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Abstract

We consider the capillary trapping of carbon dioxide in a hori-
zontal aquifer. Motivated by the heterogeneous nature of reser-
voir rocks, we allow the permeability to vary vertically across
the aquifer. The CO2 spreads under buoyancy following the end
of the injection period. We derive a parabolic governing equa-
tion for the motion, which accounts for the trapping of CO2 at
the trailing edge. The flow behaves in a self-similar fashion at
early times when it is confined and at late times when it is effec-
tively unconfined. We determine how these similarity solutions
are influenced by vertical heterogeneity. We quantify the late-
time position of the leading edge of the CO2 and show that it is
highly sensitive to the permeability at the top of the aquifer but
rather insensitive to the permeability structure elsewhere. Our
results have important implications for the volume of CO2 that
may be stored at a particular geological site.
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Introduction

Carbon capture and storage (CCS) is a key tool for reducing
anthropogenic CO2 emissions from industry and power genera-
tion in the medium term. The CO2 is captured, compressed and
then injected into an underground geological formation. The vi-
ability of CCS projects depends on ensuring that the CO2 does
not migrate out of the formation.

Typically, the geological formations are porous aquifers that
may be bounded above and below by impermeable seal layers
[3]. It is important to quantify how far and how fast the buoyant
injected CO2 spreads following the end of the injection period
[7]. The volume of mobile CO2 gradually diminishes in time as
it slumps and the CO2 is trapped owing to capillary forces in the
pore throats at the receding edge (see figure 1). The CO2 also
dissolves in the ambient brine but the mass loss is much slower
than that associated with capillary trapping.

Previous studies have investigated the effect of capillary trap-
ping on the evolution of the current in horizontal aquifers
[6, 2, 3]. These researchers have analysed the influence of con-
finement associated with a lower boundary and considered two-
dimensional and axisymmetric geometries on the extent of the
CO2 current. They considered aquifers with constant perme-
ability and Hesse et al. [3] suggested that heterogeneities may
have a strong effect on the trapping and migration of CO2.

Many of the reservoir rocks selected for CO2 storage have ver-
tical variations in permeability owing to their formation from
settling turbidity currents. It has been shown that such vertical
variations can substantially alter the flow structure and the ex-
tent of the CO2 during the injection phase [4, 5]. In the present
paper, we consider the effect of vertical variations in perme-
ability on the post-injection migration in which the capillary
trapping of CO2 plays a dominant role.

We first develop a model for the post-injection migration of the
CO2 current by adapting the approach of Hesse et al. [3] to
account for vertical permeability variations [4]. We then anal-

yse the early behaviour when the current spans the thickness of
the aquifer, quantifying the effect of the heterogeneity. At late
times, the CO2 occupies a thin region near the upper boundary
where it accesses only a small part of the permeability varia-
tion. The evolution is then similar to that in an aquifer with
constant permeability. We determine how the early evolution,
which is influenced by heterogeneity, effects the late-time be-
haviour. Our results suggest that the volume of CO2 that may
be stored in a particular aquifer is determined primarily by the
permeability at the top of the aquifer and the structure elsewhere
has a smaller influence.
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Figure 1. Schematic diagram of the model problem. (a) The instan-
taneous release of a fixed volume of CO2 (dark brown). (b) The CO2

slumps owing to buoyancy and a fraction is capillary trapped in the pore
space (light brown). The volume of the mobile CO2 (dark brown) re-
duces in time owing to this trapping.

Model

We analyse the post-injection flow of supercritical CO2 in a hor-
izontal laterally extensive confined aquifer with impermeable
boundaries at the top and bottom. The aquifer has thickness
H0. The CO2 has density ρ and viscosity µr, whilst the ambient
brine has density ρ+∆ρ and viscosity µa. The viscosity ratio is

m = µr/µa. (1)

The horizontal coordinate is denoted by X and the vertical coor-
dinate (measured in the downwards direction) is denoted by Y
(see figure 1). We consider aquifers in which the permeability
varies in the vertical direction,

K = K̄k(Y/H0) (2)

where k(Y/H0) is the dimensionless permeability defined rel-
ative to the mean permeability, K̄ = 1

H0

∫ H0
0 K(Y/H0)dY . We

define the following depth-integrated permeability [5]

ψ(H/H0) =
∫ H

0
k(Y/H0)dY. (3)

We assume that the porosity, φ, is constant. In addition, we ne-
glect the transition zone between the fluids, which is occupied
by varying saturations of both fluids, and we assume that there
is a sharp interface between the fluids, with the saturation either
side a constant [3]. We denote the thickness of the mobile CO2
by Y = H(X ,T ). In CO2 storage projects, the lengthscale of the



injected current is typically much larger than the aquifer thick-
ness. Thus, the lateral velocity is much larger than the cross-
aquifer velocity and the pressure is approximately hydrostatic.

We are interested in analysing the capillary trapping of CO2
in an aquifer with vertically varying permeability. We focus
on the behaviour after injection has ceased. We introduce the
following two constant parameters: Sa represents the residual
saturation of immobile ambient brine left behind as the CO2
fluid invades the pore space, whilst Sr represents the residual
saturation of the CO2 left behind when the brine invades the
pore space. CO2 is trapped in the pore spaces as the current
slumps and the mobile volume of CO2 reduces over time (see
figure 1). The volume of CO2 trapped during the injection phase
is negligible because there are no regions in which the brine
displaces the CO2.

Since the pressure is hydrostatic, the velocity of the CO2 in the
post-injection phase is given by [3, 4]

U =−∆ρgK̄
µr

mk(Y/H0)(1−ψ(H/H0))

m+(1−m)ψ(H/H0)

∂H
∂X

. (4)

By applying mass conservation of the CO2, we obtain the gov-
erning equation for the shape of the interface, Y = H(X ,T ),

∂H
∂T

= κH0
∂

∂X

[
mψH/H0(1−ψ(H/H0))

m+(1−m)ψ(H/H0)

∂H
∂X

]
. (5)

where κ is the conductivity of the CO2, given by the following
expression,

κ =

 κ1 =
∆ρgK̄

φ(1−Sa−Sr)µr
for ∂H/∂T < 0

κ0 =
∆ρgK̄

φ(1−Sa)µr
for ∂H/∂T > 0,

(6)

where κ1 ≥ κ0. The CO2 is trapped at the receding edges of
the current and the volume of mobile CO2 decreases in time for
ε > 0.

We introduce the following scaled properties,

h = H/H0, x = X/H0, t = κ1T/H0, (7)

to obtain the dimensionless governing equation for the interface
shape, h(x, t),

∂h
∂t

= σ
∂

∂x

[
g(h)

∂h
∂x

]
, (8)

where

g(h) =
mψ(h)[1−ψ(h)]
m+(1−m)ψ(h)

, (9)

is the flux function and

σ =

{
1 for ht < 0
1− ε for ht > 0, (10)

with ε= Sr/(1−Sa) representing the effect of the capillary trap-
ping of the CO2 at the receding edge of the current.

The model derived here is applicable to any continuous perme-
ability variation, k(y). Since we are interested in understanding
the leading order effect of cross-aquifer permeability variations,
we use the following linear profile,

k(y) = 1+∆k(y−1/2), (11)

where −2 < ∆k < 2 is the increase in permeability from the top
to the bottom of the aquifer (∆k < 0 corresponds to a decrease).
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Figure 2. Interface shapes at t = 0.1,1,10,102,103,104 in an aquifer
with constant permeability (∆k = 0) with no capillary trapping (ε = 0).
The viscosity ratio is m = 0.2. The interface is symmetric about x = 0.

This linear permeability profile allows the effect of a perme-
ability variation to be analysed through a single parameter, ∆k,
which captures its direction and magnitude.

The post-injection evolution of the current in the case of varying
permeability and capillary trapping is complex. Therefore, to
focus on the effect of the permeability variation, we restrict our
attention to the simple idealized initial condition,

h =

{
1 for −x0 < x < x0
0 otherwise, (12)

where x0 is the aspect ratio of the initial shape. For detailed
analysis of the effect of different end of injection current shapes,
see [7]. Indeed, it would be straightforward to extend our study
to consider other initial conditions.

The initial dimensionless volume of the current is 2x0. The
x and t coordinates may be rescaled and provided that the
transformation obeys t ∼ x2, the governing equation (8) is un-
changed. Hence, different values of x0 correspond to different
timescales. Therefore, without loss of generality, we use x0 = 1
in the figures in this paper.

Equation (8) is parabolic and can be integrated numerically us-
ing a finite-difference scheme. We discretize the spatial coordi-
nate using central differences. A MATLAB ODE solver is used
for the time integration. The numerical results in the case of a
uniform aquifer (∆k = 0) with no trapping (ε = 0) are shown in
figure 2. The CO2 is much less viscous than the ambient brine
and we take the viscosity ratio to be m = 0.2. Figure 2 identifies
that the CO2 eventually detaches from the lower boundary. At
early times, the CO2 current spans the thickness of the aquifer
with h ∼ 1. This is known as ‘confined’ behaviour. At later
times, the current slumps and occupies a thin region near the top
boundary. The motion of the ambient fluid becomes unimpor-
tant. The current is then effectively ‘unconfined’ because the
lower boundary has a negligible effect on the flow. We study
these two regimes in turn and in both cases we quantify the
influence of vertical permeability variations on the evolution.
Throughout, we are particularly interested in the location of the
leading contact point of the current, x = x f (t), where the inter-
face touches the upper boundary. The extent of the current is
an important quantity for determining the risk of leakage in the
post-injection period and for determining the storage efficiency.

Confined behaviour

Equation (8) with initial condition (12) is self-similar at early
times with

h = h(ξ), ξ = (x− x0)/t1/2. (13)



The current thickness, h(ξ), satisfies the following equation

−1
2

ξ
dh
dξ

= σ
d
dξ

[
g(h)

dh
dξ

]
. (14)

We obtain the boundary conditions at the leading and trailing
contact points, ξ f > 0 and ξb < 0, by considering the behaviour
of equation (14) near h = 0 and h = 1,

dh
dξ

=−
ξ f

2(1− ε)k(0)
, h = 0, at ξ = ξ f , (15)

dh
dξ

=
ξb

2mk(1)
, h = 1, at ξ = ξb. (16)

Since ∂h/∂t = −ξ/(2t)dh/dξ and dh/dξ < 0, the current ad-
vances in ξ > 0 and recedes in ξ < 0, which determines the
dependency of σ on ξ in equation (14). The system (14) with
boundary conditions (15) and (16) is solved by numerically in-
tegrating inwards from the two boundaries, ξ f and ξb, to ξ = 0.
The unknown constants, ξ f and ξb, are obtained by iterating and
matching h and its first derivative at ξ = 0 (the first derivative
is continuous because the flux is continuous everywhere). The
interface shapes, obtained from equation (14), for three values
of the trapping fraction, ε, are shown in figure 3 for an aquifer
with constant permeability (∆k = 0) in the case that m = 0.2.
Figure 4 shows the effect of different permeability structures on
the interface shape. The similarity solution obtained here is an
exact solution to the full governing equation (8) until the current
detaches from the lower boundary.
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Figure 3. The confined early-time interface shapes in an aquifer with
constant permeability (∆k = 0) in similarity coordinates, obtained from
equation (14). Interface shapes are shown for three values of the trap-
ping fraction, ε. The viscosity ratio is m = 0.2.
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Figure 4. The shape of the confined current in similarity coordinates in
the case that there is no trapping (ε = 0) and m = 0.2. Curves are shown
for an aquifer with constant permeability (∆k = 0), with permeability
that increases linearly towards the top (∆k =−1.5) and with permeabil-
ity that decreases linearly towards the top (∆k = 1.5).

The location of the contact point at h = 0 in similarity coordi-
nates, ξ = ξ f = (x f − x0)/t1/2, is shown in figure 5 for a range
of linear permeability profiles and values of the trapping frac-
tion, ε. In the case that the permeability increases towards the

top of the aquifer (∆k < 0), the current has a greater extent at
early times and vice versa for ∆k > 0. This is because the flow
speed increases towards the upper boundary when the perme-
ability increases there. A larger trapping fraction, ε, reduces the
extent of the current because the flux is reduced owing to the
capillary trapping at the receding edge.

The current detaches from the lower boundary when the re-
ceding tips collide at x = 0, which corresponds to the time,
t = (x0/ξb)

2. Subsequently, the present analysis does not ap-
ply. There is a transition as the current slumps towards the up-
per boundary (see figure 2). Eventually the current occupies a
thin region near the upper boundary, which is discussed next.
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Figure 5. Location of the leading contact point, ξ f = (x f −x0)/t1/2, for
the early-time confined self-similar behaviour with m = 0.2.

Unconfined behaviour

At late times, having slumped upwards away from the lower
boundary, the CO2 occupies a thin region beneath the upper
boundary and h� 1. In this late-time, unconfined regime, the
governing equation (8) reduces to

∂h
∂t

= σk(0)
∂

∂x

(
h

∂h
∂x

)
. (17)

The influence of the ambient fluid on the motion of the carbon
dioxide is neglected. The permeability appears in equation (17)
only through the value it takes at the top of the aquifer, k(0).
In the regime, h� 1, the current evolves as if in a uniform and
unconfined aquifer. This problem has been well-studied and we
outline the solution below.

For the case in which there is no trapping (ε = 0), equation (17)
admits the following similarity solution [1]

h =
t−1/3

6k(0)

{[
9k(0)x0

]2/3− x2/t2/3
}
, (18)

where the dimensionless volume of the current is a constant,
2x0.

The evolution of the leading contact point, x f is shown in figure
6 in the case that ε= 0. At early times, the position satisfies x f −
x0 ∼ t1/2 (red dotted line) as discussed in the previous section.
At late times, x f ∼ t1/3 (red dashed line).

In the case that ε 6= 0, the late-time unconfined similarity scal-
ings cannot be determined by dimensional analysis alone. In-
stead, equation (17) admits a self-similar solution of the second
kind for which the exponents are determined from a nonlinear
eigenvalue problem (for further details of this idea, see chap-
ter 3 of [1]). The form of equation (17) suggests the following
substitutions [6, 3]

x = c1k(0)1/3
ηta, (19)

h = c2k(0)−1/3t2a−1
Φ(η), (20)

where the exponent a, which is to be determined, depends on
ε whilst the constants c1 and c2 depend on the early-time be-
haviour. For details on determining a numerically, see [2]. We
note that a≤ 1/3 with equality when ε = 0.
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Figure 6. Location of the leading contact point, x f , in an aquifer with
constant permeability (∆k = 0), zero trapping (ε = 0) and a viscosity
ratio of m= 0.2. The early confined behaviour is given by x f −x0 ∼ t1/2

(red dotted line). At late times, the position is given by x f ∼ t1/3 (red
dashed line).
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Figure 7. Locations of the leading contact point, x f at late times in the
case of an aquifer with constant permeability (∆k = 0), with permeabil-
ity decreasing towards the top (∆k= 1) and with permeability increasing
towards the top (∆k = −1). We use ε = 0.6 and m = 0.2. The second
kind similarity scalings with a = 0.28 for ε = 0.6 are included.

Figure 7 shows the position of the leading contact point, x f ,
relative to its initial position, x0 at late times for three linear
permeability profiles. The current runs much further in the case
that the permeability increases towards the top boundary, as ex-
pected. The form of equation (17) and the solution (19) suggest
that the extent is varied by a factor k(0)1/3 and the height by
a factor k(0)−1/3. In figure 8, the interface shapes correspond-
ing to figure 7 are shown at t = 104 in rescaled coordinates.
The shapes are not quite identical because they have a slight de-
pendency on the early-time behaviour, which is sensitive to the
permeability structure. This sensitivity can be observed by con-
sidering aquifers with equal permeability at the top boundary
rather than aquifers with the same mean permeability. Figure 9
shows the front locations for two different permeability struc-
tures but with the same permeability at the top. The increased
extent tends to a constant at late times because the late-time be-
haviour depends only on the permeability at the top. The extent
is greater in a uniform aquifer than an aquifer with permeability
decreasing towards the bottom (∆k = −1) because the inward
tip on the lower boundary propagates slower when the perme-
ability is low there and so more CO2 is trapped away from the
lower boundary.

Conclusion

We have shown that the run-out extent of the CO2 is increased in
the case of higher permeability at the top of the aquifer. The ex-
tent is primarily controlled by the permeability there rather than
the mean permeability or the permeability structure in the rest of
the aquifer because at late times, the current occupies a thin re-
gion near the upper boundary. The early-time behaviour, which
is sensitive to the permeability structure has only a second-order
effect on the run-out extent because it determines the relatively
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Figure 8. The interface shapes corresponding to figure 7 at t = 104 in
rescaled coordinates.
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Figure 9. Locations of the leading contact point, x f , in aquifers with the
same permeability at the top boundary for two values of ε.

small volume of CO2 that is stored away from the top boundary.
This suggests that modelling aquifers as vertically uniform with
permeability equal to the permeability at the top boundary is a
reasonable approximation for quantifying runout distances.
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