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Abstract— Epilepsy is a condition of brain dysfunction which 

affects about 1% of the population across the globe. Diagnosing 

seizures is an unavoidable component in its treatment and control. 

Epilepsy detection is commonly done using electroencephalogram 

(EEG) signals. A new EEG based methodology for automatic 

diagnosis of epileptic seizure has been proposed in the present 

work. Local Binary Pattern (LBP) values were computed on the 

preprocessed EEG signal and the morphological significance of 

LBP values were analyzed, from which eight significant LBP 

values were selected, whose histogram per each epoch was 

considered as features. This algorithm was tested for its 

performance on CHB-MIT EEG database for three different 

classifiers, namely Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Linear Discriminant Analysis (LDA). Among 

the three classifiers, K-NN shows better performance with 100% 

Sensitivity and 0.52/h false detection rate (FDR). These values 

point to the superiority of the present approach over the existing 

approaches for automatic diagnosis of epilepsy. 

 

Keywords—Electroencephalogram, Local Binary Pattern, Support 

Vector Machine, K-Nearest Neighbor, Linear Discriminant 
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I. INTRODUCTION  

PILEPSY, a disease known from ancient times, is a 

symptom of paroxysmal and abnormal discharges in the 

brain. Epilepsy is considered as the second most commonly 

occurring disease. It is generally characterized by the transient 

disturbances of brain functions leading to loss of mindfulness, 

undetectable defects in the movement pattern, very mild 

twisting of muscles, and disturbances visual, auditory, 

gustatory senses and mood; many others are often beyond  

manual recognition [1]. Epilepsy affects approximately 70 

million people of all age groups globally, in which only 70% 

are curable by any form of drugs [2]. People with epilepsy have 

to bear recurrent seizures at random times, which usually take 
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place without any warning. According to the World Health 

Organization (WHO), epilepsy is differentiated by repeated 

seizures, which are responses to unexpected and usually short-

term electrical discharges in a group of brain cells. Researches 

target in the direction of epilepsy control program since timely 

detection of seizures can inarguably prevent death and 

neurodevelopmental delay of neonates [3].  

 Electroencephalography (EEG) is a globally accepted and 

applied technique to detect abnormalities in the signals in the 

brain [4]–[9]. Epilepsy is random in nature. Hence, visual 

inspection of EEG signals can be tiring and time-consuming. 

The availability of trained neurologists in the field of neurology 

is too limited in countries like India, which fall under the 

‘developing countries’ category. That being said, it is to be 

noted that even trained neurologists find it difficult to detect 

seizures because of the existence of ocular and musculature 

artefacts. This scenario has resulted in the emergence of 

computer-based detection and analysis of EEG signals. 

The analysis of EEG signals with the aim of automatic 

epileptic seizure detection has become an significant area of 

research, especially in the past few eras [10]. Mostly, a wide 

variety of algorithms have been proposed for analyzing 

epilepsy using the EEG signals obtained. These include the time 

[11]–[14], the frequency [15]–[17], and time-frequency 

domains analysis [18]–[22]. 

Prior et al. [23] came up with an idea to use cerebral function 

monitor. Epilepsy were identified as an immense rise in EEG 

amplitude, which is then followed by a noticeable decrease and 

by hefty EMG activity.  An electronic circuit that could identify 

seizures was proposed by Babb et al. [24]. The circuit identifies 

seizures through a swift progression of large amplitude spikes. 

The nonlinear dynamics of a signal was studied by Sharma et.al. 

[25]. The 2D and 3D phase space representations (PSRs) of 

intrinsic mode functions (IMFs) derived from empirical mode 

decomposition (EMD) of EEG signals was utilized for the 

classification of epileptic seizure and seizure-free EEG signals. 

But the bigger extent of computational time was reduced by 

Paul et al. [26] who considered phase correlation to capture the 

motion information between the current and reference blocks, 

and invented an algorithm for direct motion estimation mode 

prediction. Tzallas et al. [27] compared non stationary 

properties of EEG signals by using Short-time Fourier 

transform (STFT) and several t-f distributions (TFDs), and 

these properties were used to calculate the power spectrum 

density (PSD) for each segment. Artificial neural network 

(ANN) classifier makes use of these features for the diagnosis 

of epilepsy. Najmah et al. [28] discussed a patient specific det- 
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ection system, where discrete wavelet transform (DWT) was 

applied on scalp EEG data. The mean and variance of ictal and 

inter-ictal data were fed to linear classifier. Satisfactory results 

of 98.3% specificity, 96.06 % sensitivity and 97.19 % accuracy 

were achieved when tested on database collected from Boston 

Children’s Hospital [29]. 

Local binary pattern (LBP) is yet another factor that has been 

considered and suggested for the classification of epileptic 

seizure EEG signals [30]. Tiwari et al [31] calculated the LBP 

of the EEG signals fragmented by making use of Gabor filter 

bank and then suggested nearest neighbor classifier for 

detection of epilepsy. Shanir et al. [32] proposed a set of novel 

LBP based morphological features like rising and falling edge 

count (RFEC) and sum of absolute differences (SAD) for each 

epoch. The discriminating strength of these features when 

combined with interquartile range (IQR) provided satisfactory 

result using KNN classifier with a mean accuracy of 99.7% 

when tested on CHB-MIT database.  

Deep learning is one of the new techniques that has risen in 

recent times. Acharya et al. [33] was the first to employ a 13-

layer deep convolutional neural network (CNN) algorithm for 

automated classification of normal, pre-ictal, and seizure 

classes. This technique achieved accuracy, specificity, and 

sensitivity of 88.67%, 90.00% and 95.00% respectively when 

tested on database collected from Bonn University, Germany 

[4]. Elman Network (EN), a recurrent neural network was 

employed by Srinivasan et al. [34] for detecting epilepsy. Five 

different elements, two-time domain and three-frequency 

domain features were used, and accuracy of 99.6% was 

achieved. Ahmedt-Aristizabal et al. [35] tried out the 

hypothesis that spatio-temporal traits of the patient’s response 

and behavior obtained from the videos recorded can 

discriminate between the mesial temporal from extra temporal 

seizures using deep learning approaches like CNN and long 

short-term memory (LSTM).  Daoud et al. [36] computed Mean 

Power Frequency (MPF) from the generated IMFs so as to 

condense the dimension of feature vectors for firm 

classification using Multilayer Perceptron (MLP). Also, CNN 

was used as classifier for multiclass classification task to obtain 

high classification accuracy and robustness. Hussein et al. [37] 

introduced another deep learning-based approach which 

spontaneously studies the discriminative features of epileptic 

seizures. EEG segments containing normal artifacts were 

deleted and those with delicate ones were de-noised using a 

band-pass filter. LSTM networks is used to study the high-level 

representations of the normal and the seizure EEG patterns.  

Many algorithms for automatic seizure detection with 

different feature classifier combination is proposed recently 

have a problem lower performance or/and computational cost. 

A summary of recent work is shown in Fig. 1. Present work 

aims to find better performing algorithm with lesser 

computation. This paper analyzed morphology behind each 

LBP code and selected morphologically significant 8 LBP 

codes. Histogram of these selected LBP codes are used as a 

feature. The proposed algorithm has been tested on 124 seizures 

from 21 patients from CHB-MIT (Children’s Hospital Boston–

Massachusetts Institute of Technology) continuous EEG 

database for three different classifiers namely KNN, LDA and 

SVM. A new feature classifier combination set has been put 

forward, which played a pivotal role in the diagnosis of 

epileptic seizure and have achieved significant result in the 

diagnosis of seizures.  

II. LOCAL BINARY PATTERN 

LBP is a gray-scale invariant texture measure [38] [39]. LBP 

operator is derived from a general definition of facial expression 

in a local neighborhood. LBP, is an efficient texture descriptor 

which allows the system to efficiently capture local structures. 

Every pixel in an image has a binary code produced 

corresponding to it by thresholding its value with that of the 

pixel. At a specific pixel position, the operator is thus defined 

as an proper set of binary comparisons of pixel intensities 

between the center pixel and its neighboring pixels. The LBP 

operator labels the pixels of the image by considering a 

neighborhood around each pixel and using the value of the 

center pixel to threshold the neighborhood. 

A. 1D - Local Binary Pattern 

1D-LBP method, which is obtained from the execution 

procedure of 2D-LBP was introduced by Chatlani et al. [22] in 

1990 for the purpose of detecting speech signals that are non-

stationary by nature. The fundamental task of a 1D-LBP is not 

so different from that of a texture operator [32]. A binary code 

is generated corresponding to every individual data sample in a 

signal by the thresholding of its value with that of the center 

sample. Through iteration, this method is realized over the 

whole signal. While applying LBP to EEG signal, 𝑚 successive 

samples from the time series was considered to compute the 

LBP value for the 
(𝑚+1)

2
𝑡ℎ sample, which is acting as the center 

sample. The mathematical formulation of 1D LBP is akin to the 

2D-LBP [39], although instead of the pixel intensities for the 

grid of pixels , amplitude value at every sample point is taken 

into consideration for the EEG time series. The difference of 

𝑗 𝑡ℎ neighbor sample with the amplitude value 𝑃𝑗  and the center 

sample amplitude value 𝑃𝑐 is known as decision variable 𝑠𝑗. 𝑚 

is an odd number denoting the consecutive sample numbers 

taken into account for coming up with the LBP codes. 𝑓𝑗(𝑠𝑗) is 

a value arrived by the application of the condition of threshold 

given in Equation (2). 

        𝑠𝑗 =  𝑃𝑗-𝑃𝑐                                  (1) 

    𝑓𝑗(𝑠𝑗) = {
1,      𝑓𝑜𝑟, 𝑠𝑗 ≥ 0

0,     𝑓𝑜𝑟 , 𝑠𝑗 < 0 
             (2) 

LBP value concurring to 𝑃𝑐 

𝐿𝐵𝑃(𝑘) =  ∑ 𝑓𝑗(𝑠𝑗) ∗
[
(𝑚+1)

2
]−1

𝑗=1
2𝑗 

+ ∑ 𝑓𝑗(𝑠𝑗) ∗𝑚

𝑗=[
(𝑚+1)

2
]+1

2𝑗−1      (3) 

 

where 𝑘 is the sample number that varies from 5 to (length of 

the signal – 4).  

The procedure under taking in the calculation of 1D-LBP has 

been illustrated in Fig 2. These steps were repeated for all 

samples and over all the channels of EEG signals from the data 

considered. As this procedure was applied, an LBP signal was 

developed, which has values ranging from 0 to 255. Each LBP 

code represents unique wave shape and this wave shape is 

independent of magnitude [32]. 
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(d) 

Fig.2. (a) randomly selected section of EEG signal, (b) EEG 

amplitude of the signal shown in fig.2 (a), (c) Binary value of 

LBP corresponding to signal shown in fig.2 (a), and (d) LBP 

code equivalent to signal shown in fig.2 (a). 

III. METHODOLOGY 

The schematic representation of automatic recognition of 

abnormalities in EEG signals based on LBP codes is depicted 

in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Proposed model: Block diagram. 

The raw EEG signals are preprocessed by making use of 

Savitzky-Golay (SG) technique of filtration. The LBP of these 

pre-processed signals are calculated by considering consecutive 

samples. The LBP codes are analyzed to select the best codes 

by considering wave shape. The histogram of these selected 

LBP codes are calculated as features. The performance of these 

features are evaluated using three different classifiers namely 

SVM, KNN and LDA. A post-processing technique is 

employed to reduce FDR due to artifacts. 

A. Preprocessing 

EEG signals in the range of microvolts are observed on the 

scalp. External signals resulting from blinking of eyes, 

activities of facial muscles, etc. are added to the original signal. 

The presence of the above mentioned external artefacts and 

other noisy signals causes a significant complication in the 

analysis of EEGs. The EEG pre-processing is done to remove 

all the artefacts and external noise signals without any loss or 

damage to the crucial EEG components.  

A commonly used low-pass filter, and well-adapted for 

smoothing the data, is Savitzky-Golay (SG) Filters [40]–[42]. 

SG filters are developed directly from a certain formulation of 

the smoothing problem contained in the time domain and 

filtering out a significant portion of the signals’ high frequency 

content along with the noise. SG filters also minimize the errors 

caused by least-squares in placing a polynomial to the frames 

of noisy data. Typically, SG filter is applied to a sequence of 

digital data points that increase the signal-to-noise ratio (SNR) 

without distorting the signal. The subsets of consecutive data 

points are built-in using a low order polynomial with linear least 

square method, and convolution of all the polynomials is then 

obtained. The 𝑥 is an independent variable whereas 𝑦 is an 

observed value, data having a set of 𝑛 {𝑥𝑗, 𝑦𝑗} points, where 

𝑗 =  1, 2. . . 𝑛, and can be represented with a set of 𝑚 

convolution coefficients, 𝐶𝑖, and given as, 

𝑌𝑗 =  ∑ 𝐶𝑖𝑌𝑗+𝑖

(𝑚−1)

2

𝑖=
−(𝑚−1)

2

, (
𝑚+1

2
) ≤ 𝑗 ≤ 𝑛 − (

𝑚−1

2
)           (4) 

Execution of SG filter usually requires three inputs: the noisy 

signal (𝑥), the order of the polynomial (𝑘) and its frame 

size(𝑓). The best proper values of 𝑘 and 𝑓 for a signal are 

generally assessed using trial and error method. Alternatively, 

the values can also be obtained using previously predicted 

values for a particular level of SNR for the given signal.  

B. Feature Extraction  

 The normal and seizure signal can be distinguished by 

determining best attributes termed as features [43]. After 

preprocessing, feature extraction is the most key part before 

performing classification. LBP of the preprocessed EEG was 

calculated. Analysis of wave shape of each LBP code was done 

to find the best performing LBP codes. The LBP codes ranges 

from 0 to 255, and each code has unique wave shape 

independent of EEG signal amplitude. Fig. 4 shows casually 

selected fragment of EEG signal from patient 1 during seizure 

and normal, and the corresponding LBP values.  From this 

figure, the frequency variations, phase change and smoothness 

characteristics (which are characteristics of seizure) can be 

identified by finding number of occurrences of LBP codes ‘0’, 

‘255’, ‘15’, ’240’,’8’,’48’, ‘112’, and ‘143’. So, the histogram 

SAVITZKY 

GOLAY 

FILTER  

SVM, K-NN, 
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HISTOGRAM OF 

SIGNIFICANT 
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of these signals can be used as feature. This reduces feature 

vector dimension from 256 to 8. The uniqueness in wave shape 

of these mentioned codes are shown in Fig. 5. This selection is 

validated from Fig. 6 which shows box plot of selected LBP 

codes during seizure and normal period. 

 

 (a) 

 

    (b) 

Fig.4. Random section of EEG signal and corresponding 

LBP codes during (a) seizure (b) normal periods. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig.5. Wave shape corresponding to LBP codes (a) ‘0’, (b) 

‘8’, (c) ‘15’, (d) ‘48’, (e) ‘112’, (f) ‘143’, (g) ‘240’, (h) 

‘255’. 

C. Classification 

Automatic recognition of seizure can be viewed as a two 

class classification problem. So, performance of the selected 

feature was to be tested using different classifiers. Different 

methods have already been developed for the clustering and 

classification of EEG  have already been developed [44]–[47]. 

Among these techniques, association rules, ANN [48], LDA 

[49], Gaussian mixture model (GMM) [48], k-means clustering 

[50], fuzzy logic [19], CNN [35], LSTM [37] and SVM [51] are 

used for epileptic seizure detection. When the relationships get 

complicated, automated techniques are applied to find them.  It 

is clear from Fig. 6 that the histogram of selected LBP codes 

are good features for classification. The performance of present 

work has been tested on SVM, KNN and LDA classifiers.  

 

Fig.6. Boxplot of selected 8 LBP codes during seizure and 

normal period. 

D. Database Used 

Publicly available CHB-MIT scalp EEG data from 

Children’s Hospital, Boston [29] was used in the present work, 

to compare the performance of this work with recent works. The 
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database contained 916 hours of scalp EEG recording with 

intractable seizure recorded from 24 (23 pediatrics) patients. 

There were 664 EEG recording file from 5 males and 18 

females, out of which 119 files consisted of 198 seizures. EEG 

signals were recorded at 256 samples per second with a 

resolution of 16 bits using 23 channels in most cases. The 

standard international 10-20 electrode placement system was 

used to record the EEG signals. The 15th and 23rd channels of 

the database shared the same configuration; the 23rd channel 

was left aside in the work, as an attempt to reduce redundancy. 

The patients with identical electrode montage were used for the 

performance evaluation. The patient details of CHB-MIT 

database are summarized in Table.1. 

Table 1. Database used in the present study: Patient details 

Patient Gender Age 

(years) 

Duration 

(hours) 

Number of 

seizures 

P1 Female 11 40.5 7 

P2 Male 11 35.5 3 

P3 Female 14 37 7 

P4 Male 22 155 4 

P5 Female 7 39 5 

P6 Female 1.5 66.7 10 

P7 Female 14.5 67 3 

P8 Male 3.5 20 5 

P9 Female 10 67.9 4 

P10 Male 3 50 7 

P11 Female 12 33.8 3 

P14 Female 9 25 8 

P16 Female 7 17 8 

P17 Female 12 21 3 

P18 Female 19 35.6 6 

P19 Female 6 29.9 3 

P20 Female 13 27.6 8 

P21 Female 9 32.8 4 

P22 Female 6 31 3 

P23 Female - 26.5 7 

P24 - - 21.3 16 

Total - - 879.9 124 

IV. RESULTS 

The raw EEG database from CHB-MIT EEG database was 

filtered using SG filter. LBP code for this preprocessed EEG 

signal were calculated by considering 8 neighboring points. 

Analysis of LBP codes was done, and the better-performing 

codes were selected by considering the wave shape. Histograms 

of the selected LBP codes were calculated as features that were 

fed to the classifiers. The classifier output was tested using 

three-fold cross validation wherein all seizures were tested by 

30% hold out method. The classifier generates labels 1 and 0 

for seizure and normal respectively. A post-processing 

technique was also included in order to cut false detection due 

to artifacts. 

 

 
 

Fig.7. Patient-wise FDR of proposed seizure detection 

 

A sensitivity of 100% for all subjects were achieved when 

tested on 124 seizures from 21 patients of CHBMIT EEG 

database for all classifiers considered. The patient-wise FDR is 

shown in Fig. 7 for three different classifiers. The least average 

FDR obtained for KNN is 0.52 when tested on 879.9 hours of 

data from 21 patients. The average sensitivity and FDR for the 

present algorithm is shown in Fig. 8. 
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Fig.8. Average performance of the proposed seizure detection algorithm. 

 

V. DISCUSSION 

An algorithm for automatic recognition of epileptic seizure 

from EEG signals has been proposed. Table 2 represents 

performance comparison of present work with recent works. 

Though the present algorithm is simpler than others, highest 

sensitivity achieved is 100% when tested with 124 seizures 

from 21 patients. FDR values of 0.85, 0.52 and 2.26 are 

achieved for SVM, KNN and LDA classifiers respectively. All 

these results are comparable with other works as there was no 

seizure missed out of 124 seizures. Shanir et al [32] achieved a 

better FDR, but that work missed 4 seizures.

Table.2. Performance comparison of proposed seizure detection algorithm with recent works 

 

Author 
Database 

Used 

Number 

of 

Patients 

Number 

of 

Seizures 

Feature Extraction Classifier 
Sensitivity 

(%) 

False 

Detection 

Rate 

Shoeb et al. 

[29] (2009) 
CHB-MIT 23 163 Wavelet Transform SVM 96 0.8 

Nasehi et al. 

[52] (2013) 
CHB-MIT 23 - DWT IPSONN 98 3 

Viswanadhan 

et al. [53] 

(2014) 

CHB-MIT 

- - DWT SVM 

88.66 

- 
Bonn 

University 
95.67 

Bern 

Barcelona 
96 

Ahammad et 

al. [20] (2014) 
CHB-MIT 23 41 Wavelet LDA 98.6 - 

P K Saleema 

et al. [28] 

(2015) 

CHB-MIT 

 
- - Wavelet Domain LDA 96.06 - 

Fergus et al. 

[54] (2016) 
CHB-MIT - 171 Frequency Parameters KNN 88 - 

Thodorof et al. 

[55] (2016) 
CHB-MIT 23   RNN 95 1.7 – 0.8 

Alickovic et 

al. [56] (2018) 
CHB-MIT - - DWT, EMD, WPD 

SVM, 

KNN, RF, 

ANN 

99.6 - 

Tsiouris et al. 

[57] (2018) 
CHB-MIT 23 185 STFT - 88 8.1 
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%
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SVM                           KNN LDA

G R A P H I C A L  R E P R E S E N T A T I O N  O F  

P E R F O R M A N C E  E V A L U A T I O N  O F  C L A S S I F I E R S

Sensitivity



Fan et al. [58] 

(2018) 
CHB-MIT 23 182 Spectral Graph Theatric 

Control 

Chart 
98.48 - 

Sopic et al. 

[59] (2018) 

CHB-MIT 

 
- - DWT 

Decision 

Trees 
93.80 - 

Muhammad et 

al. [60] (2018) 
CHB-MIT 23 173 1D &2D CNN features SVM 92.35 - 

Lu et al. [61] 

(2018) 
CHB-MIT 23 - 

Kraskov entropy based on 

the Hilbert Huang 

Transform (HHT), EMD, 

Kraskov entropy applied on 

tunable-Q wavelet 

transform 

LS-SVM 74.93 - 

Shanir et al. 

[32] (2018) 
CHB-MIT 21 136 1D-LBP K-NN 99.2 0.47 

Present work CHB-MIT 21 124 1D-LBP 

SVM 100 0.85 

LDA 100 2.26 

K-NN 100 0.52 

 

VI. CONCLUSIONS 

EEG is a monitoring method to record electrical activity of the 

brain. The epileptic seizure is random and requires continuous 

monitoring of EEG, which may last for days. An LBP-based, 

patient-specific, automatic seizure detection algorithm has been 

proposed in the present work to assist neurologist in diagnosis, 

thereby improving the life of epileptic patients. The proposed 

algorithm has identified 8 morphologically significant LBP 

codes ‘0’, ‘8’, ‘15’, ‘48’, ‘112’, ‘143’, ‘240’ and ‘255’. The 

performance was evaluated using three different classifiers- 

SVM, KNN and LDA, using CHB-MIT EEG database. When 

tested on the CHB-MIT database considering 879.9 hours of 

scalp EEG recording from 21 patients having 124 seizures, the 

sensitivity is found to be 100% for all the classifiers selected. 

The corresponding FDR for these classifiers are 0.85, 0.52 and 

2.26 respectively. The KNN classifier has shown the best 

performance, owing to its better feature-classifier combination. 

The present algorithm was developed for patient-specific seizure 

detection, and was applied only on offline epileptic EEG. So, 

the future work may consider patient-nonspecific detection, and 

applying on online EEG. 
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