x is in the EVEN layer, then

lfn(x) = p(x) and rfn(x) = glpn(x).

If node x is in the ODD layer, then

lfn(x) = glpn(x) and rfn(x) = p(x)

Fig.5 Left (Red) and Right (Blue) trees obtained

from the layered structure

We arrange the nodes in the even layer in the
increasing order of their DFS numbers from left to

right. Therefore, at the even layer we have the low-

point path in the right direction and in the left

direction at the ODD layer.

2.2 DETERMINING LINK DISJOINT PATH

The first and the third steps of the algorithm
are the same as that of the CT-ND version. The

conditions for assigning layers are modified as

follows. For satisfying the CT-LD constraint, a node
x takes the potential of its parent if its GLPV is less

than or equal to the potential of its parent, otherwise

its potential is the DFS index of its parent.

Fig.6 Placement of nodes at different layers to

satisfy the CT-LD constraint.

The potential of a node x is computed as follows for

satisfying the CT-LD constraint:

pot(x) =

otherwise dfs(p(x))

 pot(p(x)); glpv(x) if pot(p(x))

The layer of a node is assigned as

l(x) =

otherwise l(p(x))~

 pot(p(x)); glpv(x) if l(p(x))

Fig.7 Left (Red) and Right (Blue) trees obtained

from the layered structure

For the layered tree constructed in Figure 6
for the CT-LD case, the resulting red and blue trees

are shown in Figure 7. Observe that the path from

any node to the root on the two trees are only link-

disjoint, even though the network is two node-
connected.

3. RECONFIGURATION PROCESS
When a node fails in the network, all the

nodes that derived its DFS numbers will have their

DFS index invalidated, hence the left and right

forwarding nodes are also invalidated.
The children of the failed node initiate the

invalidation message to their children successively.

Therefore, the number of nodes that lose their
forwarding nodes due to the SCT algorithm will

never be higher than those that lost their forwarding

nodes in the distributed or centralized path

augmentation approaches implemented
To reconstruct the tree in the SCT algorithm,

the DFS parent of the failed node will restart the DFS

numbering phase. Note that the path augmentation
technique would also start in a similar fashion,

however would require the second phase of path

augmentation which is an expensive (sequential)
process compared to the (parallel) layering process.

The parent of the failed node reinitiates the

DFS numbering procedure. However, it must be

noted that the DFS numbering step must always
finish with the drain as there may be nodes that are

not reachable from the parent of the failed node, but

may be reachable from its ancestors. Note that in the
above procedure, it is relatively easier to implement

the DFS renumbering while identifying the node to

restart the path augmentation is harder, particularly in

a distributed fashion. The SCT algorithm simplifies
the reconfiguration procedure by exploiting the

relationship between the DFS indices, low point

values, and the potential of a node for partial
ordering. Therefore, all paths augmented in the

network will be discarded. Now, the trees have to be

reconstructed completely even though the DFS
number and GLPV of many nodes remain

unchanged.

4. PERFORMANCE EVALUATION
We compare the above performance metrics

obtained using the SCT algorithm with the results

obtained from the existing distributed linear-time
algorithm [7] based on path augmentation, indexed as

“PATH” in the results.

The SCT algorithm performs better in the
context of maintaining the CTs under node failures

Fig. 9 compares the average number of nodes that

gets affected under single node failure in computing

the CTs using the path augmentation technique and
the SCT algorithm. The SCT algorithm provides less

convergence time and less message overhead when

compared to previous path augmentation technique.

Fig.8 Comparison of path lengths obtained using the

SCT algorithm and the existing linear time algorithm

Fig.9 Comparison of average number of nodes that

get affected under single node failure.

5. CONCLUSION

In this article we propose a new scheme for

disjoint multipath routing in an efficient manner by
creating two routing trees. In this tree every node in

the network has two disjoint paths namely red

forwarding path and right forwarding path. Any node
failure in the network does not affect the entire tree.

For that the SCT algorithm is created for constructing

the colored trees with maximum disjointedness. The

minimum cost path is also calculated among the two
disjoint paths based on the hop count from each node

to the drain. The SCT algorithm reduces the message

overhead by 40% compared to the best known linear-
time distributed CT approach. The performance of

the SCT algorithm is found to be always better than

0
5

10
15
20
25
30
35
40
45

20 30 40 50

P
at

h
 le

n
th

no of nodes

SCT

Path

0

5

10

15

20

25

30

35

40

45

10 20 30 30

SIMCT

Path

the existing coloured tree based algorithms for
disjoint multipath routing.

REFERENCES

[1] P. P. Pham and S. Perreau, “Performance analysis
of reactive shortest path and multipath routing

mechanism with load balance,” in Proceedings of

IEEE INFOCOM, March-April 2003, vol. 1, pp.
251–259.

[2] Y. Ganjali and A. Keshavarzian, “Load balancing

in ad hoc networks: Single-path routing vs. multi-
path routing,” in Proceedings of IEEE

INFOCOM, March 2004, vol. 2, pp. 1120–1125.

[3] D. Ganesan, R. Govindan, S. Shenker, and D.

Estrin, “Highly resilient energy-efficient
multipath routing in wireless sensor networks,”

ACK SIGMOBILE Mobile Computing and

Communications Review, vol. 4, no. 5, pp. 11–25,
2001.

[4] S. Murthy and J. J. Garcia-Luna-Aceves,

“Congestion-oriented shortest multipath routing,”
in Proceedings of IEEE INFOCOM, March 1996,

vol. 3, pp. 1028–1036.

[5] W. Lou, W. Liu, and Y. Fang, “A simulation

study of security performance using multipath
routing in ad hoc networks,” in IEEE Vehicular

Technology Conference, October 2003, vol. 3, pp.

2142–2146.
[6] S. Ramasubramanian, H. Krishnamoorthy, and M.

Krunz, “Disjoint multipath routing using colored

trees,” Accepted for publication in Elsevier

COMNET, vol. 51, no. 8, pp. 2163–2180, June
2007.

[7] S. Ramasubramanian, M. Harkara, and M. Krunz,

“Linear time distributed construction of colored
trees for disjoint multipath routing,” Accepted for

publication in Elsevier COMNET, vol. 51, no. 10,

pp.2854–2866, July 2007.
[8] M. Medard, R.A. Barry, S.G. Finn, and R.G.

Gallager, “Redundant trees for preplanned

recovery in arrbitrary vertex- redundant or edge

redundant graphs,” IEEE/ACM Transactions on
Networking, vol. 7, no.5, pp. 641–652, October

1999.

[9] G. Xue, L. Chen, and K. Thulasiraman,
“Quality of service and quality of protection

issues in preplanned recovery schemes using

redundant trees,” in IEEE Journal on Selected
Areas in Communications, 2003,vol. 21, pp.

1332–1345.

[10] W. Zhang, G. Xue, J. Tang, and K.
Thulasiraman, “Linear time construction of

redundant trees for recovery schemes enhancing

qop and qos,” in Proceedings of IEEE

INFOCOM, March 2005, pp. 2702–2710.
[11] G. Jayavelu, S. Ramasubramanian, and O.

Younis. ”Maintaining colored trees for disjoint

multipath routing under node failures.”
IEEE/ACM Transactions on Networking,

17(1):346–359, 2009.

[12] Y. Lee, A.L.N Reddy. ”Disjoint Multi-Path
Routing and Failure Recovery.” In Tech. Report

TAMU-ECE-2009-06, Texas A& M University,

June 2009.

