
EasyChair Preprint

№ 1270

Robotic Reliability Engineering: Experience from

Long-term TritonBot Development

Shengye Wang, Xiao Liu, Jishen Zhao and Henrik Christensen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 6, 2019



Robotic Reliability Engineering: Experience
from Long-term TritonBot Development

Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

Abstract While many researchers have built service robot prototypes that work per-
fectly under close human supervision, deploying an autonomous robot in an open
environment for a long time is not always trivial. This paper presents our experi-
ence with TritonBot, a long-term autonomous receptionist and tour guide robot. We
deployed TritonBot as an example to study reliability challenges in long-term au-
tonomous service robots. During the past two years, we regularly do maintenance,
fix issues, and roll out new features. In the process, we identified reliability en-
gineering challenges in three aspects of long-term autonomy: scalability, resilience,
and learning; we also formulated techniques to confront these challenges. Our expe-
rience shows that proper engineering practices and design principles reduces man-
ual interventions and increases general reliability in long-term autonomous service
robot deployments.

1 Introduction

While researchers continue to invent technology that extends robots’ abilities to
sense and interact with the environment, one of the often neglected research areas
in robotics is reliability engineering. Robots often perform perfect demos under
controlled settings and close human supervision, but they tend to be less reliable
when working autonomously for an extended period in unstructured environments.
The reliability issues have become an obstacle that prevents the robot from assisting
people in their everyday lives. Unfortunately, the lack of resilience rooted in the
research and prototype robot system development — many developers tend to find
the simplest method to make the robot “just to work” — and the ad-hoc solutions

Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen
Department of Computer Science and Engineering, University of California San Diego
9500 Gilman Drive, MC 0404, La Jolla, CA 92093
e-mail: {shengye,x1liu,jzhao,hichristensen}@ucsd.edu

1



2 Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

(a) WaitingCharging Interaction Guide Tour(b)

Fig. 1 (a): A visitor interacting with TritonBot. TritonBot can talk to people and show people
around. (b): An one-month deployment log of TritonBot [24]. In February 2018, TritonBot worked
(waiting, talking, and guiding tours) for 108.7 hours, and it actively interacted (talking and guiding
tours) with people for 22.1 hours.

usually lead to a fragile system that has difficulties in feature iterations and failure
analysis. The absence of “reliability thinking” drives the robots away from long-
term autonomy, in which the robot continues to work and evolve over an extended
period.

We built TritonBot to study reliability challenges in developing and deploying
a long-term autonomous service robot that interacts with people in an open envi-
ronment. TritonBot (Fig. 1) is a robot receptionist and a tour guide deployed in an
office building at UC San Diego. It greets visitors, recognizes visitors’ face, remem-
bers visitors’ names, talks to visitors, and shows visitors the labs and facilities in the
building. Our previous work [24] summarized lessons in the initial TritonBot devel-
opment; this paper presents our efforts in making TritonBot more reliable during its
long-term deployment.

Long-term autonomy consists of three primary factors: scalability, resilience,
and learning: Scalability enables the robot system to grow and gain more features
smoothly. Resilience allows the robot to adapt to environmental changes and tolerate
transient errors. Learning helps the robot to benefit from experiences and become
more capable over time. Our contributions in this paper are: (1) Identification of
failure modes and reliability challenges in scalability, resilience, and learning using
TritonBot. (2) Formulation of engineering practices that reduce manual interven-
tions during long-term robot deployments. (3) Collection of design considerations
that increase the reliability of long-term autonomous service robot. We tested the en-
gineering practices and design considerations on TritonBot, but they are also appli-
cable to other robot systems with scalability, resilience, and learning requirements.

The paper is organized as follows: Section 2 discusses related work about long-
term autonomy and reliability engineering. Section 3 introduces the overall design
and functions of TritonBot. Section 4 describes our efforts in making the TritonBot
system scalable in its long-term evolvement (Scalability). Section 5 shows our prac-
tices in making TritonBot resilient to failures (Resilience). Section 6 presents our
attempts to improve TritonBot over time both autonomously or with the help from
developers (Learning). Finally, Section 7 concludes this paper.



Robotic Reliability Engineering: Experience from Long-term TritonBot Development 3

2 Background and Related Work

A number of projects have studied long-term autonomy. The STRANDS project [12]
deployed security patrol and guide robots and reached a few weeks of auton-
omy without intervention. CoBots [21] navigated over 1,000 km in open envi-
ronments and intensively studied long-term mapping, localization, and navigation.
BWIBots [14] is a custom-designed long-term multi-robot platform for AI, robotics,
and human-robot interaction that aims to be a permanent fixture in a research facil-
ity. Early “roboceptionists” and tour guide robots like Valerie [15], RHINO [4], and
Minerva [23] interacted and provided tours to visitors in schools and museums with
an emphasis on social competence or robust navigation in crowded environments.
Previous work also reported deployment experiences and failure statistics in other
robot systems [6, 7]. These work provided valuable experiences of robots under
challenging environments, but few of them conclude lessons from a system-design
perspective.

Reliability engineering is not a new concept in engineered systems; it is a critical
study that keeps an engineered system reliable, available, maintainable, and safe [3].
Some companies in the industry even have created a Site Reliability Engineer (SRE)
role in supporting growing Internet businesses [2]. Birolini [3] summarizes theo-
ries and provides qualitative approaches to the study of the reliability, failure rate,
maintainability, availability, safety, risk, quality, cost, liability, and so on. O’Connor
et al. [18] further give field-specific reliability engineering examples of mechani-
cal systems, electronic systems, software, design for reliability, manufacturing, and
more. Beyer et al. [2] from Google, Inc. discuss “site reliability engineering” and the
principles and practices that keep Google’s planet-scale production system healthy
and scalable; they combine automated tools and appropriate engineering and emer-
gency response workflows. None of these works are directly applicable to service
robots given the gap between traditional computer systems and cyber-physical sys-
tems; yet despite the disparity between planet-scale datacenters and mobile robot
platforms, successful engineering practices in traditional computer systems have
considerably inspired robotic reliability engineering.

3 TritonBot Overview

Our goal in the TritonBot project is to identify reliability challenges in long-term au-
tonomous service robots and incorporate appropriate reliability engineering meth-
ods from large-scale software and other engineered systems to confront these chal-
lenges. To this end, we built TritonBot as a realistic example of a long-term au-
tonomous service robot: TritonBot has a number of advanced features including face
recognition, voice recognition, natural language understanding, navigation, and so
on; but it is not overly complicated, and thus it reflects the reliability issues that
may occur in a commercial service robot in the near future. In a previous work [24]



4 Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

Head 
Camera

Face Recognition
Pipeline

Face
Database

Embeddings

Microphone Google Cloud 
Speech Client

Intent 
Extraction

Transcript

TritonBot
Behavior 

State 
MachineIntent

Person
Info

Voice Synthesis

Topological
Navigation

Text

Location
Name

Speaker

Training command

Start/stop listening

HardwareTritonBot Components

Cartographer
Laser

Scanner

ROS Navigation Wheels

Pose

Pose

Leg Detector/TrackerLeg to Robot
Distance

Legend

Fig. 2 A block diagram shows the primary components in TritonBot and the dataflow between
them. A state machine controls the behavior of TritonBot, and standalone components including
face recognition, voice recognition, leg detection and tracking, localization, and navigation support
the TritonBot functions.

we presented the initial lessons learned from TritonBot in its initial deployment; we
have been improving the TritonBot system to make it more robust since then.

TritonBot is based on the Fetch Research Edition platform from Fetch Robotics
Inc. [26]. The robot has an RGBD camera with about 70◦ field of view, a micro-
phone array with sound source localization support, and a loudspeaker. We installed
a back-facing laser scanner at the opposite side of the stock laser scanner at the leg
level; these laser scanners enable 360◦ leg detection and tracking. The base of the
robot contains two differential drive wheels and a consumer-grade computer (Intel
i5-4570S CPU, 16 GB memory, 1 TB solid state disk); two lead-acid batteries keep
the robot running for about 6 hours with a single charge.

TritonBot is deployed in Atkinson Hall, a research facility at UC San Diego. It
stands in the hallway of the building, faces the entrance, and continuously detects
faces in its view. When TritonBot detects a previously seen face, it greets the person
by name. Otherwise, it briefly introduces itself, asks for the name of the visitor, and
offers a trivia game. The simple questions allow the robot to interact with the visitor
face-to-face and collect face samples. After the greetings and the games, TritonBot
offers a guided tour to the user. The robot can show the visitor a few places of
interest in the building, including a prototyping lab, a robot showroom, a “smart
home” demo room, and a gallery. At each spot, the robot briefly introduce the place
and confirms whether the visitor is still around using leg detection.

TritonBot uses the Robot Operating System (ROS), a standard middleware for
robot prototypes for research. Fig. 2 shows the software architecture in TritonBot.
The system leverages the open source software Cartographer [13] for localization
and mapping, and the ROS navigation stack “movebase” [17] controls the robot to
move around. A face recognition pipeline utilizes OpenFace [1] to generate face
embeddings and calculate the similarity between two faces. An open source leg
tracker [16] detects and track human leg positions around the robot using laser scan
ranges. TritonBot also leverages a cloud service Google Cloud Speech API [9] to
convert a user’s speech to a textual transcript; a commercial software package syn-
thesizes TritonBot’s voice. To summarize, we integrated many existing components
together to build TritonBot, but wrote about 100,000 new lines of code (mostly C++
and Python) to build the entire TritonBot system.



Robotic Reliability Engineering: Experience from Long-term TritonBot Development 5

4 Scaling up TritonBot over the Long-term Deployment

Scalability is one of the three most important characters in long-term autonomy; it
allows the developers to grow and expand a robot system without overhauling the
existing architecture of the system and affecting normal operations. This section
discusses our effort in making TritonBot scalable.

4.1 Scalability Challenges in TritonBot

TritonBot faced many challenges in scalability that add difficulties in its develop-
ment and evolvement:

• Backward- and forward-compatibility: Scaling up requires fast software itera-
tion. But the lack of backward- and forward-compatibility forces the developers
to complete coding and testing on all related components before rolling out a
new feature; rolling back one component also affects all related parts. Long-term
logging also becomes a challenge when the developers add, update, or remove
fields in the log format.

• Software architecture: Tightly-coupled software limits the scalability of a com-
puter system, but decoupling software components introduces difficulties in in-
terfacing and coordination between the components. Besides, when TritonBot of-
floads computationally-intensive software components to other machines, cross-
ing network boundaries and communicating over the Internet bring in concerns
in accessibility, latency, and confidentiality.

• Software management: With numerous robotic programs with different require-
ments running together to form a complete system, managing software running
on the on-robot computer and other hardware is challenging. The limited com-
puting power available on-board worsens the problem when computationally-
intensive programs compete for computing resources; they tend to create re-
source contention and exhaust all CPU or memory capabilities.

4.2 Forward- and Backward-compatibility

Many robot systems use Robot Operating System (ROS) [20] to split the entire
software system into multiple programs. ROS programs communicate through a
publish-subscribe pattern to work with each other, and ROS provides an interface
description language (ROS messages) to support the pub-sub framework. But any
change to the message definition, no matter how insignificant it may be, invalidates
all previously serialized data and generated libraries. Such inflexibility helps ROS
to become a consistent community-maintained robotic software toolkit, but it limits



6 Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

the long-term evolution of an autonomous robot system, and it makes serializing
ROS message a bad choice for long-term logging.

In TritonBot, we leverage an open-source libraries Protocol Buffer (ProtoBuf) [11]
to provide forward- and backward-compatibility. ProtoBuf is a language-neutral,
platform-neutral extensible mechanism for serializing structured data, but serial-
ized ProtoBuf messages remain accessible even if the format description changes
(in a compatible way). ProtoBuf can even work with RPC (remote procedure call)
frameworks to provide backward compatibility between different program. We use
ProtoBuf to store sequential or small structured data, such as the topological map
for navigation, face embedding of visitors, and long-term logs.

As an example, TritonBot leverage ProtoBuf to save its long-term log. We cre-
ated a “Universal Logger” that stores a stream of ProtoBuf messages into com-
pressed and size-capped files and distributes them into directories with a date and
timestamp. Because ProtoBuf format is forward-compatible, adding extra fields to
the log format does not affect previously stored logs; being backward-compatible,
analysis programs written against an old ProtoBuf format will continue to work with
newly generated logs. As an example, the voice recognition program on TritonBot
initially only records voice recognition results that trigger the robot’s response; later,
when we moved to a more capable voice recognition engine, we updated the data
format to include the interim results. Thanks to the compatibility, the analysis script
can still read previously stored logs. We collect about 1.2 GB ProtoBuf-based logs
monthly on average, and we were able to generate many insights from the data;
since the log format is optimized for machine-reading, scanning through all of the
log entries only takes a few minutes.

4.3 Decoupling Software Components

In addition to the lack of backward- and forward-compatibility, ROS has two more
limitations: the inflexible networking requirements, and the lack of security support.
ROS programs (nodes) assumes bidirectional direct TCP/UDP connection between
each other, so they cannot communicate over networking environments with fire-
walls or network address translation (NAT) devices. In addition, ROS communica-
tion lacks encryption and authentication support, which prevent it from communi-
cating over public channels such as the Internet. These three issues contribute to the
software coupling challenges in scalability.

To overcome these shortcomings, we built a part of the TritonBot system with
open-source libraries and gRPC [10] alongside with ROS: gRPC is an open source
remote procedure call (RPC) framework that supports both synchronous or asyn-
chronous, unary or streaming backward- and forward-compatible ProtoBuf mes-
sages in both requests and responses; it leverages HTTP/2 channels with optional
encryption and authentication that can easily pass network devices. We build and
released a ROS package grpc [22] that helps the users to generate, compile, and
link ProtoBuf libraries and gRPC stubs within the ROS build environment.



Robotic Reliability Engineering: Experience from Long-term TritonBot Development 7

Camera Driver Face Detection
(Dlib)

Face Alignment
(Dlib)

Representation
Generation 
(OpenFace)

OpenFace
Server

OpenFace Client

Face Training Client

Face Database

Face Storage
(ProtoBuf)

k-Nearest 
Neighbor

Face Recognition Client

Images Images

Embeddings
Embeddings

TritonBot Behavior
State Machine

Embeddings

Person
Information

Embeddings
+ Name

Person
Name

Person
Name

ROS Node

gRPC Client / 
ROS Node

gRPC Server

Legend

gRPC Link

ROS Link

Fig. 3 The face recognition pipeline in TritonBot. A few components in ROS bridge the ROS
system with standalone gRPC servers, so that TritonBot exploits the existing open-source compo-
nents in ROS and backward- and forward-compatibility from gRPC. After running TritonBot for
some time, we moved the “OpenFace server” to a remote computer with powerful GPUs to save
computing resources on the on-robot computer.

The face recognition pipeline in the TritonBot system heavily leverages Proto-
Buf and gRPC to maximize its scalability. Fig. 3 shows the components and the
data flow in the face recognition pipeline. Since the ProtoBuf format is forward-
compatible, the face database file did not require any conversion when we added an
option to store the face images along with the embeddings. ProtoBuf/gRPC format is
also backward-compatible: when we updated the face database server, the old client
continued to work, and we had a chance to test the new server before implementing
a new client. In addition, gRPC helped us to offload the computationally-intensive
face embedding generation program from the robot: we put a face embedding gen-
eration server on a powerful host system behind a firewall (for network address
translation) and a reverse proxy (for authentication); the robot access the service
over the Internet.

In general, design considerations in decoupling software speed up software it-
eration and increase the scalability of a robot system; backward- and forward-
compatibility enable decoupling in many scenarios.

4.4 Managing Robotic Software with Linux Containers

In TritonBot, we use Linux containers to manage robotic software deployment and
provide a unified development environment. The Linux container technology [19]
provides a convenient approach to build, deploy, and run applications on different
machines. Backed by the Linux namespaces that isolate and virtualizes system re-
sources for a set of processes, Linux containers are much lighter-weighted than fully
virtualized kernels in hypervisors or virtual machines.

Initially, we adopted Docker [8], a popular and open-source container manage-
ment tool to run every software components (41 in total) as separate containers. The



8 Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

isolated execution environment for each of them. When TritonBot system grows
larger, resource contention becomes an issue in scaling up TritonBot system. In data
centers, scaling up software system means spawning more program instances and
load-balancing the tasks among them; popular tools like Kubernetes [5] leverage
Linux containers to provide a unified platform to manage the programs. A service
robot like TritonBot only carries limited computing resource; however, it is not us-
ing all the components at the same time — for example, TritonBot does not face
recognition results when it is moving, and vice versa. We build Rorg [25], an open
source container-based software management system. Rorg not only provides an ac-
cessible mechanism to use Linux containers in robot programming environment, but
it also models the component dependencies and decides what components to start to
fulfill the robot’s request. With the help of Rorg, the TritonBot uses 45% less CPU
than before, which leaves the developer with plenty room to add more features. Rorg
also adds some additional benefits to service robots: because the software compo-
nents have chances to stop and restart often, transient issues like memory leaks have
a less significant outcome. This conclusion is consistent with the experience from
Google that “a slowly crash looping task is usually preferable to a task that has not
been restarted at all” [2].

In conclusion, tools like Linux containers not only benefit traditional computer
systems but also improve the scalability of service robots. The different use scenario
on service robots require unique customization of the tools.

5 Tolerating and Coping with Failures

Resilience is the ability of a robot to adapt to environmental changes and tolerate or
recover from transient errors. The TritonBot developers tried to make the robot as
robust to failures as possible, and this section discusses our efforts.

5.1 Resilience Challenges in TritonBot

None of the engineered systems is immune from failures, and long-term deploy-
ments further expose the errors in a service robot. The TritonBot system has a few
challenges to become resilient to failures:

• Transient failures: Some failures on service robots are transient and recoverable.
For example, TritonBot sometimes loses its network connection when it enters
and exits a WiFi blindspot, but a simple reconnecting attempt can effectively fix
this issue. The two challenges in dealing with transient failures are (1) identifying
the failures and (2) implementing the fix.

• Overloaded system: Almost all basic robot functionalities rely on the only pro-
grammable part of TritonBot, the on-robot computer. The computer is affording
too much functionality that a minor issue on the computer will lead to serious



Robotic Reliability Engineering: Experience from Long-term TritonBot Development 9

outcomes: when the Bluetooth stack on the computer fails, the developers lose
the ability to drive the robot manually; if the computer encounters networking
issues, the developers cannot connect to the computer.

• Lack of monitoring: Autonomous service robots are expected to work without
close human supervision, but the developer does not have the means to under-
stand the system characteristics and discover failures. However, too close super-
vision defeats the purpose of autonomy.

5.2 Recover from Transient Failures

Frequent self-diagnosis and self-repair is a practical approach to discover and re-
cover from some transient failures. TritonBot periodically runs some scripts to check
and fix any potential issues. After the TritonBot encountered WiFi issues multiple
times, we created a script that checks the Internet connection (by pinging a com-
monly known website) and restarts the wireless interface in case of a failure. In
another case, a Linux system service (sssd) sometimes gets killed and does not
restart properly; we created another script to restart it in case of failure. However,
the challenge in fixing transient failures it not making patches, but instead identify-
ing the failure cases. Long-term deployments expose these transient failure patterns;
occasional monitoring (Section 5.4) helps the developers to capture these failures.

While hand-made scripts are useful in complementary to system service man-
agement tools, another type of transient failures happens in robotic software is that
some programs get killed when they encounter unhandled exceptions or have de-
sign flaws. In TritonBot, any unexpected program crash triggers restarting itself or
its programs group. While crash looping programs often indicate issues in the sys-
tem, following proper design principles, we observed that some infrequent programs
restarts have little effect on the overall reliability: In the early TritonBot develop-
ment, we had an issue that the voice recognition software crashes and restarts every
a few hours. The system continued to work (possibly with a few unnoticed attempts
to retry voice recognition); only later did we find the unusual restarts in the logs
and fixed a a memory leaking issue. We have concluded three design principles to
handle transient failures in robotic software: (1) Never to hide failures fail silently;
it is better to crash a program and expose issues. (2) Restarting a program should
help it to enter a clean state and recover from transient failures. (3) Any software
component should tolerate unavailability of another component.

5.3 Relying on Separate Subsystems

Fig. 4 shows the hardware components in TritonBot. The bare Fetch Research Edi-
tion platform only has two parts in its system architecture: an embedded computer
to run user programs, and a low-level controller to control the actuators. When we



10 Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

Embedded 
Computer

USB HubRGBD Camera Microphone Array

Speaker

Ethernet Switch
Controller 

Motherboard

Front Laser Scanner

Joystick Adapter

Torso JointsTorso JointsArm Joints
Gripper

Onboard AP

Original Hardware in
 Fetch Research Edition

Back Laser Scanner

WheelsWheels Wireless Joystick

Add-on Hardware

Robot Base

Robot Torso

Robot Head

Location of
Components

Not Attached

Fig. 4 Main hardware components in the TritonBot system. We added some additional hardware
to the Fetch Research Edition.

built the early TritonBot prototype, we relied solely on programming and config-
uring the embedded computer. Soon we found that the on-robot computer become
a frequent point of failure. In the TritonBot evolution, we added a wireless access
point to the robot as an “escape hatch” in addition to the regular encrypted access
channel over the Internet. We also pair the manual-override gamepad directly with
a USB dongle that emulates a joystick device instead of the Bluetooth radio in the
embedded computer. As a general design principle, we found that relying on dedi-
cated systems reduces single-point failures and prepares the robot and the developer
for unexpected situations.

5.4 Monitoring the System

The challenge in fixing transient failures it not making patches, but instead iden-
tifying the failure cases; occasional monitoring the TritonBot during a long-term
deployment helps us to achieve such a goal. In the TritonBot project, we mainly
use two monitoring tools: First, we built an Android app to see the robots’ view
and battery status. Second, the robot analyzes its log and sends a summary to the
developers every night.

The robot monitor (Fig. 5(a)) is an Android tablet. The robot captures its battery
level, charging status, and camera images every a few seconds, and it sends them to a
central server through an authenticated channel over the Internet. The tablet displays
these state of of the robot and gives the developer an overview of the robot status
with a simple glance. In addition to the monitoring tablet, TritonBot also analyzes
its daily log and sends an E-mail about its daily work summary to the developers
every mid-night. The report includes the interaction transcript and a summary about
its daily events such as the number of humans engaged, trip traveled, and so on.
Reading the E-mail allows the developers to understand the robot’s performance
in general, while more detailed logs generated by different components are also
available for further analysis. Both of the monitoring methods retains the robot’s
autonomy, but they allow the developers and the users to understand the robot’s
status at different levels.



Robotic Reliability Engineering: Experience from Long-term TritonBot Development 11

(a) (b)

Building
Entrance

Elevators

“Robot Zoo”
Robots Demo 

Room

“Smart Home”
Living Room Demo

Prototyping Lab

Gallery

8.35s
(96.9%)

4.97s (100.0%)

8.50s (99.2%)
6.31s

(100.0%)
4.33s

(100.0%)

8.53s
(97.6%)

5.06s (99.0%)

7.88s
(97.6%)

5.44s
(99.2%)

5.53s
(100.0%)

5.30s
(99.8%)

5.68s (100.0%)

8.03s
(99.1%)

7.09s
(97.5%)

5.57s
(100.0%)

Fig. 5 (a) An Android tablet that displays the robot’s eye view and battery status. The developer
occasionally monitors the general status of the robot during the deployment. (b) The navigation
topological map of TritonBot. The maps shows the average time to traverse an “airway” on the
map as well as the success rate.

6 Learning from the Past

Learning in long-term autonomy suggests that a system can learn from the past
and improve its performance. TritonBot learns from the deployment experience and
improves itself over time. In addition to the robot learning by itself, the TritonBot
developers also learn from the past failures: we created a fault injection tool to
recreate past failure scene on TritonBot, study rare failure conditions, and improve
the robot system.

6.1 Learning Challenges in TritonBot

TritonBot has two primary learning-related issues:

• Repeated failures: TritonBot moves around when it shows the visitor the places
of interest in the building. However, we have observed that it gets stuck on some
paths at a significantly higher rate than others. Even with much experience of
similar failures, it continues to make the same mistakes because it always plans
for the shortest path.

• Rare failure types: Some failures on TritonBot are triggered with a few “coinci-
dences.” These failures are difficult to reproduce, which prevents the developers
from an in-depth investigation of the failures; when the developers come up with
potential fixes, there is no practical method to verify the fixes.



12 Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

6.2 Learning from Long-term Deployment

Unlike short-term demos, long-term autonomous service robots accumulate experi-
ence over time. These experiences can turn into precious knowledge that improves
the robustness of the robot. TritonBot applies this idea to navigation — when it
moves around, it records the time traveling each path on a map, and it avoids the
paths that it took too long to travel when generating a move plan.

The TritonBot moves around to show the places of interest to the visitors. On
top of the classic movebase navigation stack from ROS [17], we added a topologi-
cal map layer of waypoints and paths (Fig. 5(b)). The core of learning is a “traffic
control” service: When TritonBot decides to move to a waypoint, it requests a “traf-
fic control” service to generate a plan — a list of waypoints connected by paths.
TritonBot calls movebase to execute the plan with some preset time limit and error
allowance. After traveling each path, TritonBot reports the travel time back to the
traffic control service. The traffic control service internally adjust the cost of each
path according to the feedback, and the change affects the future plans. Fig. 5(b)
also presents the average traversal time and success rate of each path in a previous
TritonBot deployment.

In the TritonBot deployment, using past experience to improve the system is a
fundamental design principle. In another example, TritonBot record all of the utter-
ance that it can not understand during its conversations with people, and the devel-
opers use these utterances to improve its intent extraction algorithm. In conclusion,
learning from past failures is a convenient and effective way to increase reliability
over time in long-term robot deployments.

6.3 Learning from Rare Failures

Software fault injection is a conventional technique in software engineering; it in-
tentionally introduces failure to test a system’s response to failures. We created a
fault injection tool “RoboVac” to inject failures to the TritonBot system. It helps
us to find unknown design flaws, to verify fixes, and to benchmark the system’s
resilience.

RoboVac offers a unified framework for general fault injection needs on service
robots. It leverages the ROS message passing framework (topics) to simulate fail-
ures in sensors, actuators, or even between software; it also enables the developer to
inject failures at the general Linux process level to simulate a program crashing or
stuck; it can reshape the network traffic to simulate different networking conditions.
RoboVac offers an efficient workflow for the developers to improve a robot’s per-
formance under failures. With RoboVac, we were able to inject failures in software,
ROS message passing, networking, and ad-hoc components. During the TritonBot
evolution, we founded many unseen design flaws using fault injection, and we used
RoboVac to verify our fixes. We are continuing to work on RoboVac to offer fuzz-
testing scheme that enables automatic error discovery on service robots.



Robotic Reliability Engineering: Experience from Long-term TritonBot Development 13

7 Conclusion

This paper presents robotic reliability engineering under the long-term autonomy
scenario that a service robot works and evolves for an extended period. We dis-
cuss our reliability engineering practices in the context of TritonBot, a tour guide
and receptionist robot in a university building. As a long-term autonomous service
robot, it has challenges in the three aspects of long-term autonomy: scalability, re-
silience, and learning. TritonBot optimizes data compatibility, software architecture,
and resource management to retain scalability. TritonBot tolerates transient failures,
avoids single point failures, and leverages monitoring to improve its resilience. Tri-
tonBot also learns from the experience and takes advantage of software fault injec-
tion. All these efforts increases the reliability of TritonBot.

Failures in service robots are unavoidable but manageable. TritonBot provides a
realistic example of a long-term autonomous service robot in an open environment.
We will continue to deploy TritonBot to provide more experiences and insights of
running a long-term autonomous service robot. The complete TritonBot source code
is available at https://github.com/CogRob/TritonBot. We hope that
the reliability engineering techniques and experiences from TritonBot will inspire
more robust long-term autonomous service robot designs.

References

1. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: A general-purpose face recognition
library with mobile applications. Tech. rep., CMU-CS-16-118, CMU School of Computer
Science (2016)

2. Beyer, B., Jones, C., Petoff, J., Murphy, N.: Site Reliability Engineering: How Google Runs
Production Systems. O’Reilly Media, Incorporated (2016)

3. Birolini, A.: Reliability engineering, vol. 5. Springer (2007)
4. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W.,

Thrun, S.: The interactive museum tour-guide robot. In: Proceedings of the Fifteenth Na-
tional/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intel-
ligence, AAAI ’98/IAAI ’98, pp. 11–18. American Association for Artificial Intelligence,
Menlo Park, CA, USA (1998)

5. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and kubernetes.
Commun. ACM 59(5), 50–57 (2016). DOI 10.1145/2890784

6. Carlson, J., Murphy, R.R.: Reliability analysis of mobile robots. In: 2003 IEEE International
Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 274–281 vol.1
(2003). DOI 10.1109/ROBOT.2003.1241608

7. Chung, M.J.Y., Huang, J., Takayama, L., Lau, T., Cakmak, M.: Iterative design of a system for
programming socially interactive service robots. In: A. Agah, J.J. Cabibihan, A.M. Howard,
M.A. Salichs, H. He (eds.) Social Robotics, pp. 919–929. Springer International Publishing
(2016)

8. Docker Inc.: Docker is an open platform to build, ship and run distributed applications any-
where. (2018). URL https://www.docker.com

9. Google LLC: Cloud speech api – speech to text conversion powered by machine learning
(2017). URL https://cloud.google.com/speech

10. Google LLC: grpc: A high performance, open-source universal rpc framework (2018). URL
https://grpc.io/



14 Shengye Wang, Xiao Liu, Jishen Zhao, and Henrik I. Christensen

11. Google LLC: Protocol buffers are a language-neutral, platform-neutral extensible mechanism
for serializing structured data. (2018). URL https://developers.google.com/
protocol-buffers/

12. Hawes, N., Burbridge, C., Jovan, F., Kunze, L., Lacerda, B., Mudrova, L., Young, J., Wyatt,
J., Hebesberger, D., Kortner, T., Ambrus, R., Bore, N., Folkesson, J., Jensfelt, P., Beyer, L.,
Hermans, A., Leibe, B., Aldoma, A., Faulhammer, T., Zillich, M., Vincze, M., Chinellato, E.,
Al-Omari, M., Duckworth, P., Gatsoulis, Y., Hogg, D.C., Cohn, A.G., Dondrup, C., Fentanes,
J.P., Krajnik, T., Santos, J.M., Duckett, T., Hanheide, M.: The strands project: Long-term
autonomy in everyday environments. IEEE Robotics Automation Magazine 24(3), 146–156
(2017). DOI 10.1109/MRA.2016.2636359

13. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016
IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278 (2016).
DOI 10.1109/ICRA.2016.7487258

14. Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., Gori, I., Svetlik,
M., Khante, P., Lifschitz, V., K. Aggarwal, J., Mooney, R., Stone, P.: Bwibots: A platform for
bridging the gap between ai and humanrobot interaction research. The International Journal
of Robotics Research 36, 635–659 (2017)

15. Kirby, R., Forlizzi, J., Simmons, R.: Affective social robots. In: Robotics and Autonomous
Systems, vol. 58. Pittsburgh, PA (2010)

16. Leigh, A., Pineau, J., Olmedo, N., Zhang, H.: Person tracking and following with 2d laser
scanners. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.
726–733 (2015). DOI 10.1109/ICRA.2015.7139259

17. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon:
Robust navigation in an indoor office environment. In: 2010 IEEE International Conference
on Robotics and Automation, pp. 300–307 (2010). DOI 10.1109/ROBOT.2010.5509725

18. O’Connor, P., Kleyner, A.: Practical reliability engineering. John Wiley & Sons (2012)
19. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures–a technology review.

In: 2015 3rd international conference on future internet of things and cloud, pp. 379–386.
IEEE (2015)

20. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros:
an open-source robot operating system. In: ICRA workshop on open source software, vol. 3,
p. 5. Kobe (2009)

21. Rosenthal, S., Veloso, M.M.: Mixed-initiative long-term interactions with an all-day-
companion robot. In: AAAI Fall Symposium: Dialog with Robots, vol. 10, p. 05 (2010)

22. The Regents of the University of California: grpc: Catkinized grpc package (2019). URL
https://github.com/CogRob/catkin_grpc

23. Thrun, S., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Hahnel, D.,
Rosenberg, C., Roy, N., Schulte, J., Schulz, D.: Minerva: a second-generation museum tour-
guide robot. In: Proceedings 1999 IEEE International Conference on Robotics and Automa-
tion (Cat. No.99CH36288C), vol. 3, pp. 1999–2005 vol.3 (1999). DOI 10.1109/ROBOT.1999.
770401

24. Wang, S., Christensen, H.I.: Tritonbot: First lessons learned from deployment of a long-term
autonomy tour guide robot. In: Proceedings of the 2018 IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), pp. 158–165 (2018)

25. Wang, S., Liu, X., Zhao, J., Christensen, H.I.: Rorg: Service robot software management with
linux containers. In: Robotics and Automation (ICRA), 2019 IEEE International Conference
on. IEEE (2019)

26. Wise, M., Ferguson, M., King, D., Diehr, E., Dymesich, D.: Fetch & freight: Standard plat-
forms for service robot applications. In: Workshop on Autonomous Mobile Service Robots,
International Joint Conference on Artificial Intelligence (2016)


