Stabilization of unstable limit cycles in a push-off based dynamic walker by reversible switching surfaces

Rana Danesh, Ali Tehrani Safa and Mahyar Naraghi
Stabilization of Unstable Limit Cycles in a Push-off Based Dynamic Walker by Reversible Switching Surfaces

Rana Danesh
*Mobile Robots Research Lab, Mechanical Eng Dept.
Amirkabir University of Technology
Tehran, Iran
radanesh1371@aut.ac.ir

Ali Tehrani Safa
*Mobile Robots Research Lab, Mechanical Eng Dept.
Amirkabir University of Technology
Tehran, Iran
atehranisafa@gmail.com

Mahyar Naraghi
*Mobile Robots Research Lab, Mechanical Eng Dept.
Amirkabir University of Technology
Tehran, Iran
naraghi@aut.ac.ir

Abstract—By employing the concept of "Reversible Switching Surfaces" (RSS), we demonstrate that it is possible to stabilize unstable periodic orbits of a push-off based dynamic walker. The concept is implemented by a simple event-based control which kinematically controls the foot during the swing phase to adjust the heel-strike. The feedback controller is designed based on the theory of Virtual Holonomic Constraints (VHC). Simulation results demonstrate, there exists a broad range of VHC which satisfies stable dynamic walking.

Index Terms—dynamic walking, stability, reversible switching surfaces, virtual holonomic constraints

I. INTRODUCTION

Due to human locomotion complexity, bipedal robots have not precisely presented human walking behavior. For instance, the robots based on "Zero Moment Point" (ZMP) are stable, but not sufficiently efficient [1], [2]. On the other hand, limit cycle walkers show efficient and human-like behavior; though, they do not have enough stability and robustness [3]–[6].

In order to solve the stability problem, researchers have suggested various solutions such as adding springs [7] and dampers [8], using upper body [9] or employing leg retraction method [10].

Safa proposed the theory of local slopes in 2016 [11]. He showed that it is possible to improve the stability of a passive dynamic walker by placing the robot on a terrain that is a combination of ramps and stairs. Further development of this theory resulted in the concept of Reversible Switching Surfaces (RSS) which has been used to design an efficient controller to stabilize the unstable periodic motions of a passive dynamic walker. This concept is defined as follows: (i) The system’s switching surface replaces by a new one if an external disturbance is induced. (ii) The new switching surface is reshaped back into its old style, together with the disturbance rejection. (iii) The stabilization procedure is performed with as small energy consumption as possible [12].

In our previous study, we have shown the possibility of stability enhancement of a dynamic walker traversing a sloped surface [12]. This improvement was performed by a feedback controller, which kinematically controls the robot’s flat feet during the swing phase. A "Virtual Holonomic Constraint" (VHC) [13] is designed for the feedback law. VHC has been widely used for several control problems including Furuta pendulum [14], pendubot [15], camless combustion engines [16], bicycles [17], and bipeds [18].

In this paper, we use the concepts of RSS and VHC to stabilize unstable limit cycles of a push-off based dynamic walker. Although this robot can walk on the level ground without any feedback control, the stability is not entirely guaranteed. Here, we reexamine RSS to show its effectiveness on the stability improvement of dynamic walking. In this regard, it has been shown that our curved feet dynamic biped can stably walk with longer step sizes at higher speeds.

The rest of the paper is organized as follows. Section II describes the bipedal walking model. Section III presents the simulation outputs, and Section IV concludes the paper.

II. THE BIPEDAL WALKING MODEL

Fig. 1 shows the bipedal walking model. The model consists of a point mass at the hip (shown by M), two infinitesimal point masses at the ankles (shown by m), massless legs and curved feet. The bouncing, slipping, double supporting, and foot scuffing are neglected. All joints are frictionless, and the impacts are assumed to be perfect plastic. Also, the foot length is assumed to be large enough to avoid the rotation around the heel or toe during the stance phase.
using Lagrangian mechanics as follows:

is described as follows:

B. The mathematical model

the relative angle between the legs, and
q angle made by the stance foot and the stance leg. q and the vertical line to the horizon.

and the ankle,

of feet,

A. Parameters and variables

The model parameters contain the leg length, l, the radius of feet, r, and the distance between the center of circular feet and the ankle, d.

To study the general motion of the biped, four generalized coordinates are used. q_1 is the angle between the stance foot and the vertical line to the horizon. q_2 describes the relative angle made by the stance foot and the stance leg. q_3 indicates the relative angle between the legs, and q_4 denotes the angle between the swing foot and the swing leg.

General equations of motion for passive dynamic walkers is described as follows:

Equation 1 consists of three parts:
1) Vector field F: Describes the system’s dynamics between two impacts.
2) Switching surface S: Defines the impact moment.
3) Switching rule G: Relates the states before the impact to states just after that.

Assuming $m/M \rightarrow 0$, the equations of motion are derived using Lagrangian mechanics as follows:

\[
\Sigma: \begin{cases}
\dot{x} = F(x), & x^- \notin S, \\
\dot{x}^+ = G(x^-), & x^- \in S.
\end{cases}
\]

Equation 1 consists of three parts:

1) Vector field F: Describes the system’s dynamics between two impacts.
2) Switching surface S: Defines the impact moment.
3) Switching rule G: Relates the states before the impact to states just after that.

Assuming $m/M \rightarrow 0$, the equations of motion are derived using Lagrangian mechanics as follows:

\[
\begin{align*}
(2\rho \delta \cos(q_1) - 2\rho \cos(q_1 + q_2) + 2\delta \cos(q_2) - \delta^2 - \rho^2 - 1)q_1 & \quad - (\delta \sin(q_1) - \sin(q_1 + q_2))(1 + \rho \dot{q}_1^2) = 0 \\
(\rho \cos(q_1 + q_2 - q_3 + \cos(q_3) - \delta \cos(q_2 - q_3) - 1)q_1 + \dot{q}_3 & \quad - \sin(q_1 + q_2 - q_3) - \dot{q}_1^2 \sin(q_3) + \delta \sin(q_2 - q_3)) = 0
\end{align*}
\]

where

\[
\delta = \frac{d}{l} \quad \text{and} \quad \rho = \frac{r}{l}
\]

These equations are made dimensionless by scaling time as $t' = t\sqrt{g/l}$.

The switching surface is:

\[
\delta \cos(q_1) - \cos(q_1 + q_2) + \cos(q_1 + q_2 - q_3) - \delta \cos(q_1 + q_2 - q_3 - q_4) = 0
\]

Now, by using the angular momentum balancing, the states of system switch into their new values according to the following switching rules:

\[
\begin{cases}
q_1^+ = q_1^- + q_2^- - q_3^- - q_4^- \\
q_2^+ = q_4^- \\
q_3^+ = -q_5^- \\
q_4^+ = q_2^-
\end{cases}
\]

\[
M_{2 \times 2}\begin{pmatrix} \dot{q}_1^+ \\ \dot{q}_3^+ \end{pmatrix} = N_{2 \times 2}\begin{pmatrix} \dot{q}_1^- \\ \dot{q}_3^- \end{pmatrix} + Z_{2 \times 2}\begin{pmatrix} P_x \\ P_y \end{pmatrix}
\]

where

\[
\begin{align*}
m_{11} &= -2\delta \cos(q_1^-) + 2\rho \cos(q_1^+ + q_2^+) \\
&\quad + \delta^2 + \rho^2 + 1 \\
m_{21} &= \delta \cos(q_1^- - q_2^- - q_3^-) - \rho \cos(q_1^- + q_2^- - q_3^-) + 1 \\
m_{12} &= 0 \quad m_{22} = -1
\end{align*}
\]

Superscripts “+” and “−” show the states just after and before the impact, respectively. P_x and P_y are the components of the push-off impulse.

All formulations could be replaced by a Poincaré map that relates the states just after the heel-strike to the states just after the next one:
\[X_{i+1} = P(X_i) \]

(7)

where \(X_i \) demonstrates the states of the system at the beginning of the \(i \)th step. When the period-one limit cycle walking exists, the map is given by:

\[X^* = P(X^*) \]

(8)

where \(X^* \) is the system’s fixed point. The Jacobian of Poincaré map at the system’s fixed points should be calculated to evaluate the stability. If all the eigenvalues of this Jacobian matrix are within the unit circle in the complex plane, the fixed points are stable; otherwise, the robot’s fall is inevitable.

C. Controller design

The concept of VHC is implemented to control the foot during the swing phase kinematically. In this regard, an event-based feedback controller adjusts the heel-strike according to the following constraint:

\[
\begin{cases}
q_4 & \text{remains unchanged if } q_3 \geq \phi \\
q_4 &= K(q_3 - q_r) & \text{if } q_3 < \phi \\
q_2 & \text{remains unchanged}
\end{cases}
\]

(9)

where \(q_r \) is a reference value, preferred to be equal to \(q_3^* \); representing the absolute value of \(q_3 \) at the moment of heel strike when the configuration of biped satisfies \(q_2 = q_4 = 0 \). Also, \(\phi \) is an arbitrary value defining controller intervention during the swing phase, and \(K \) is a constant gain which must be determined.

When the disturbance is included, \(q_3 \) will be diverted from its nominal value, so \(q_4 \) and then the switching surface changes. Now if an appropriate value of \(K \) is chosen, the switching surface will reshape back to its initial state together by eliminating the external disturbance. Note since we do not follow any systematic approach in this study, \(K \) must be numerically found.

III. SIMULATION RESULTS

Numerical techniques are employed to show how RSS can be used to improve the stability of bipedal dynamic walking.

A. Uncontrolled dynamic walking

For a set of specified parameters, \(P = 0.01 \) and \(\delta = \rho = 0.2 \), a stable walking cycle is presented in Fig. 2. The figure shows the angles of the robot when it permanently walks on the level ground; where the fixed point is:

\[
x_0 = [q_1 \; \dot{q}_1 \; q_2 \; \dot{q}_2 \; q_3 \; \dot{q}_3 \; q_4 \; \dot{q}_4] = \\
[0.1143 \; -0.1091 \; 0 \; 0 \; 0.2284 \; -0.0023 \; 0 \; 0]
\]

B. Controlled dynamic walking

Fig. 3 shows the values of \(q_3^* \) versus push-off; while \(\delta = \rho = 0.2 \). This figure demonstrates the stable and unstable limit cycles of the system. According to the figure, the biped presents stable period-one limit cycle walking for \(P \leq 0.2 \).

By increasing \(P \), the period-doubling route to chaos occurs. The red line in the figure depicts the unstable limit cycles, which will be stabilized by using RSS.
For three different values of K, the bifurcation diagrams are plotted. Fig. 5 and Fig. 6 show the step length and step velocity versus push-off, respectively. Results show that by increasing K, the robot can stably take the longer steps at higher speeds. In other words, it would be possible to shift the bifurcation point somewhere forward by regulating the value of the controller’s constant, i.e., K.

IV. CONCLUSIONS AND FUTURE WORKS

In this study, the concept of RSS is examined for the level-ground dynamic walking. It has been shown that this concept can successfully extend the stability of a push-off based dynamic walker. It is also demonstrated that the similar walking trajectories could have entirely different stable condition, while the gait’s efficiency is kept unvaried.

In future studies, we plan to model the push-off actuation in detail to take a step towards a real dynamic biped. Furthermore, since the presented biped merely walks based on its natural dynamics, it would be desired to design walking trajectories in advance. In this regard, some theories like foot placement could be helpful.

REFERENCES