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Abstract 
 

Causal discovery methods provide a means to ascertain causal attribution from observational data. Causal modeling 
at scale requires a method to populate models with relevant domain knowledge. We propose to use the biomedical 
literature to perform feature selection for drug/adverse drug event (ADE) models with clinical observational data 
derived from electronic health records (EHR) as our primary input data source. We reason that spurious (non-causal) 
drug-ADE associations from co-occurrence-based analyses should diminish conditional on sets of validated 
confounders identified in the literature. To evaluate this hypothesis, we used a publicly available reference data set 
to test the proposed methodology with 4 ADEs and 399 drug-ADE pairs. We calculated baseline scores using the rank 
order regression coefficients each drug-ADE pair. We then identified confounding variable candidates for each drug-
ADE pair using relationship constraints based on normalized predicates to search knowledge extracted from the 
literature in the publicly available SemMedDB repository. To determine eligibility for inclusion, we checked whether 
or not there were directed edges pointing to both the drug and the ADE. Finally, we tested whether associations from 
co-occurrence in the clinical data are diminished conditional on sets of permutations of confounders identified in the 
literature. Confounder yield rate was ~ 90%, indicating that our method successfully identified confounders in the 
observational data. Causal models attained aggregate performance improvements of ~ 0.07 area under the curve and 
reduced the False Discovery Rate from 0.50 to 0.38 over purely statistical models using unadjusted logistic regression.  
 

Introduction 
 

A body of evidence that demonstrates the utility of causal modeling is currently lacking in many core areas of 
biomedical informatics. In this paper, we demonstrate the utility of causal modeling methods at the task of performing 
EHR-based pharmacovigilance using domain knowledge derived from the literature to resolve the problem of 
identifying potential confounders. A confounder is present when an exogenous variable affects both a predictor and 
the outcome of interest. For a familiar example, one may wish to understand the association between smoking and 
lung cancer when there may be an underlying genetic predilection for both nicotine addiction and cancer (1). As 
confounding variables may not be known at the outset (the “identification problem”), we propose a scalable method 
for confounding variable discovery (CVD). Our approach leverages domain knowledge extracted from the literature 
as a means to identify covariates with which to populate causal models. 
 

Pharmacovigilance and FDA Adverse Event Reporting System (FAERS). The burden that adverse drug events 
place on our health system and the danger that such events pose to individuals motivate the current paper (2)(3). 
After regulatory agencies release a pharmaceutical therapy to the market, these pharmaceuticals must be monitored, 
since not all conclusions can be transported from a test to a target population in randomized controlled trials (4). The 
discipline concerned with the post-marketing surveillance of pharmaceuticals is known as pharmacovigilance (PV). 
Clinicians and pharmaceutical companies submit reports of adverse events to spontaneous reporting systems (SRSs) 
such as FAERS (5).  However, these data have limitations, such as incomplete clinical information, under-reporting 
of side-effects, and confounding bias (6). An important issue is that there is no denominator with which to estimate 
the prevalence of the side-effects within the data. A current focus of attention is the use of Electronic Health Record 
(EHR) data, which provide a rich but imperfect record of routine clinical practice, as a complement to data from 
SRSs. However, these data present additional challenges, such as the inconsistent granularity of encoding, the 
presence of free text, and the prevalence of confounding variables (6)(7).   
 

Causal Discovery Methods. Most PV work utilizes disproportionality metrics such as the odds ratio, Gamma 
Poisson Shrinkage, and lasso shrinkage regression among others for the task of detecting drug-ADE “signal” from 
observational data (7)(8). More recently, PV researchers have demonstrated the promise of meta-analytic 
techniques, wherein data from multiple sources are combined, so as to mitigate bias from any single source (9). 
However, statistical analysis can only tell us that a correlation exists, not the direction of influence.  
 

Causal discovery methods (in their current form as “causal Bayesian networks”, where the “Bayesian” aspect 
encapsulates conditional dependencies indicative of causality) have been employed for almost three decades since the 
invention of the PC algorithm (10)(11). While such methods have been applied in the fields of oncology (12), 



 

neuroscience (13), diagnostics (14), and epidemiology (15), the adoption of such methods within PV has been 
sporadic, manifesting primarily in the form of renewed interest in instrumental variables* (16).  
 

Given suitable input, causal (and most graphical) modeling takes 
place over two steps: first, represent anticipated inter-variable 
dependencies in terms of directed acyclic graph topology (with 
variables as nodes and dependencies as edges); second, learn the 
parameters of the structural equations that quantify these 
dependencies. However, causal discovery at scale requires an 
automated method to identify relevant background knowledge with 
which to populate this graph. Since we wish to “explain away” 
non-causal associations without introducing any additional noise, 
we seek to identify (and validate) confounders. More specifically, 
we need to search for confounding variable candidates (CVCs) 
indicated by the literature, which are known to influence both the 
predictor and the outcome, as illustrated in Figure 1. Once we have 
identified a set of CVCs, we need to validate these against clinical 
data with graphical criteria. By including such validated CVCs in 
causal models, we should improve our ability to discriminate 
between drug safety signal and noise. 
 

Literature-Based Discovery. Literature-Based Discovery (LBD) 
was first developed by Don Swanson as a means to discover 
therapeutically useful relationships from public knowledge (17). 
Most automated implementations of Swanson's approach involve 
identifying implicit relationships using concept co-occurrence (e.g. 
drug-to-gene-to- disease) as a means of revealing novel therapeutic 
applications (18). More recently, LBD researchers have explored 
the idea of using semantic relations (extracted from the literature 
using natural language processing, or NLP) to constrain the search 
space of relevant associations (19). For example, in the following 
pattern of semantic relationships "drug TREATS X; X CAUSES disease", the variable “X”, referred to as a “bridging 
term,” may indicate a confounding concept that is associated with a drug and an adverse event, as in Figure 2. These 
patterns of relationships are known as “discovery patterns”, or DPs (18). As we have shown previously for statistical 
models, the Literature-Based Discovery (LBD) paradigm is a promising candidate for this task of mapping aspects of 
extra-statistical domain knowledge to observational data (21). Incorporating LBD-derived cofounders into statistical 
models improved drug-ADE detection accuracy for side effects where the unadjusted signal had some predictive 
utility. LBD methods have also been applied to estimate the plausibility of drug-ADE relationships (21)(22).  In this 
paper, we refashion LBD methods to identify CVCs with which to populate causal models.  

 

Materials and Methods 
 

Processing EHR data. With IRB approval, we extracted a corpus of ~2.2 million electronic health records (EHR) 
concerning outpatient encounters for ~ 364,000 patients in the Houston metropolitan area between 2004-2012 from 
the UTHealth’s clinical data warehouse (23).  MedLEE, a widely-used clinical Natural Language Processing (NLP) 
system, was used to identify and normalize concepts of interest in our EHR collection. MedLEE has been shown to 
perform accurately on clinical notes with recall of 0.77, and precision: ~ 0.89 for the task of extracting clinical concepts 
(24). In addition to identifying types of entities (“problems” and “drugs”), MedLEE encodes each extracted concept 
with a concept unique identifier (CUIs) from the Unified Medical Language System (UMLS) (25). We then extracted 
the concepts with Apache Lucene for document-level co-occurrence statistics. From the Lucene index, we obtained 
concept-by-concept arrays for each concept (drug, ADE, or CVC). Each concept (drug, ADE, or CVC) is then 
persisted and processed as a large sparse binary array (these arrays are subsequently used as input for the causal 
modeling algorithm, discussed below). A value of 1 or 0 represents the presence or absence, respectively, of that 
concept within a document in the index of clinical data. The arrays for a drug, ADE, and their confounders provide 
input matrices for the causal methods to be described.  
                                                
* An instrumental variable, by contrast with a confounder, influences the cause, but not the outcome, except through the error 
term of the cause. For more discussion see: Chu TJ, Scheines R, Spirtes PL. Semi-instrumental variables: a test for instrument 
admissibility. Eprint arXiv:1301.2261; 2013.  

Figure 1.  Relationship between a confounder, 
drug/predictor, and ADE/outcome of interest. Note 
the directed edge from the confounder, as a parent 
node, to its two children. This graph topology 
signifies that the confounder influences the 
likelihood of both the drug and the ADE of 
occurring. 

Figure 2. "CAUSES-INV" may be read as "is caused 
by." Literature-Based Discovery identifies a co-
morbidity that is known to cause the ADE and also 
increases the likelihood of a drug exposure (as a 
consequence of undergoing treatment). Here, the 
"TREATS" predicate can be causally interpreted as 
“to cause exposure.”  



 

 

Representing Knowledge from the Literature. The purpose of SemRep, a publicly available NLP system developed 
at the US National Library of Medicine (NLM), is to identify and normalize relationships between concepts expressed 
in the biomedical literature, resulting in sets of semantic predications, each consisting of a pair of UMLS concepts 
connected by a predicate such as “TREATS” or “CAUSES” (26). SemRep is optimized for precision, and Kilicoglu et 
al. report this at 0.745, with recall of 0.640, based on a human annotated gold standard (27). SemMedDB, used as our 
knowledge base for accessing the biomedical literature, is a publicly-available NLM product that contains the output 
of SemRep processing of the entirety of MEDLINE. All extracted predications can be retrieved from a MySQL 
database in the following form:  ARGUMENT0 + PREDICATE + ARGUMENT1

 (28). Such representations make 
domain knowledge amenable to computation. 
1 

Constructing a knowledge Base. To construct our knowledge base, we applied Predication-based Semantic Indexing 
(PSI) (18)(29) to SemMedDB, our knowledge repository. PSI uses random projections and reversible vector 
transformations to derive distributed concept vector representations from SemMedDB, mediating efficient but 
approximate search, retrieval and inference. The higher the dimensionality that is used, the better the recall and 
precision of the model (with a trade-off of computational efficiency). When searching for the missing argument of a 
predicate-argument pair, concepts that fill this role most frequently will be retrieved first, analogous to the ranking of 
results in search engines. In the current work, PSI is used to facilitate rapid retrieval and rank ordering of concepts 
related to other concepts through particular predicates. Our hypothesis is that by refashioning the LBD paradigm to 
identify CVCs in the literature, we can improve upon the performance for detecting drug-ADE relationships over 
standard statistical models. Details on the theoretical and methodological underpinnings of PSI have been described 
at length elsewhere (30). For the current work, we used a PSI vector space derived from version 24_32 of SemMedDB 
(processed with version 1.5 of SemRep), containing 23.9 million citations and 70.4 million semantic predications (28). 
A 48,000-dimensional binary vector PSI space was built using the Semantic Vectors package (version 5.9) (31). We 
excluded a small number of predicates that indicate negation (e.g., DOES_NOT_TREAT), as well as terms (“stop 
words”) with occurrence ≥	500,000. 
 

Discovery Pattern for CVD. The Semantic Vectors package (31) provides an interface that permits searching PSI 
spaces for concepts that populate particular predicate pathways, which we used to identify the most strongly 
associated CVCs for each drug/ADE pair. We used the following DP to identify CVCs: “drug TREATS 
confounder; confounder CAUSES-INV ADE.” Given acarbose (used to treat diabetes mellitus) and myocardial 
infarction, “metabolic disorder” was one of the results (Figure 2). The order in which these covariates are retrieved 
reflect their ranked relevance given the distributional semantics of the query terms in the index. Sample confounders 
for abacavir, an antiretroviral used to treat AIDS in the negative control group for gastrointestinal bleeding, include 
(by ranked order of relevance): Dieulafoy’s vascular malformation, HIV infections, lipoatrophy, HIV 
encephalopathy, angiodysplasia. Further down the list, confounders become less specific: peptic ulcers, diabetes.  
 

TETRAD and FGeS. TETRAD is an open source causal modeling and discovery toolkit written in Java that has been 
in continuous development at Carnegie Mellon University since the early 90s (10).  Depending on one’s choice of 
algorithm, input may be discrete, continuous, or mixed. We used the discrete version of the Fast Greedy Equivalence 
Search (FGeS) that is included with TETRAD with default parameters (32). FGeS recursively adds and then subtracts 
directed edges between nodes until the Bayesian Information Criterion is minimized. Output consists of a Markov 
equivalence class or family of graphs which encode plausible dependency relationships given these data. An 
equivalence class may have undirected edges. However, background knowledge can be used to orient these edges, as 
causal predicates have inherent directionality. The resulting graph structure should be similar to Figures 1 and 2, with 
directed edges pointing from the confounder to both the drug and ADE (“confounder inclusion criterion”).  
 

Reference Set and Data Collection. To derive our data set, we used a reference set of curated drug-ADE associations 
that was developed by Ryan and his colleagues as a standard for evaluating PV methods (33). This reference set 
includes 399 drug/ADE pairs and 4 ADEs with both positive (drug-ADE relationships supported by the literature and 
other sources, including package labeling events) and negative (drug-ADE relationships without support) control 
groups per ADE. The four ADEs are as follows: acute kidney injury (AKI), acute liver injury (ALI), gastrointestinal 
bleeding (GIB), and acute myocardial infarction (MI). These ADEs were chosen for their importance to PV and their 
impact on financial and personal cost. We mapped and expanded drug/ADE synonyms to make the EHR data 
amenable to additional processing. We used RxNorm for drug synonyms at the clinical drug level and we assigned 
the reference set’s Observational Medical Outcomes Partnership (OMOP) ADE to UMLS CUIs (34)(35). 
 

Combinatory Expansion of CVCs. If we have a set of three CVCs, denoted {A, B, C}, this will result in seven unique 
combinations: A, B, C, AB, BC, AC, and ABC (AB and BA are equivalent). We evaluated all of these, because we 
did not know which combination of CVCs will cause spurious directed edges from the drug to the ADE to vanish.   
   



 

Analysis of Observational Clinical Data. The core steps of our approach were as follows, as per Figure 3:  
 

1. We queried PSI vector space for the top 50 CVCs in the literature, result set in ranked order of relevance. 
2. We used TETRAD/FGeS to validate CVCs, testing each CVC for directed edges to both the drug and ADE 

(graphical criteria) using the clinical data. We stopped after obtaining five valid CVCs for each pair.  
3. We built causal models using all unique permutations of the tested LBD-identified confounders.  

 

Evaluation Procedure. To evaluate the performance of 
our method, we calculated the Area Under the Receiver 
Operating Characteristic curve (AUROC), which is 
widely used to compare the performance of classifiers 
against a ground truth of positive and negative controls, 
based on the ranked order of a continuous estimate of the 
strength of predicted relationships. For baseline scores, 
we used the coefficients from logistic regression without 
adjustment with literature-derived confounding variables. 
To score causal models, we divide the fraction of directed 
edges out of the total number of permutations from the 
drug to the ADE for each drug/ADE pair.  For example, 
if 7 directed edges resulted from 31 unique permutations 
(of 5 validated confounders), then the score for that drug-
ADE pair would be 7/31, or 0.2258. We reason that the 
proportion of correct directed edges will be higher for the 
group of positive drug-ADE pairs than for the negative 
drug-ADE pairs in the reference data set. In other words, 
we are testing whether associations from co-occurrence in 
the clinical data of a drug-ADE pair are diminished 
conditional on sets of CVC permutations. 
 

Results and Discussion 
 

Analysis of Results. 1915 out of 2124 total tested CVCs 
(for 399 drug-ADE pairs each with 5 confounders) were 
both present in the clinical notes and passed validation, 
so the CVC yield rate was 90%, indicating that LBD can 
identify confounders in clinical notes. The overall 
aggregate performance boost that approached ~ 0.07† 
over statistical models confirms our hypothesis that the 
identification problem of confounding can be partially 
resolved by using the literature to inform feature 
selection (an area that we have addressed earlier with 
using LBD for statistical models) (21). Our method 
performed the best when the baseline AUROC for drug safety signal was sufficiently above the level of noise (~ 0.5 
AUROC). GIB, followed by AKI, had the best baseline AUROC. By contrast, MI and ALI hardly budged from 
noise to signal, indicating that our method requires a strong baseline to be effective.  
 

Practical Significance. Better detection methods in PV, if implemented, hold promise for improving public health 
and safety. For example, enhanced methods of drug-ADE detection in observational clinical data could facilitate the 
prioritization of drug-ADE relationships for critical review. Given the extent of the exposed population and the 
prevalence of adverse drug events, an improvement of even a few percentage points could have a large impact.  
 

In our previously published work, we use LBD methods for feature selection of confounders to adjust for plausible 
confounding with the same set of clinical data (21).  In that work, we used both single predicate (CAUSES-INV and 
PREDISPOSES-INV) and dual predicate (TREATS+COEXISTS_WITH-INV) DPs. With the single predicate 
DPs, the influence from the confounder was only exerted explicitly in the literature on the outcome and can be thought 
of as an alternative etiology. We found that the dual predicate DPs performed the best overall with a modest ~ 0.02 
AUROC improvement over unadjusted models. Our analysis was that the dual predicate patterns identify CVCs that 
influence both predictor and outcome, fulfilling the graphical criteria (11). In the present article, we used a different 

                                                
† Overall results were slightly higher (~ 0.08) when calculated using only pairs where drug occurrence ≥ 100 or 500. 

Figure 3. Workflow. Numbers in bold orange=core method steps.  

Table 1. Pairs=number of test/control drug-ADE from the 
reference data set. AUROCs are calculated from coefficients 
from logistic regression (“Baseline”) and the proportion of 
directed edges (“Causal Models”). 



 

dual predicate pattern and our results affirm our previous observation with the bonus that causal models with validated 
“true” confounders improved upon the performance of adjusted dual predicate statistical models. We reduced the False 
Discovery Rate (FDR), where FDR = 𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞

𝐓𝐫𝐮𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞1𝐅𝐚𝐥𝐬𝐞	𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞
, from 0.5 to 0.38 with causal models. Although the 

performance increase is substantive (7) and better in general adjusted standard statistical models (for purely EHR-
based PV), it does not approach the performance obtained in the work of Li et al. with extra-EHR data sources, where 
adjusted EHR statistics with adjusted FAERS performance improved upon adjusted FAERS performance alone (9).  
 

Limitations of (and Lessons from) the Current Approach. One limitation is that our search for confounders was 
relatively shallow, having commenced confounder permutations after reaching five validated CVCs. Computational 
demand scales with the number of confounders. Five validated CVCs result in 31 permutations per drug-ADE pair. 
Increasing to 10 CVCs would leave 1032 permutations – which can take 12 hours to run on a Linux workstation 
with 64GB RAM and 8 Xeon CPUs. We chose 5 CVCs because we could collect results for all drug-ADE pairs for a 
single ADE within a reasonable amount of time (7-8 hours overnight). An additional limitation arises from our 
available EHR data, which may not have a sufficient number of drug-ADE co-occurrences, as the performance from 
analyses of FAERS data is usually better than results from any EHR data source (9). One perplexing problem arose 
from three drug-ADE pairs for myocardial infarction for which the proposed method could not identify any 
confounders (these are not included in Table 1). We suspect that confounders for myocardial infarction identified by 
our method, e.g., hypertension, coronary arteriosclerosis, metabolic syndrome, could have helped if incorporated 
into these models. Note that the discovery pattern that we deployed limits result sets of potential confounders to 
comorbidities, although co-medications (for example, aspirin and acetaminophen for gastrointestinal bleeding and 
liver failure, respectively) often make exemplary confounder candidates, so there remains the question of the 
optimal mixture of confounder types. These factors (along with SemRep’s low recall of ~ 0.64) may have impacted 
our system’s performance by missing potential confounders (27). Another consideration is that reference data sets, 
however essential to the scientific enterprise, may not be perfectly accurate, as knowledge about drugs and their 
side-effects accumulates. In future work, we plan on estimating parameters (“arc strengths”) of causal models that 
include all confounders to avoid the inefficient confounder permutation procedure.  
 

Conclusion  
 

We have developed a scalable CVD method that identifies “true confounders” by leveraging existing NLP tools and 
knowledge resources that improves the signal to noise ratio in observational clinical data in causal models. Our method 
results in notable (~ 0.07 AUROC) overall performance gains for the task of re-identifying drug-ADE pairs from 
observational clinical data in comparison with unadjusted statistical models from a reference data set, thus 
demonstrating the utility of causal modeling methods for EHR-based PV. Finally, we suspect that our method may be 
applicable in other areas of biomedicine for which observational data is admissible as input.  
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