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Abstract 

 Deep learning is at the heart of the current rise of artificial intelligence. In the field of Computer Vision, it has 
become the workhorse for applications ranging from self-driving cars to surveillance and security. A Convolutional 

Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an input image, assign importance 

(learnable weights and biases) to various objects in the image and be able to differentiate one from the other. The 

architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons in the Human Brain and was 

inspired by the organization of the Visual Cortex.  Convolutional Neural  Networks have demonstrated phenomenal 

success (often beyond human capabilities) in solving complex problems, but recent studies show that they are 

vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrect 

outputs. For images, such perturbations are often too small to be perceptible, yet they completely fool the CNN 

models. Adversarial attacks pose a serious threat to the success of CNN in practice. In this paper, we have tried to 

reconstruct adversarial examples/patches/images which are created by physical attacks (Gaussian blur attack and 

Salt and Pepper Noise Attack), so that CNN again classified correctly these reconstructed adversarial or perturbed 

images.  

Keywords: Adversarial example/patch, Convolutional Neural Network, Gaussian blur attack, Salt and 

Pepper Noise Attack  

1. Introduction 

In the field of Computer Vision, deep learning became the center of attention after Krizhevsky et al. [1] 

demonstrated the impressive performance of a Convolutional Neural Network (CNN) [2] based model on 

a very challenging large-scale visual recognition task [3] in 2012. A significant credit for the current 
popularity of deep learning can also be attributed to this seminal work. Since 2012, the Computer Vision 

community has made numerous valuable contributions to deep learning research, enabling it to provide 

solutions for the problems encountered in medical science [4] to mobile applications [5]. The recent 

breakthrough in artificial intelligence in the form of tabula-rasa learning of AlphaGo Zero [6] also owes a 
fair share to deep Residual Networks (ResNets) [7] that were originally proposed for the task of image 
recognition. 

With the continuous improvements of deep neural net- work models [7], [8], [9]; open access to efficient 

deep learning software libraries [10], [11], [12]; and easy availability of hardware required to train 

complex models, deep learning is fast achieving the maturity to enter into safety and security critical 
applications, e.g. self driving cars [13],  surveillance [14], maleware detection [15], [16], drones and 

robotics [17], [18], and voice command recognition [19]. With the recent real-world developments like 

facial recognition ATM [20] and Face ID security on mobile phones , it is apparent that deep learning 

solutions, especially those originating from Computer Vision problems are about to play a major role in 
our daily lives. 



Recent breakthroughs in computer vision and speech recognition are bringing trained classifiers into the 
center of security-critical systems. Important examples include vision for autonomous cars, face 

recognition, and malware detection. These developments make security aspects of machine learning 

increasingly important. In particular, resistance to adversarially chosen inputs is becoming a crucial 

design goal. While trained models tend to be very effective in classifying benign inputs, recent work [21, 
22, 23, 24] shows that an adversary is often able to manipulate the input so that the model produces an 

incorrect output. 

This phenomenon has received particular attention in the context of deep neural networks, and there is 
now a quickly growing body of work on this topic [25, 26, 27, 28, 29, 30, 31]. Computer vision presents a 

particularly striking challenge: very small changes to the input image can fool state-of-the-art neural 

networks with high probability [32, 33, 34]. This holds even when the benign example was classified 
correctly, and the change is imperceptible to a human. Apart from the security implications, this 

phenomenon also demonstrates that our current models are not learning the underlying concepts in a 

robust manner. 

 
In this work, first we will define some terms about adversarial attacks which are commonly used in the 

literature of this topic. Then we will build and train a Convolutional Neural Network for different well 

known image datasets, and describe their test accuracies and test loss in tabular form. After this, we will 
create deliberately, adversarial examples/patches/images of our whole test set images by using physical 

attacks. In this research, we will use two physical attacks to create adversarial examples, which are called 

Gaussian Blur Attack and, Salt and pepper Noise Attack, please note that there are other physical attacks 
are also present, but we will use these two attacks in this work. Then we will run our CNN model on these 

adversarial images to check whether they are misclassified by our CNN model? At the end, we will 

propose a method or technique or algorithm which reconstructs the adversarial examples/patches/images 

which are created due to above attacks. Again apply Our CNN model on these reconstructed images to 
check whether they are correctly classified by our CNN model. 

2. Definitions of Adversarial Terms 

 Adversarial example/image is a modified version of a clean image that is intentionally perturbed 

(e.g. by adding noise) to confuse/fool a machine learning technique, such as deep neural 

networks. 

 Adversarial perturbation is the noise that is added to the clean image to make it an adversarial 
example. 

 Adversarial training uses adversarial images besides the clean images to train machine learning 

models. 

 Adversary more commonly refers to the agent who creates an adversarial example. However, in 

some cases the example itself is also called adversary. 

 Black-box attacks feed a targeted model with the adversarial examples (during testing) that are 

generated without the knowledge of that model. In some instances, it is assumed that the 
adversary has a limited knowledge of the model (e.g. its training procedure and/or its 

architecture) but definitely does not know about the model parameters. In other instances, using 

any information about the target model is referred to as ‘semi-black-box’ attack. We use the 
former convention in this article. 

 Detector is a mechanism to (only) detect if an image is an adversarial example. 

 Fooling ratio/rate indicates the percentage of images on which a trained model changes its 

prediction label after the images are perturbed. 

 One-shot/one-step methods generate an adversarial perturbation by performing a single step 

computation, e.g. computing gradient of model loss once. The opposite are iterative methods that 



perform the same computation multiple times to get a single perturbation. The latter are often 
computationally expensive. 

 Quasi-imperceptible perturbations impair images very slightly for human perception. 

 Rectifier modifies an adversarial example to restore the prediction of the targeted model to its 

prediction on the clean version of the same example. 

 Targeted attacks fool a model into falsely predicting a specific label for the adversarial image. 

They are opposite to the non-targeted attacks in which the predicted label of the adversarial image 

is irrelevant, as long as it is not the correct label. 

 Threat model refers to the types of potential attacks considered by an approach, e.g. black-box 

attack. 

 Transferability refers to the ability of an adversarial example to remain effective even for the 

models other than the one used to generate it. 

 Universal perturbation is able to fool a given model on ‘any’ image with high probability. Note 

that, universality refers to the property of a perturbation being ‘image-agnostic’ as opposed to 
having good transferability. 

 White-box attacks assume the complete knowledge of the targeted model, including its 
parameter values, architecture, training method and in some cases its training data as well. 

3. Convolutional Neural Networks(CNNs) 

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an 
input image, assign importance (learnable weights and biases) to various objects in the image and be able 

to differentiate one from the other. The architecture of a ConvNet is analogous to that of the connectivity 

pattern of Neurons in the Human Brain and was inspired by the organization of the Visual Cortex. The 
given diagram shows the different layers of CNN. 

 

Fig 1. reprsents different layers of Convolutional Neural Network  

 

The Convolutional Neural Network consists of input layer, convolution layer, activation layer(ReLU 
layer), pooling layer, fully connected layer and output layer. 

3.1 Convolution Layer 

The convolution operation is a linear operation, represented by an asterisk that merges two signals: 

 



Two-dimensional convolutions are used in image processing to implement image filters, for example, to 
find a specific patch on an image or to find some feature in an image. The main hyper parameters that 

control the behavior of the convolution layer are as follows: 

 Kernel size (K): How big your sliding windows are in pixels. Small is generally better 

and usually odd value such as 1, 3, 5 or sometimes rarely 7 are used. 

 Stride (S): How many pixels the kernel window will slide at each step of convolution. 

This is usually set to 1, so no locations are missed in an image but can be higher if we want to 
reduce the input size down at the same time. 

 Zero padding (pad): The amount of zeros to put on the image border. Using padding 

allows the kernel to completely filter every location of an input image, including the edges. 

 Number of filters (F): How many filters our convolution layer will have. It controls the 

number of patterns or features that a convolution layer will look for. 

3.2 ReLu Layer 

ReLU or Rectified Linear Unit simply changes all the negative values to 0 while leaving the positives 
values unchanged.  

F (x) = max (0, x) 

3.3 Pooling Layer 

The pooling layer is used to reduce the spatial dimensions of our activation layer, but not volume depth, 

in a CNN. They are non parametric way of doing this, meaning that the pooling layer has no weights in it. 
Basically, the following is what you gain from using pooling layer: 

 Cheap way of summarizing spatially related information in an input. 

 By having less spatial information, you gain computation performance. 

 You get some translation invariance in your network. 

3.4 Fully Connected Layer 

Fully Connected simply means all nodes in one layer are connected to the outputs of the next layer. The 

FC Layer outputs the class probabilities, where each class is assigned a probability. All probabilities must 
sum to 1, e,g (0.2, 0.5, 0.3). 

3.5 Output Layer (Softmax Layer) 

The activation function used to produce these probabilities is the Soft Max Function as it turns the 
outputs of the FC layer (last layer) into probabilities. For example, Let say the output of the last FC 

layer was [2, 1, 1]. Applying the softmax ‘squashes’ these real value numbers into probabilities that 
sum to one: the output would therefore be: [0.7, 0.2, 0.1] . 

4 Datasets 

The datasets which are used to create adversarial images in this research paper are given below. 



4.1 MNIST 

The MNIST (“NIST” stands for National Institute of Standards and Technology while the “M” stands for 

“modified” as the data has been preprocessed to reduce any burden on computer vision processing and 

focus solely on the task of digit recognition) dataset is one of the most well studied datasets in the 
computer vision and machine learning literature. The goal of this dataset is to correctly classify the 

handwritten digits 0 to 9. In many cases, this dataset is a benchmark, a standard to which machine 

learning algorithms are ranked. MNIST itself consists of 60,000 training images and 10,000 testing 
images. Each feature vector is 784-dim, corresponding to the (28 x 28) grayscale pixel intensities of the 

image. These grayscale pixel intensities are unsigned integers, falling into the range [0, 255]. 

4.2 Fashion-MNIST 

MNIST comprises 70,000 grayscale images of 28 x 28 pixels resolution. Each image depicts an item of 

clothing that can be separated into one of 10 classifications: T-shirt/top, Trouser, Pullover, Dress, Coat, 
Sandal, Shirt, Sneaker, Bag, or Ankle boot. 

4.3 CIFAR-10 

Just like MNIST, CIFAR-10 is considered another standard benchmark dataset for image classification in 

the computer vision and machine learning literature. CIFAR-10 consists of 60,000 32x32x3 (RGB) 

images resulting in a feature vector dimensionality of 3072. As the name suggests, CIFAR-10 consists of 

10 classes, including: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. 

4.4 CALTECH-101 

The dataset of 8,677 images includes 101 categories spanning a diverse range of objects, including 

elephants, bicycles, soccer balls, and even human brains, just to name a few. The CALTECH-101 dataset 

exhibits heavy class imbalances (meaning that there are more example images for some categories than 

others), making it interesting to study from a class imbalance perspective. 

4.5 FRUIT-360 

A high-quality, dataset of images containing fruits and vegetables. The following fruits and vegetables are 
included: Apples (different varieties: Crimson Snow, Golden, Golden-Red, Granny Smith, Pink Lady, 
Red, Red Delicious), Apricot, Avocado, Avocado ripe, Banana (Yellow, Red, Lady Finger). 

 

5 Training CNNs on the above Datasets 

In this section, we will train CNNs model on the above mentioned datasets and present the results of the 

training and testing set of above datasets. We followed CNN LeNet-5 architecture for MNIST and 

FASHION-MNIST datasets and followed CNN VGG16 architecture for CIFAR-10, CALTECH-101, 
FRUIT-360 but we can use (VGG-3) three layer blocks of VGG16 for CIAR-10, (VGG-5) five layer 

blocks of VGG16 for CALTECH-101, FRUIT-360 due to the small dimension of images in these 
datasets. The results of our experiments are given in the table below. 



Table 1. Results of experiments CNN Models on the above datasets 

Datasets CNNs Model Architecture Training Accuracy Training 
Loss 

Testing  Accuracy  Testing Loss 

MNIST LeNet-5           99.88 %   0.0043            98.83 % 0.0499 

FASHION-MNIST LeNet-5           97.89%   0.0578              91.54 % 0.3251 

CIFAR-10 VGG-3           98.16%                     0.0537               79.89 %                     0.9347 

CALTECH-101 VGG-5                                    96.77%                     0.1126                            93.23 %                           0.2215 

FRUIT-360 VGG-5           99.72 %                    0.0134                100 %       0.0001 

 

 

Fig 2. Predictions of some test images from MNIST dataset. Predicted classes are enclosed in square brackets.  

 

Fig3. Predictions of some test images from FASHION-MNIST dataset. Predicted classes are enclosed in square brackets. 

 

 

 

 



Fig4. Predictions of some test images from CIFAR-10 dataset. Predicted classes are enclosed in square brackets. 
 

 

 
Fig5. Predictions of some test images from FRUIT-360 dataset.  

 

 

Fig6. Predictions of some test images from CALTECH-101 dataset.  

 

6 Create Advesrial examples 

In this section, we create intentionally adversarial example/images from images of test sets, which are 
already correctly classified by our models, using Gaussian Blur Attack and Salt and Pepper Noise Attack. 

After creating adversarial examples, then we will again predict these adversarial images by our 

readymade models which we have already described in the above section.  Now we will see what are 
Gaussian Blur Attack and, Salt and Pepper Noise Attack.  

 

6.1 Gaussian Blur Attack 

The Gaussian smoothing operator is a 2-D convolution operator that is used to blur images and remove 
detail and noise. The Gaussian distribution in 2-D has the following form. 

 

The Gaussian Blur Attack blurs the input image until it is misclassified by the model. Before blurring, the 

input image is correctly classified. Now we see some examples of Gaussian Blur Attacks and image 



misclassification on our five selected datasets MNIST, FASHION-MNIST, CIFAR-10, CALTECH-101 
and FRUIT-360, which are given below. 

 

                   (a)                                                   (b)                                                  (c)                                                   (d) 

Fig7. (a)  Our model correctly classify input image and assign it correct label which is Seven. (b) The difference between original 
input image and adversarial image created by Gaussian Blur Attack. (c) The adversarial image created by Gaussian Blur Attack 

and our model misclassify adversarial image and assign it incorrect label which is One. (d) Classification chart, it is clearly see 
that our model assign highest probability to label one during classification of adversarial image which incorrect to due to 
Gaussian Blur Attack. 

 

 

 

.                      (a)                                                  (b)                                                 (c)                                                   (d) 

Fig8. (a)  Our model correctly classify input image and assign it correct label which is Shirt. (b) The difference between original 
input image and adversarial image created by Gaussian Blur Attack. (c) The adversarial image created by Gaussian Blur Attack 
and our model misclassify adversarial image and assign it incorrect label which is Pullover. (d) Classification chart, it is clearly 
see that our model assign highest probability to label Pullover, during classification of adversarial image which is incorrect due to 
Gaussian Blur Attack. 

                 



 

.                      (a)                                                  (b)                                                 (c)                                                   (d) 

Fig9. (a)  Our model correctly classify input image and assign it correct label which is Truck. (b) The difference between original 
input image and adversarial image created by Gaussian Blur Attack. (c) The adversarial image created by Gaussian Blur Attack 
and our model misclassify adversarial image and assign it incorrect label which is Ship. (d) Classification chart, it is clearly see 
that our model assign highest probability to label Ship, during classification of adversarial image which is incorrect due to 

Gaussian Blur Attack. 

 

 

 

   (a)                                                                              (b)                                                                         (c)                           

Fig10. (a)  Our model correctly classify input image and assign it correct label which is Cup. (b) The difference between original 
input image and adversarial image created by Gaussian Blur Attack. (c) The adversarial image created by Gaussian Blur Attack 

and our model misclassify adversarial image and assign it incorrect label which is Nautilus.  

 

 

                     (a)                                                                        (b)                                                                            (c)                           



Fig11. (a)  Our model correctly classify input image and assign it correct label which is Cup. (b) The difference between original 
input image and adversarial image created by Gaussian Blur Attack. (c) The adversarial image created by Gaussian Blur Attack 
and our model misclassify adversarial image and assign it incorrect label which is Nautilus.  

6.2 Salt and Pepper Noise Attack 

The equation of Salt and Pepper Noise is given by 

 

If b > a, gray-level will appear as a light dot, while level a will appear like a dark dot. Salt and Pepper 

Noise Attack increases the amount of salt and pepper noise until the correctly classify input image is 

misclassified. Now we see some examples of Salt and Pepper Noise Attacks and image misclassification 

on our five selected datasets MNIST, FASHION-MNIST, CIFAR-10, CALTECH-101 and FRUIT-360, 
which are given below. 

 

                                                                                                                                                                                                                

Fig12. (a)  Our model correctly classify input image and assign it correct label which is Seven. (b) The difference between 
original input image and adversarial image created by Salt and Pepper Noise Attack. (c) The adversarial image created by Salt 
and Pepper Noise Attack and our model misclassify adversarial image and assign it incorrect label which is Six. (d) Classification 
chart, it is clearly see that our model assign highest probability to label six during classification of adversarial image which is 
incorrect due to Salt and Pepper Noise Attack. 

 

 
Fig13. (a)  Our model correctly classify input image and assign it correct label which is Shirt. (b) The difference between original 
input image and adversarial image created by Salt and Pepper Noise Attack. (c) The adversarial image created by Salt and Pepper 
Noise Attack and our model misclassify adversarial image and assign it incorrect label which is Trouser. (d) Classification chart, 



it is clearly see that our model assign highest probability to label trouser during classification of adversarial image which is 
incorrect due to Salt and Pepper Noise Attack. 

 

 
Fig14. (a)  Our model correctly classify input image and assign it correct label which is Truck. (b) The difference between 
original input image and adversarial image created by Salt and Pepper Noise Attack. (c) The adversarial image created by Salt 
and Pepper Noise Attack and our model misclassify adversarial image and assign it incorrect label which is Horse. (d) 

Classification chart, it is clearly see that our model assign highest probability to label horse during classification of adversarial 
image which is incorrect due to Salt and Pepper Noise Attack. 

 

 

Fig15. (a)  Our model correctly classify input image and assign it correct label which is Cup. (b) The difference between original 
input image and adversarial image created by Salt and Pepper Noise Attack. (c) The adversarial image created by Salt and Pepper 
Noise Attack and our model misclassify adversarial image and assign it incorrect label which is Panda. 

 

 



Fig16. (a)  Our model correctly classify input image and assign it correct label which is Apricot. (b) The difference between 
original input image and adversarial image created by Salt and Pepper Noise Attack. (c) The adversarial image created by Salt 
and Pepper Noise Attack and our model misclassify adversarial image and assign it incorrect label which is Apple Red 3. 

 

7 Proposed Method/Technique/Algorithm To Reconstruct/Restore 

Adversarial Images/Example To Correct Classification Again. 

In this section, we will present our proposed method which is responsible to reconstruct above adversarial 
images, created due to Gaussian Blur Attack and Salt and Pepper Noise Attack, which are misclassified 

by our models. The purpose of this research study, we have to present a method which reconstruct or 

restore above adversarial images, so that they correct classified again with high probability or confidence. 

After a deep study of convolutional neural network and adversarial images, we end up this study with a 
method which reconstruct or restore adversarial images. Fortunately, our method is very simple, easy and 

state of the art. To reconstruct and correct classification of adversarial image use the following simple 

steps. 

1. Take original image which is correctly classified by model. 

2. Take adversrial image created due to Salt and Pepper Noise Attack and Gaussian Blur 

Attack which is misclassified by model. 

3. Multiply adversarial image by a scalar 0.003. 

4. Adding original image and adversarial image. 

5. Clipping the intensities between (0 - 255) 0r (0 - 1). 

6. Run the model on reconstructed image. 

7.1 Reconstruction and classify adversarial images created by Gaussian Blur Attack 

In this section, we will apply the above algorithm or six steps on adversarial images created due to 
Gaussian Blur Attack, and then classify them, actually we were wanted. The results are given as under. 

fig17.  Adversarial image                     reconstructed image               correct prediction again: Seven                    

 



 
Fig18. (a)  Adversarial image created due to Gaussian Blur Attack. (b) Reconstructed adversarial image by applying our proposed 
method. (c) Our model predict correct label shirt of reconstructed adversarial image again. (d) Classification chart, it is clearly 
see that our model assign highest probability to label shirt during classification of reconstructed adversarial image which is 
correct. 

 

 
Fig19. (a)  Adversarial image created due to Gaussian Blur Attack. (b) Reconstructed adversarial image by applying our proposed 

method. (c) Our model predicts correct label truck of reconstructed adversarial image again. (d) Classification chart, it is clearly 
see that our model assign highest probability to label truck during classification of reconstructed adversarial image which is 
correct. 

 

 

 

 

Fig20. (a)  Adversarial image created due to Gaussian Blur Attack. (b) Reconstructed adversarial image by applying our proposed 
method. (c) Our model predicts correct label cup of reconstructed adversarial image again.  

 

 



 
Fig20. (a)  Adversarial image created due to Gaussian Blur Attack. (b) Reconstructed adversarial image by applying our proposed 

method. (c) Our model predicts correct label Apricot of reconstructed adversarial image again. 

7.2 Reconstruction and classify adversarial images created by Salt and Pepper Noise 

Attack 

In this section, we will apply the same above algorithm on adversarial images created due to Salt and 
Pepper Noise, and then classify them, actually we were wanted. The results are given as under. 

 

 
Fig21. (a)  Adversarial image created due to Salt and Pepper Noise Attack. (b) Reconstructed adversarial image by applying our 
proposed method. (c) Our model predict correct label seven of reconstructed adversarial image again. (d) Classification chart, it is 
clearly see that our model assign highest probability to label seven during classification of reconstructed adversarial image which 
is correct. 

 

 
Fig22. (a)  Adversarial image created due to Salt and Pepper Noise Attack. (b) Reconstructed adversarial image by applying our 
proposed method. (c) Our model predict correct label shirt of reconstructed adversarial image again. (d) Classification chart, it is 
clearly see that our model assign highest probability to label shirt during classification of reconstructed adversarial image which 
is correct. 

  



 
Fig23. (a)  Adversarial image created due to Salt and Pepper Noise Attack. (b) Reconstructed adversarial image by applying our 
proposed method. (c) Our model predicts correct label truck of reconstructed adversarial image again. (d) Classification chart, it 
is clearly see that our model assign highest probability to label truck during classification of reconstructed adversarial image 
which is correct. 

 

 
Fig24. (a)  Adversarial image created due to Salt and Pepper Noise Attack. (b) Reconstructed adversarial image by applying our 
proposed method. (c) Our model predict correct label cup of reconstructed adversarial image again.  

 

 
Fig24. (a)  Adversarial image created due to Salt and Pepper Noise Attack. (b) Reconstructed adversarial image by applying our 
proposed method. (c) Our model predict correct label Apricot of reconstructed adversarial image again.  

 

8 Conclusion 

In this paper, our main purpose is to propose a method which will reconstruct the adversarial images in 
such a way that these reconstructed adversarial images are correctly classified again by our CNN models. 

Therefore, first we have created adversarial images by using two adversarial attacks which are Gaussian 



Blur Attack and, Salt and Pepper Noise Attack. These adversarial images are misclassified by our trained 
CNN models. Then we proposed a method which reconstructs adversarial images. After reconstruction of 

adversarial images, our trained CNN models are correctly classified these adversarial images. Hence we 

have proved in this study, we can reconstruct adversarial images in a way such that they are correctly 
classified by a CNN model again.    

9 Future Work 

In future, we want to continue, to work on adversarial images for the sake of security and robustness of 

Convolutional Neural Networks. There are so many adversarial attacks have developed which is a serious 

threat to fool a trained convolutional neural network. Therefore, it is much needed now, to concentrate on 
the robustness and security of neural network.       
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