
EasyChair Preprint

№ 548

DevOps’ Shift-Left in Practice: An Industrial Case

of Application

Miguel Jiménez, Luis F. Rivera, Norha M. Villegas,
Gabriel Tamura, Hausi Müller and Pilar Gallego

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 1, 2018

DevOps’ Shift-Left in Practice: An Industrial
Case of Application

Miguel Jiménez1, Luis F. Rivera2, Norha M. Villegas2, Gabriel Tamura2, Hausi
Müller1, and Pilar Gallego3

1 University of Victoria,
Victoria, British Columbia, Canada

{miguel,hausi}@uvic.ca
2 Universidad Icesi,

Cali, Valle del Cauca, Colombia
{lfrivera,nvillega,gtamura}@icesi.edu.co

3 Carvajal Organization,
Cali, Valle del Cauca, Colombia
pilar.gallego@carvajal.com

Abstract. DevOps aims at unifying software development and oper-
ations to improve products and deliver value to customers. However,
many organizations adopt DevOps mainly from a traditional perspec-
tive, that is, going forward from development to operations. In this pa-
per we present a case of study that illustrates how Carvajal Technology
and Services, a software development organization, improved the design
of a family of its software products by exploiting operations data. This
case of application constitutes a first incursion of the organization into
DevOps, exemplifying how the community and companies in industry
can also go backwards from operations to development and design, thus
realizing the DevOps shift-left concept. The main contributions of this
paper are: (i) the analysis of the industrial DevOps application, for which
the deployment automation mechanism is crucial to realize the shift-left
concept effectively; and (ii) Amelia, the DSL we developed for deploying
the different (re)designs to put into operation and gather feedback data
rapidly. To evaluate the approach, the organization analyzed this incur-
sion in both directions: from development to operations, on the benefits
of deployment automation; and from operations back to development,
by improving the throughput of the original design by a factor of five.

Keywords: DevOps, Shift-left in DevOps, Software Deployment, De-
ployment Automation

1 Introduction

In recent years, the need for delivering added value to end-users as soon and
as frequently as possible, even due to small changes, has increased the adoption
of DevOps and continuous delivery processes [1]. Several frameworks and tools
have been proposed to address this urgency of faster and more frequent software

2 DevOps’ Shift-Left in Practice: An Industrial Case of Application

releases. In general, these frameworks recognize the deployment as an indepen-
dent phase in the software development life cycle. Given its crucial importance
for achieving continuous software delivery, there is a need for a better under-
standing of the various deployment uses and roles it can adopt for realizing the
versatile DevOps principles in both, the forward and backward directions.

On the one hand, many organizations adopt DevOps from a traditional point
of view, that is, focusing on deployment as a checkpoint going forward from de-
velopment to operations, considering it as an end for that purpose. On the other
hand, from a wider DevOps perspective, automated deployment is a crucial phase
for instance to explore, in the operations setting, different design implementa-
tions, enabling the collection of data efficiently. This data, used backwards, is
key to improve development, and in this process, deployment serves as a medium
rather than as an end. Achieving DevOps requires to find ways of traversing de-
velopment and operations processes in both directions, and the shift-left concept
enforces especially its backward application.

The goal of this paper is to present an industrial application that uses au-
tomated deployment as a fundamental mechanism to enable the organization to
systematically conduct experiments to collect data from the software operation
and improve the design of its reference architecture. This is an example of how
organizations can realize the backward application of DevOps, centered on au-
tomating the deployment phase. We developed this case in the context of an
industrial-academic partnership between Carvajal Technology and Services, and
Icesi University. Carvajal is a multinational organization with IT and software
development as one of its business units and over 1,200 software developers.

Concretely, for the experiments conducted, we employed and combined dif-
ferent design patterns to produce several architectural configurations. However,
the number of configurations to be deployed and executed raised several chal-
lenges, such as the repeated deployment and re-deployment of the resulting con-
figurations instantiations, which requires its automation to enable the efficient
gathering of performance measurements. We addressed these challenges follow-
ing the DevOps principles. Solving them required the development of Amelia, a
domain-specific language (DSL) for automating deployments. The analysis and
evaluation results confirmed the critical role of Amelia for achieving the dual-
direction of the DevOps application, and especially of the shift-left concept.

This paper is structured as follows. Section 2 presents the background and
relevant DevOps concepts for this work. Section 3 presents Amelia, our language
for deployment automation including its main features. Section 4 presents the
methodology used to apply and evaluate Amelia in a dual deployment strategy
of use to address the industry case of application, and discusses the evaluation
results. Finally, Section 5 concludes the paper.

2 Background

This section introduces DevOps principles and relevant concepts of continuous
delivery upon which the subject application is built, and where automated de-
ployment is crucial.

DevOps’ Shift-Left in Practice: An Industrial Case of Application 3

2.1 DevOps Adoption Paths and Principles

IBM proposed four paths and respective focus of concern for adopting DevOps:
(i) steer, focused on continuous business planning; (ii) develop/test, on continu-
ous integration and testing; (iii) deploy, on continuous release and deployment;
and (iv) operate, on continuous monitoring [2]. We followed the deploy adoption
path, on which most of the DevOps inherent concepts and capabilities were orig-
inated, including the definition of the delivery pipeline. This pipeline enforces
continuous deployment of software to quality assurance and then to production,
efficiently and in an automated way.

Similarly, IBM consolidated the main principles developed in the evolution of
the DevOps movement [2]: (i) develop and test against production-like systems,
the main premise of the shift-left concept moving operations earlier toward devel-
opment; (ii) deploy with repeatable and reliable processes, for which automation
is essential; (iii) monitor and validate operational quality, based on functional
and non-functional software characteristics; (iv) amplify feedback loops, react-
ing and producing changes more rapidly. For the development of this case, we
followed these principles in the context of the deploy adoption path.

2.2 Continuous Delivery

Continuous delivery is a software engineering approach—aligned with the De-
vops principles and the deploy adoption path—that promotes to deliver added
value to end-users as soon and as frequently as possible, by deploying successful
releases of a subject software system [3]. The major benefits of this approach
are the empowerment of teamwork between development and operations, the
injection of fewer bugs (therefore reducing costs and risks), generation of less
pre-release team stress, and a more flexible deployment process. To achieve these
benefits, a software provider must promote a culture of collaboration between
all teams involved in the delivery process, the sharing of knowledge and tools
among participants, the establishment of measurement metrics, and the gather-
ing of regular feedback for continuous improvement. That is, software providers
must subscribe to DevOps principles to acquire continuous delivery benefits [4]
and guarantee a repeatable and reliable process for releasing software, the au-
tomation of deployment and operation activities, the automation of integration,
testing, and release processes, and the definition of an effective quality assurance
process [3].

2.3 The Deployment Life Cycle

Deployment has been characterized by the Object Management Group (OMG)
and others as “the process composed of interrelated and evolving activities that
comprise the lifecycle of a particular system to be brought into—and out of—
service” [5,6,7,8], as depicted in Figure 1.

The main activities of the deployment lifecycle are described as follows: re-
lease is the bridge between development and deployment. It comprises all neces-
sary tasks to prepare, package, and provide (e.g., via its publication) a software

4 DevOps’ Shift-Left in Practice: An Industrial Case of Application

Fig. 1: The deployment process adapted from [6].

product for deployment into consumer sites. The released package must contain
sufficient metadata to describe the resources by which the software depends on
to correctly execute in the target environment, such as libraries, configuration
files and executables. Installation encompasses all configuration operations and
assembly of the resources to prepare the software system for activation. Instal-
lation involves the transfer of the software components from the producer site
to the consumer sites. Activation allows the consumer to actually use the soft-
ware. In the case of simple software, the activation is usually realized through
the creation of a command for executing a binary component of the application.
The activation of complex software involves several components that must be
executed in a particular sequence. Deactivation means to stop any running com-
ponent of the software system. Update is a special case of installation triggered
by the release of a new version of the product or of any of its components. How-
ever, it may require the deactivation of the software (or the component to be
updated) before executing any operation. Adaptation is similar to the update
activity, in the sense that both modify a previously installed software system.
However, an adaptation is triggered by context changes with the goal of assuring
the accomplishment of properties or requirements in the deployed system. An
adaptation may be performed autonomously in the form of self-adaptation while
the subject system is running. Deinstallation is the activity performed when the
deployed software system is no longer required at the consumer site. Derelease
(retirement) is the process of finishing the support for a software system or a
given configuration of a software system. Retiring a system makes it unavailable
for future deployments.

3 Shifting Operations Left by Automating Deployment

This section presents our subject application and addressed challenges, and illus-
trates how we realized the shift-left conceptual movement of operations toward
development. For this realization, the key enabler for exploiting operations re-
sults back into design, efficiently, was the automation of the deployment phase.
We performed this automation with Amelia, a domain-specific language (DSL)
we developed for this purpose.

DevOps’ Shift-Left in Practice: An Industrial Case of Application 5

3.1 The Industrial Case of Application

The case of application mainly answers the question of how to satisfy the perfor-
mance requirements of the core engine of a software product family that processes
large XML files for different application domains, established as a product’s
quality attribute by a set of corporate clients. Of course, this is a problem of de-
sign, critical for a reference architecture that affects a entire family of products.
Nonetheless, despite a design problem, its effective solution requires to move
operations earlier toward development.

Similar to other cases of development in the organization, the initial software
design for processing XML documents had basically a 3-tier architecture, relying
on the computing power of the assumed infrastructure. However, a not so early
test on this infrastructure showed serious performance limitations. At this point,
the organization decided to look for alternatives, and our research group at Icesi
University joined Carvajal for its first incursion into DevOps.

As an exemplar of the product family, we selected a concrete product that
Carvajal developed for the Colombian National Agency for Overcoming Extreme
Poverty (ANSPE—initials corresponding to the Spanish name4) to allow census
workers to collect demographic data in mobile devices offline (i.e., in regions
with no access to telecommunications). After days or weeks, hundred of workers
synchronize the collected census data with a centralized server, from around the
whole country. This synchronization suffered from severe delays and timeout
errors, due to the large number of requests overloading the central server.

3.2 Addressed Challenges

Processing XML files is a common, CPU-intensive task that supports core busi-
ness processes in different domains, ranging from plain data transmission and
transformation to full data interoperability, for all of which there exist several
libraries and processing strategies. However, it is non trivial which strategy and
libraries to select in a solution design space at large scale, whose primary re-
quirement is on performance, given the combined implications they have on this
quality attribute. Moreover, these decisions must be considered in distributed
processing scenarios, such as the one illustrated in Figure 2. As a result, most of
the challenges we addressed were referred to as deployment issues, as follows:

Variability in architectural configurations and instantiations. Adding to
the number of XML processing strategies and libraries, there are also a number
of domain-specific design patterns to consider among those for improving per-
formance, such as Producer/Consumer, Master/Worker, Reactor, among oth-
ers. These design patterns’ components, along with the application’s software
components can be deployed in different processing nodes (cf. Fig. 2 for ex-
ample), yielding several architectural configurations and variations. That is, for
each architectural configuration, several instantiations are possible (e.g., vary-
ing the number of slave processing nodes). Each of these instantiations implies
4 Agencia Nacional para la Superación de la Pobreza Extrema

6 DevOps’ Shift-Left in Practice: An Industrial Case of Application

Fig. 2: Possible Deployment Diagram for the ANSPE.

a corresponding deployment and execution process to test on operations, whose
variations are intricate and their combinations large in number.
Dependency management. Dependencies exist in all of the deployment vari-
ations, and along all the deployment process phases, both among software com-
ponents, and among software and hardware components.
Coordination control. The execution of the deployment tasks and phases,
not only within a particular processing node but also among all of them, must
be coordinated and controlled along all consumer sites, especially in the case of
distributed software systems such as the ANSPE. This coordination and control
must observe the deployment dependencies of each particular application.
Modularity and composability. Deployment tasks and phases should be speci-
fiable in independent but composable modules. Specification encapsulation and
modularity should allow abstraction scalability and factoring out common and

DevOps’ Shift-Left in Practice: An Industrial Case of Application 7

repeatable deployment tasks in separate modules, each having well defined in-
terfaces and internal specifications, and enabling the integration of other speci-
fications. However, composability increases the complexity of dependency man-
agement through the entire deployment life cycle.
Reusability. Deployment specifications should be reusable in different deploy-
ment workflows. These specifications could be provided as part of a catalogue
to facilitate deployment design and specification.Reusability also increases the
complexity of dependency management.
Extensibility. Refers to the functional ability to easily override or extend the
behaviour of an existing deployment specification. Without adequate extensi-
bility capabilities, a deployment specification must be either modified in place
or duplicated to adapt it to be used in a different deployment context, which
reduces reusability.

3.3 The Amelia DSL for Automating Deployment

Automatically deploying, configuring and executing scalable software-intensive
systems, whose components are distributed in several processing nodes and fea-
ture runtime dependencies among them, is not a trivial task. For instance, even
in systems such as Docker [9], the way to resolve runtime dependencies in a dis-
tributed software deployment and execution scenario is left to the developer—
checking for them in the application’s subsystems source code, which is not
appropriate nor possible in all scenarios. Therefore, we adopt the following lean
strategy for automating deployment. Instead of using heavy-weight and multi-
function systems like Kubernetes [10] and Apache Mesos [11], which were origi-
nally invented for cluster management (i.e., not exactly focused on deployment
automation), we designed and developed Amelia, a compact DSL tailored for
specifying and executing deployment workflows for distributed software systems.
Amelia contains both declarative and imperative statements that facilitate co-
ordinated control of the overall deployment process, and at the same time, offer
granular control over all of the executed operations. Amelia is based on the
Xbase expression language [12] and is fully integrated with the Java type sys-
tem. This integration allows not only to reuse existing Java code, but also to
extend the Java’s base library.

An Amelia file specification can be written as either a subsystem descrip-
tion or a deployment strategy. The first one is a modular unit representing the
overall structure of the (sub)system to deploy and corresponding deployment
operations; a subsystem description is composed of, and dependent on, other
subsystems, thus supporting modularity, dependency management, composabil-
ity and reusability. The latter is an execution flow specification that dictates
how to perform the deployment operations, thus supporting coordination and
control. For example, Amelia allows to retry tasks upon encountering a fail-
ure, or systematically repeat the same deployment procedure, which is useful
for instance to “warm up” a system before running performance tests. The cur-
rent implementation of Amelia can be used as a standalone compiler or as an
Eclipse plug-in. From a specification file, the compiler generates an executable

8 DevOps’ Shift-Left in Practice: An Industrial Case of Application

Java application that automatically resolves the subsystem dependencies and
(sub)module inclusions while logging the result of deployment task execution.

Language Structure and Concepts. Listing 1.1 presents an example of
a system description for the deployment of the ANSPE Monitor subsystem.5
An Amelia specification is comprised of a package declaration section, an op-
tional Java import section, an optional extension section, and a type declaration
section (cf., respective highlighted regions 1 , 2 , 3 , 4 , in the listing). The char-
acteristics of each section are presented as follows.

Subsystems. A subsystem collects and encapsulates the sets of variables, pa-
rameters, and execution rules for a software subsystem to be deployed. Local
variables within a subsystem may control the execution flow (e.g., variable com-
pileMonitor in Listing 1.1). Parameters are used to configure a subsystem ac-
cording to a deployment strategy. They are included in the subsystem’s construc-
tor in the same order they are defined. In Listing 1.1, the (implicit) constructor
of the Monitor subsystem includes the given name for the monitor, the commu-
nication protocol, and the target architecture. Execution rules group commands
that describe the deployment lifecycle of a subsystem; that is, they represent the
various phases of a subsystem’s deployment. The deployment of the Monitor sub-
system is described as follows: initialization checks whether the monitor’s source
code must be compiled; compilation generates an executable artifact by compil-
ing the monitor’s source code; and activation executes such artefact passing the
corresponding arguments.

There is no main entry point or main function in a subsystem specification
where the deployment execution starts. Instead, the execution flow is expressed
and controlled by rules and their dependencies. Thus, any rule not depending on
any other rule is triggered immediately upon deployment execution. For example,
in Listing 1.1, the compilation rule depends on the local rule initialization;
that means that the first command from the former will be executed after the
last command from the latter. A group of commands within an execution rule is
executed sequentially. A rule (i.e., its commands) is executed on at least one host
and may depend on a Boolean expression (e.g., line 44 in Listing 1.1). Conditional
expressions may be placed next to the host(s) to guard the execution of a set
of rules on a host. In case the Boolean expression is false, the set of rules is not
executed and the dependent rules are released from the dependency.

Amelia has built-in support for five commands: transfer files, change the
working directory, compile FraSCAti [13] components, run FraSCAti com-
ponents, and execute other commands (e.g., line 41 in Listing 1.1).

The extension section of a subsystem allows expressing subsystem dependen-
cies and inclusions. In the former case, the execution of all subsystem’s rules
depends on the successful execution of the rules defined within the subsystem
dependencies. In the latter case, both parameters and execution rules from the
5 The complete versions of all examples discussed in this paper are available in
the Amelia evaluation repository https://github.com/unicesi/amelia-evaluation

DevOps’ Shift-Left in Practice: An Industrial Case of Application 9

11 package co.edu.icesi.driso.amelia.carvajal.xml.large
2
32 import java.util.concurrent.atomic.AtomicBoolean
4 import co.edu.icesi.driso.amelia.carvajal.xml.large.CommProtocol
5 import static extension examples.Util.warn
6
73 includes co.edu.icesi.driso.amelia.carvajal.xml.large.CommonSpecification
8 depends on co.edu.icesi.driso.amelia.carvajal.xml.large.ApacheServer
9

10 // A Subsystem for the monitoring component.
114 subsystem Monitor {
12 // The name of the monitor
13 param String name
14
15 // The protocol used for communication among components
16 param CommProtocol protocol
17
18 // The target architecture
19 param Arch arch
20
21 // Activation variables.
22 var String component = "memory-monitor"
23 var String service = "startMemoryMonitor"
24 var String method = "startMemoryMonitoring"
25
26 // Whether to compile the monitor
27 var AtomicBoolean compileMonitor = new AtomicBoolean
28
29 // The classpath used for compiling the monitoring component
30 var String[] _classpath = #[
31 'org.pascani.dsl.lib-0.0.1-SNAPSHOT-dependencies.jar',
32 'new-personalized-events-with-carvajal.jar',
33 'slf4j-api-1.7.10.jar',
34 'sigar.jar']
35
36 // The libpath used for activating the monitoring component
37 var String _libpath = classpath + #[component]
38
39 on CommonSpecification.host {
40 initialization: CommonSpecification.changeDirectory;
41 (cmd 'ls')
42 .fetch[compileMonitor.set(!it.contains('«component».jar'))]
43
44 compilation ? compileMonitor: initialization;
45 compile CommonSpecification.actionFolder component -classpath _classpath
46
47 activation ? protocol == CommProtocol.RMI ||
48 protocol == CommProtocol.REST: compilation;
49 (run component -libpath _libpath -s service -m method -p #[name, arch])
50 .warn('Executing the Monitor, could take several minutes...')
51 }
52 }

Listing 1.1: A subsystem specification to deploy a monitor in ANSPE

10 DevOps’ Shift-Left in Practice: An Industrial Case of Application

1 package co.edu.icesi.driso.amelia.carvajal.xml.large
2
3 import java.util.Map
4 import org.amelia.dsl.lib.descriptors.Host
5 import org.amelia.dsl.lib.util.Hosts
6 import org.amelia.dsl.lib.util.RetryableDeployment
7 import examples.ubuntu.Arch
8 import co.edu.icesi.driso.amelia.carvajal.xml.large.CommProtocol
9

10 includes co.edu.icesi.driso.amelia.carvajal.xml.large.Monitor
11
12 // Deployment of a monitor component.
13 deployment DeploymentMonitor {
14 // Load all hosts and then filter
15 val Map<String, Host> hs = Hosts.hosts("hosts.txt").toMap[h|h.identifier]
16 val executionHosts = #[hs.get("hgrid1"), hs.get("hgrid4"), hs.get("hgrid5")]
17 for(i: 0..executionHosts.size - 1) {
18 add(new Monitor("monitor/src", 'mntr«i»', CommProtocol.RMI, Arch.amd64))
19 }
20 val helper = new RetryableDeployment()
21 helper.deploy([start(true)], 2) // Deploy everything & retry if it fails
22 }

Listing 1.2: A deployment strategy for the ANSPE Monitor subsystem

included subsystems are made part of the including subsystem. This means that
its constructor is modified to accept the included parameters, and that included
rules are dependent on local rules. In Listing 1.1, CommonSpecification.host refers
to a parameter defined in subsystem CommonSpecification. In the same way, the
local rule initialization depends on the changeDirectory rule defined in sub-
system CommonSpecification. In this case, the dependency uses the rule’s qualified
name to avoid a name collision with a local rule.

Deployment Strategies. Deployment strategies are simpler than subsystems.
Their purpose is twofold: i) to configure subsystem instances; and ii) to determine
how many times, and including which subsystems, must the system be deployed.

Listing 1.2 presents the monitoring deployment strategy in detail. Line 18
shows how to instantiate the subsystem Monitor. To make a subsystem available
to deploy, the subsystem must be included in the extension section.

An invocation to the static method start initiates the deployment execution.
Notice that it can be invoked more than once, always blocking until the deploy-
ment finishes. Line 21 features a utility class that invokes a lambda function
as many times as specified if its execution throws an error. In this case, if the
deployment fails this helper will restart it once.

Extensions. Amelia supports two Java-based extension mechanisms. The first
one allows creating new commands by instantiating a CommandDescriptor—a
Java class defined in the Java runtime library. The second mechanism allows
augmenting a command by extending its behaviour. For example, fetch (cf. line

DevOps’ Shift-Left in Practice: An Industrial Case of Application 11

42 in Listing 1.1) is an extension that implicitly import a static method that
return a new command; that is, a CommandDescriptor instance wrapping another.
The extension retrieves the output from the input command and passes it to a
lambda function. Extensions could be chained together.

3.4 Automated Deployment Execution

Performing the deployment of the various architecture configurations and vari-
ants is a demanding task, even with automated tools. It requires specifying the
deployment of each architectural configuration, whose variants and instantia-
tions requires repeating same portions of the specifications. Amelia addresses
this problem allowing parameterised and reusable modules and procedures to
specify different configuration instantiations. Each specification comprises the
deployment and configuration operations required to deploy and execute each of
the software components. Of course, some of these specifications are reusable to
the extent to which the deployment language or mechanism supports modular-
ity and encapsulation. For example, the Master/Worker design pattern could be
deployed by creating two types of specification, a master and a worker compo-
nent, whose computing node is a parameter. Encapsulation is critical to avoid
side effects. In Amelia, these specifications are subsystems, which define ex-
plicit instantiation parameters and a clear interface based on the deployment
operations. Moreover, the automatic execution of these variations is demand-
ing as well. For instance, the associated performance measurements need to be
statistically significant. Therefore, it is not enough to gather data from a single
execution. Deployment strategies in Amelia facilitate this task by allowing the
deployer to setup the subsystems and their parameters per each execution, and
to repeat it as necessary.

Furthermore, systematic deployment execution can be further exploited in
Amelia. Each execution cycle may comprise from configuration and deployment
to measurement gathering and metrics storing. In fact, new deployments can be
stopped when a previous instance already presents better metrics. Amelia’s de-
ployment strategies allow this by providing granular control over the deployment
start and end, tight integration with the Java programming language, and control
over first-class deployment concepts, such as subsystems and their parameters.

4 Evaluation

This section presents the analysis and evaluation of the case of application, aimed
at assessing how to exploit automated deployment in the DevOps process chain,
not only in the forward (i.e., traditional), but also in the backward direction.

4.1 Qualitative Analysis

In the forward direction, going from development to operations, we performed
a qualitative evaluation of the language effectiveness for specifying the deploy-
ment of different architectural configurations of the ANSPE software system.
For this evaluation, we designed an evaluation protocol that was applied by

12 DevOps’ Shift-Left in Practice: An Industrial Case of Application

six master students, some of them members of the Carvajal engineering staff.
They developed several Amelia specifications from UML deployment diagrams
representing some ANSPE architecture configuration variants. These were vari-
ants of two design patterns: Producer/Consumer and Reactor; all variants used
RMI as the communication protocol and executed on the same middleware. The
first configuration required four processing nodes, while the second, twelve; in
both cases, only one Consumer component is deployed on each processing node.
Then, the participants completed a questionnaire regarding their experience.
Based on their answers, we evaluated the language effectiveness using FQAD, a
Framework for the Qualitative Assessment of DSLs [14], which refines a subset
of quality characteristics defined in the ISO/IEC 25010:2011 standard. Carvajal
participated in the selection of the quality characteristics to evaluate: functional
suitability, usability, reliability, productivity, and expressiveness, as defined in
the standard.

In summary, Amelia as a DSL for deployment automation was evaluated
having either “full support” or “strong support” in all of these characteristics.6
Among these, functional suitability, defined as the degree in which the DSL
supports completely and appropriately the specification of scripts to automate
the deployment of distributed software, along with productivity and reliability,
are of major importance for evidencing deployment automation benefits for the
organization.

4.2 Quantitative Analysis

In this section, we present the quantitative evaluation of Amelia as the vehicle
that enables the shift-left realization (i.e., the backward direction of the DevOps
application). For this evaluation, we took advantage of the qualitative evaluation
results, that is, by directing the master students to refine and complete the
deployment scripts specified for that evaluation, and executing them to finally
obtain a design that satisfies the performance requirements.

The quantitative evaluation follows an experiment design approach, in four
steps. First, we started by selecting a set of domain-specific design patterns for
improving performance, suitable for our case. Second, we defined several archi-
tectural configurations, variations and corresponding instantiations that result
from the incorporation of the selected design patterns to the ANSPE’s reference
architecture, and further adapted and completed correspondingly the Amelia
deployment scripts. Third, we prepared a hardware infrastructure as close as
possible to the organization’s one, with controlled conditions, and executed the
experiments by running the deployment scripts for each of the architectural in-
stantiations. From these executions, the metrics of system performance were
collected. Finally, we compared the performance metrics to select the best ar-
chitectural configuration.

In the following sections, we explain the experiment design, its execution and
the analysis of results.
6 Given the space restrictions, we omit in this paper the details of the evaluation pro-
tocol and its execution. Nonetheless, the evaluation files are available in the Amelia
evaluation github repository https://github.com/unicesi/amelia-evaluation

DevOps’ Shift-Left in Practice: An Industrial Case of Application 13

Experiment Design. The experiment design involved the generation of com-
binatorial instantiations of architectural configurations and factors, where the
objective was to compare the performance of these configurations instatiations,
measured systematically. The experimental unit encompassed the different sys-
tem architectural configurations. The response variable under study was the
performance (throughput) in number of XML files processed per minute. The
controllable input factors included (i) the set of XML files with CRUD operations
to update the census and demographic status of families; (ii) the design patterns
relevant for distributed processing (e.g., Producer/Consumer (P/C) and Reac-
tor); (iii) the communications protocol (provided by a middleware); and (iv)
the number of working components that were deployed on each slave processing
node (i.e., consumers in P/C, controllers in Reactor). The uncontrollable input
factors comprised the clock synchronization issues among processing nodes7, and
indispensable operating system processes. Table 1 depicts a summarized version
of the experiment design8, for XML files of 1Mb of application operations, and
12 processing nodes (i.e., computers with 1 quadcore CPU).

Design Pattern Communications
Protocol

No. Consumers/
Controllers

P/C RMI 12
P/C RMI 48
P/C RMI 96
P/C Ice 12
P/C Ice 96

Reactor RMI 12
Reactor Ice 12

Table 1: Factors instantiated for the experiment design.

Experiments Execution. The experiments were executed in an infrastructure
equipped with 22 computers configured with one CPU Intel i7 quadcore, and 16
Gb of RAM running Linux Fedora 25, although not all computers were used at
the same time in any of the experiments. As part of the configuration process
in the deployment specification, all useless and non-critical operating system
services were stopped before executing the experiments.

The steps for performing the deployment of the architectural configuration
instantiations included an important point in the pre-requisites of execution:
the database required to be restored with data backed-up exactly in the date
previous to those of the XML files to be synchronized. This implied that, previous
to executing any experiment, restoring the database was necessary.

The deployment and execution of each of the configurations of the experiment
design was repeated at least three times, and the performance metrics averaged.

7 We used the Precision Time Protocol (PTP, IEEE 1588).
8 The complete version of the experiment design comprises a set of 324 configurations
resulting from the following number of instantiations: 4 patterns x 3 numbers of
consumers/controllers x 3 numbers of processing nodes x 3 communication protocols
x 3 sizes of input files. We present a subset because of space restrictions.

14 DevOps’ Shift-Left in Practice: An Industrial Case of Application

This means that a total of 21 deployments and executions were performed for
the subset of the experiments indicated in Table 1. The role played by Amelia
for executing these experiments was really critical.9

Analysis of Results. The reference throughput baseline given was of 1 XML
file every 32 seconds (that is, 1.87 XML files per minute). Thus, we present the
quantitative results of the experiments in Table 2 in this form.

Experiment Configuration Throughput
P/C, RMI, 12 components 1 file / 11,35 sec
P/C, RMI, 48 components 1 file / 6,9 sec
P/C, RMI, 96 components 1 file / 6,7 sec
P/C, Ice, 12 components 1 file / 11,51 sec
P/C, Ice, 96 components 1 file / 6,1 sec

Reactor, RMI, 12 components 1 file / 21,95 sec
Reactor, Ice, 12 components 1 file / 20,51 sec

Table 2: Execution results of the experiment.

According to these results, the best architectural configuration uses the Pro-
ducer/Consumer design pattern with Ice as communication protocol, distribut-
ing 96 consumers in 12 processing nodes, for a throughput of 1 file every 6,1
seconds, around five times better than the reference baseline.10

In addition, it is worth noting two other points: first, that Producer/Con-
sumer is consistently and significantly better than Reactor, and second, that even
though Ice is in general better than RMI, the difference is not that significant.

5 Conclusions

Conveying good design practices into actual architectural configurations with the
purpose of guaranteeing specific quality metrics is better performed when having
evidence gathered from experimentation with systems in operation. Automated
deployment is crucial for performing this experimentation for an architect to
select, for instance, the most appropriate design pattern. Thus, we believe that,
in the context of DevOps, realizing automated deployment as presented in this
paper, is important to make informed decisions in the development process based
on factual data gathered from operations.

In this paper we have reported on an industrial case of application regard-
ing the dual use of automated deployment in the both directions of a DevOps
setting: from development to operations and also in the inverse direction, effec-
tively realizing the shift-left concept. To this end, we illustrated how our Amelia
DSL facilitates the automation of the deployment process for various architec-
ture variants and configurations, following the DevOps principles and the deploy
adoption path.
9 In the complete experiments set, a total of 972 deployments and respective executions
were performed.

10 In fact, this configuration was the best among the 324 in the complete experiment.

DevOps’ Shift-Left in Practice: An Industrial Case of Application 15

We applied FQAD to evaluate five quality characteristics in Amelia, con-
firming its effectiveness for deployment automation. For the quantitative eval-
uation, we used Amelia to specify and deploy 324 architectural configurations
and variations in a set of experiments. We used the experiments results to re-
design the reference architecture of the system presented in the case, improving
its throughput by a factor of five. One of our findings in this case is that the
Producer/Consumer design pattern is consistently better than Reactor for im-
proving throughput.

Acknowledgments. This work was funded in part by the National Sciences and
Engineering Research Council (NSERC) of Canada, IBM Canada Ltd. and IBM
Advanced Studies (CAS), the University of Victoria, Universidad Icesi (Colom-
bia), and Organización Carvajal SA (Colombia).

References
1. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation. 1st edn. Addison-Wesley Professional
2. Sharma, S., Coyne, B.: DevOps for Dummies. 3rd Limited IBM edn. John Wiley

& Sons (2017)
3. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation. 1st edn. Addison-Wesley Professional
(2010)

4. Humble, J., Molesky, J.: Why enterprises must adopt devops to enable continuous
delivery. Cutter IT Journal 24(8) (2011) 6–12 cited By 32.

5. OMG, D.: Configuration of component-based distributed applications
specification—version 4.0

6. Carzaniga, A., Fuggetta, A., Hall, R.S., Heimbigner, D., Van Der Hoek, A., Wolf,
A.L.: A characterization framework for software deployment technologies. Techni-
cal report, DTIC Document

7. Hall, R.S., Heimbigner, D., Wolf, A.L.: A cooperative approach to support software
deployment using the software dock. In: Proceedings of the 21st International
Conference on Software Engineering. ICSE ’99, ACM 174–183

8. Dearle, A.: Software deployment, past, present and future. In: 2007 Future of
Software Engineering. FOSE ’07, IEEE Computer Society 269–284

9. Willis, J.: Docker and the three ways of devops. Technical report, Docker Inc.
10. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and

kubernetes. 59(5) 50–57
11. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.H.,

Shenker, S., Stoica, I.: Mesos: A platform for fine-grained resource sharing in the
data center. In: NSDI. Volume 11. 22–22

12. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hasselbring,
W., Hanus, M.: Xbase: Implementing domain-specific languages for java. 48(3)
112–121

13. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. 42(5) 559–583

14. Kahraman, G., Bilgen, S.: A framework for qualitative assessment of domain-
specific languages. 14(4) 1505–1526

	DevOps' Shift-Left in Practice: An Industrial Case of Application
	Introduction
	Background
	DevOps Adoption Paths and Principles
	Continuous Delivery
	The Deployment Life Cycle

	Shifting Operations Left by Automating Deployment
	The Industrial Case of Application
	Addressed Challenges
	The Amelia DSL for Automating Deployment
	Language Structure and Concepts.
	Subsystems.
	Deployment Strategies.
	Extensions.

	Automated Deployment Execution

	Evaluation
	Qualitative Analysis
	Quantitative Analysis
	Experiment Design.
	Experiments Execution.
	Analysis of Results.

	Conclusions

