Morgan-Stone Lattices

Alexej Pynko

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

MORGAN-STONE LATTICES

ALEXEJ P. PYNKO

Abstract

Morgan-Stone (MS) lattices are axiomatized by the constant-free identities of those axiomatizing Morgan-Stone (MS) algebras. Applying the technique of characteristic functions of prime filters as homomorphisms from lattices onto the two-element chain one and their products, we prove that the variety of MS lattices is the abstract hereditary multiplicative class generated by a six-element one with an equational disjunctive system expanding the direct product of the three- and two-element chain distributive lattices, in which case subdirectly-irreducible MS lattices are exactly isomorphic copies of nine non-one-element pair-wise non-isomorphic subalgebras of the six-element generating MS lattice, and so we get a 29-element non-chain distributive lattice of varieties of MS lattices subsuming the four-/three-element chain one of "De Morgan"/Stone lattices/algebras (viz., constant-free versions of De Morgan algebras)/(more precisely, their term-wise definitionally equivalent constant-free versions, called Stone lattices). Among other things, we provide an REDPC scheme for MS lattices. Laying a special emphasis onto the universal/[quasi-]equational unbounded approximation of MS algebras (viz., the greatest universal/[quasi-]equational class of MS lattices without members with both bounds but expandable to no MS algebra), we find a 29 -element non-chain distributive lattice of its sub-quasi-varieties, subsuming the fifteenelement one of the [quasi-]equational join (viz., the [quasi-]variety generated by the union) of De Morgan and Stone lattices, in its turn, subsuming the eight-element one of those of the variety of De Morgan lattices found earlier, each of the rest being the quasi-equational join of its intersection with the variety of De Morgan lattices and the variety of Stone lattices, as well as provide a complete description of their relative subdirectly-irreducibles resulting from REDPC for MS lattices. In this connection, we also prove that relatively simple quasi-varieties of MS lattices/algebras are exactly varieties of almost/ De Morgan lattices/algebras, the reservation "almost" meaning presence of subdirectly-irreducibles not expandable to MS algebras, in which case there is a strictly decreasing countable chain of quasi-varieties of almost De Morgan lattices containing all De Morgan lattices, and so its intersection is not finitely axiomatizable, though the lattice of quasi-vaarieties of almost Kleene lattices is proved to be finite but not distributive.

1. Introduction

The notion of De Morgan lattice, being originally due to [16], has been independently explored in [11] under the term distributive i-lattice w.r.t. their subdirectlyirreducibles and the lattice of varieties. They satisfy so-called De Morgan identities. On the other hand, these are equally satisfied in Stone algebras (cf., e.g., [8]). This has inevitably raised the issue of unifying such varieties. Perhaps, a first way of doing it within the framework of De Morgan algebras (viz., bounded De Morgan lattices; cf., e.g., [2]) has been due to [3] (cf. [24]) under the term Morgan-Stone (MS) algebra providing a description of their subdirectly-irreducibles, among which there are those being neither De Morgan nor Stone algebras. Here, we study unbounded MS algebras naturally called Morgan-Stone (MS) lattices. Demonstrating the usefulness of the technique of the characteristic functions of prime filters and

[^0]Key words and phrases. De Morgan lattice, Stone algebra, quasi-variety, REDPC..
functional products of former ones as well as disjunctive systems, we briefly discuss the issues of subdirectly-irreducible Morgan-Stone lattices and their varieties. Likewise, summarizing construction of REDPC schemes (cf. [7]) for distributive lattice[expansion]s originally being due to [9] [and [13, 22]], we provide that for Morgan-Stone lattices and an enhanced one for the \{quasi-\}equational join of De Morgan and Stone lattices. Nevertheless, the culminating issue of this study is to find the lattice of sub-quasi-varieties of the equational unbounded approximation of MS algebras upon the basis of that of the variety of De Morgan lattices found in [18]. In this connection, we also prove that relatively simple quasi-varieties of MS lattices/algebras are exactly varieties of almost/ De Morgan lattices/algebras, while the equational unbounded approximation of MS algebras is equally the universal one, whereas there is a strictly decreasing countable chain of quasi-varieties of almost De Morgan lattices subsuming all De Morgan lattices, its intersection being then not finitely axiomatizable, though the lattice of quasi-vaarieties of almost Kleene lattices is proved to be finite but not distributive.

Perhaps, the principal advance of this study with regard to [18] consists in not merely extending it beyond De Morgan lattices but mainly in providing complete description of relative subdirectly-irreducibles of the finitely-generated quasi-varieties of MS lattices under consideration, essentially based upon REDPC for MS lattices as well as congruence decomposition (in its turn, going back to congruence ideality [7]) for varieties with REDPC, thus once more demonstrating the power of the ideas underlying the outstanding work [7].

In general, we seek to expand our results to bounded MS lattices properly subsuming MS algebras, whenever it is at all possible. This equally concerns the issues of subdirectly-irreducibles and the lattice of varieties but not the one of quasivarieties because of the well-known infiniteness of that of Kleene algebras (more specifically, its Q-universality; [1]).

The rest of the work is as follows. Section 2 is a concise summary of basic settheoretical and algebraic issues underlying the work. Then, in Section 3 we briefly summarize general issues concerning REDPC in the sense of [7] as well as equational implicative/disjunctive systems in the sense of $[21] /[20]$ in connection with simplicity/"subdirect irreducibility". Next, Section 4 is devoted to preliminary study of Morgan-Stone lattices as for their generating algebra, subdirectly-irreducibles and the lattice of varieties. Further, Section 5 is a thorough collection of culminating results on sub-quasi-varieties of the equational unbounded approximation of Morgan-Stone algebras. Likewise, Section 6 is devoted to characterizing relatively semi-simple quasi-varieties of MS lattices/algebras. Finally, Section 7 is a concise collection of open issues.

2. General background

2.1. Set-theoretical background. Non-negative integers are identified with the sets/ordinals of lesser ones, "their set/ordinal"|"the ordinal||set class" being denoted by $\omega \mid(\infty \| \Upsilon)$. Unless any confusion is possible, one-element sets are identified with their elements. To avoid any confusion because of the standard identification of Υ^{n} (viz., the class of functions with domain $n \in \omega$) with $\left[\Upsilon^{n-1} \times\right] \Upsilon$, when $n=(1[+m])$ [where $m \in \omega]$, the projection operator/function π is endowed with the superscript specifying the domain of arguments only in such cases \{but not in general $\}$.

For any sets A, B and D as well as $\theta \subseteq A^{2}, h: A \rightarrow B$ and $g: A^{2} \rightarrow A$, let $\wp_{[K]}((B) A$,$) be the set of all subsets of A$ (including $\left.B\right)$ [of cardinality in $K \subseteq$ $\infty, D \subseteq_{K} A$ standing for $\left.D \in \wp_{K}(A)\right],\left(\left(\Delta_{A} \mid \nu_{\theta}\right)\|(A / \theta)\| \chi_{A}^{B}\right) \triangleq(\{\langle a, a \mid \theta[\{a\}]\rangle \mid$ $\left.a \in A\}\left\|\nu_{\theta}[A]\right\|(((A \cap B) \times\{1\}) \cup((A \backslash B) \times\{0\}))\right), A^{* \mid+} \triangleq\left(\bigcup_{m \in(\omega \backslash(0 \mid 1))} A^{m}\right)$,
$h_{*}: A^{*} \rightarrow B^{*}: a \mapsto(a \circ h), g_{+}: A^{+} \rightarrow A,\langle[\langle a, b\rangle] c,\rangle \mapsto[g]\left(\left[g_{+}(\langle a, b\rangle),\right] c\right)$ and $\varepsilon_{B}:\left(\Upsilon^{B}\right)^{2} \rightarrow \wp(B),\langle d, e\rangle \mapsto\left\{b \in B \mid \pi_{b}(d)=\pi_{b}(e)\right\}, A$-tuples $\{$ viz., functions with domain $A\}$ being written in the sequence form \bar{t} with t_{a}, where $a \in A$, standing for $\pi_{a}(\bar{t})$. Then, for any $(\bar{a} \mid C) \in\left(A^{*} \mid \wp(A)\right)$, by induction on the length (viz., domain) of any $\bar{b}=\langle[\bar{c}, d]\rangle \in A^{*}$, put $((\bar{a} * \bar{b}) \mid(\bar{b}(\cap / \backslash) C)) \triangleq(([] \bar{a}[* \bar{c}, d\rangle]) \mid(\langle[\bar{c}(\cap / \backslash) C(, d)]\rangle))$ $\mid[($ provided $d \in / \notin C)]$. Likewise, given any $\bar{S} \in \wp(D)^{B}$ and $\bar{f} \in \prod_{b \in B} S_{b}^{A}$, we have its functional product $\left(\prod^{\mathrm{F}} \bar{f}\right): A \rightarrow\left(\prod_{b \in B} S_{b}\right), a \mapsto\left\langle f_{b}(a)\right\rangle_{b \in B}$ such that

$$
\begin{align*}
& \operatorname{ker}\left(\prod^{\mathrm{F}} \bar{f}\right)=\left(A^{2} \cap\left(\bigcap_{b \in B}\left(\operatorname{ker} f_{b}\right)\right)\right) \tag{2.1}\\
& \forall b \in B: f_{b}=\left(\left(\prod^{\mathrm{F}} \bar{f}\right) \circ \pi_{b}\right) \tag{2.2}
\end{align*}
$$

$f_{0} \odot f_{1}$ standing for $\left(\Pi^{\mathrm{F}} \bar{f}\right)$, whenever $B=2$.
A lower/upper cone of a poset $\mathcal{P}=\langle P, \leqq\rangle$ is any $C \subseteq P$ such that, for all $a \in C$ and $b \in P,(a \geqq / \leqq b) \Rightarrow(b \in C)$. Then, an $a \in S \subseteq P$ is said to be minimal/maximal in S, if $\{a\}$ is a lower/upper cone of S, their set being denoted by $(\min / \max)_{\mathcal{P} \mid \leqq}(S)$, in case of the equality of which to S, this being called an anti-chain of \mathcal{P}.

An $X \in Y \subseteq \wp(A)$ is said to be [K-]meet-irreducible in Y, [where $K \subseteq \infty$], if $\forall Z \in \wp_{[K]}(Y):((A \cap(\bigcap Z))=X) \Rightarrow(X \in Z)$, their set being denoted by $\mathrm{MI}^{[K]}(Y)$, "finitely-" standing for " ω-" within any related context. Next, a $\mathcal{U} \subseteq \wp(A)$ is said to be upward-directed, if $\forall \mathcal{S} \in \wp_{\omega}(\mathcal{U}): \exists T \in(\mathcal{U} \cap \wp(\bigcup \mathcal{S}, A))$, subsets of $\wp(A)$ closed under unions of upward directed subsets being called inductive. Further, a [finitary] closure operator over A is any unary operation on $\wp(A)$ such that $\forall X \in \wp(A), \forall Y \in$ $\wp(X):(X \cup C(C(X)) \cup C(Y)) \subseteq C(X)\left[=\left(\bigcup C\left[\wp_{\omega}(X)\right]\right)\right]$. Finally, a closure system over A is any $\mathcal{C} \subseteq \wp(A)$ containing A and closed under intersections of subsets containing A, any $\mathcal{B} \subseteq \mathcal{C}$ with $\mathcal{C}=\{A \cap(\cap \mathcal{S}) \mid \mathcal{S} \subseteq \mathcal{B}\}$ being called a (closure) basis of \mathcal{C} and determining the closure operator $C_{\mathcal{B}} \triangleq\{\langle Z, A \cap(\cap(X \cap \wp(Z, A)))\rangle \mid Z \in$ $\wp(A)\}$ over A with $\left(\operatorname{img} C_{\mathcal{B}}\right)=\mathcal{C}$. Conversely, $\operatorname{img} C$ is a closure system over A with $C_{\mathrm{img} C}=C$, being inductive iff C is finitary, and forming a complete lattice under the partial ordering by inclusion with meet/join $\left(\Delta_{\wp(A)} / C\right)(A \cap((\cap / \bigcup) \mathcal{S}))$ of any $\mathcal{S} \subseteq(\operatorname{img} C), C$ and $\operatorname{img} C$ being called dual to one another. Then, $C(X) \in(\operatorname{img} C)$ is said to be generated by an $X \subseteq A$, elements of $C\left[\wp_{\omega /\{n\}}(A)\right] /$ "with $n \in(\omega \mid\{1\})$ " being said to be finitely/n-generated \mid principal.

Remark 2.1. Due to Zorn Lemma, according to which any non-empty inductive set has a maximal element, $M I^{[K]}(\mathcal{C})$ is a basis of any inductive closure system \mathcal{C}.

A filter/ideal on A is any $\mathcal{F} \subseteq \wp(A)$ such that, for all $\mathcal{S} \in \wp_{\omega}(\wp(A)),(\mathcal{S} \subseteq \mathcal{F}) \Leftrightarrow$ $((A \cap((\cap / \bigcup) \mathcal{S})) \in \mathcal{F})$ "the set $\operatorname{Fi}(A)$ of them being an inductive closure system over $\wp(A)$ with dual finitary closure operator (of filter generation) Fg_{A} such that

$$
\begin{equation*}
\operatorname{Fg}_{A}(\mathcal{T})=\wp(A \cap(\bigcap \mathcal{T}), A), \tag{2.3}
\end{equation*}
$$

for all $\mathcal{T} \in \wp_{\omega}(\wp(A)) " /$. Then, an ultra-filter on A is any filter \mathcal{U} on A such that $\wp(A) \backslash \mathcal{U}$ is an ideal on A.
2.2. Algebraic background. Unless otherwise specified, we deal with a fixed but arbitrary finitary functional signature Σ, Σ-algebras/"their carriers" being denoted by same capital Fraktur/Italic letters (with same indices|suffixes|prefixes, if any) "with denoting the class of all [one-element] ones by $A_{\Sigma}^{[=1] " / . ~ I n ~ g e n e r a l, ~ a n y ~ n o-~}$ tation, being specified for single Σ-algebras, is tacitly supposed to be extended to their classes member-wise. Given any $\alpha \in(\infty \backslash 1)$, let $\operatorname{Tm}_{\Sigma}^{\alpha}$ be the carrier of the absolutely-free Σ-algebra $\mathfrak{T m}_{\Sigma}^{\alpha}$, freely-generated by the set $V_{\alpha} \triangleq\left\{x_{\beta}\right\}_{\beta \in \alpha}$ of (first
$\alpha)$ variables, and $\mathrm{Eq}_{\Sigma}^{\alpha} \triangleq\left(\operatorname{Tm}_{\Sigma}^{\alpha}\right)^{2}, \phi \approx /(\lesssim \mid \gtrsim) \psi$, where $\phi, \psi \in \operatorname{Tm}_{\Sigma}^{\alpha} /$ "and $\wedge \in \Sigma$ ", meaning $\langle\phi /(\phi \wedge \psi), \psi /(\phi \mid \psi)\rangle$ "and being called a Σ-equation of rank α "/. /"Likewise, for any Σ-algebra \mathfrak{A} and $a, b \in A,\left(a(\leqslant \mid \geqslant)^{\mathfrak{A}} b\right) \|[a, b]_{\mathfrak{A}}$ stands for $((a \mid b)=$ $\left.\left(a \wedge^{\mathfrak{A}} b\right)\right) \|\left\{c \in A \mid a \leqslant^{\mathfrak{A}} c \leqslant^{\mathfrak{A}} b\right\} . "$ Then, any $\langle\Gamma, \Phi\rangle \in\left(\wp_{\infty /(1[\cup \omega])}\left(\mathrm{Eq}_{\Sigma}^{\alpha}\right) \times \mathrm{Eq}_{\Sigma}^{\alpha}\right)$ /"with $\alpha \in \omega$ " is called a Σ-implication/-[quasi-]identity of rank α, written as $\Gamma \rightarrow \Phi$ and identified with Φ, if $\Gamma=\varnothing$, as well as treated as the universal infinitary/first-order strict Horn sentence $\forall_{\beta \in \alpha} x_{\beta}((\bigwedge \Gamma) \rightarrow \Phi)$, the class/set of those of any /finite rank true in a $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$ being called the implicational//quasiJequational theory of K and denoted by $(\mathcal{J} /[\mathrm{Q}] \mathcal{E})(\mathrm{K})$.

Subclasses of $A_{\Sigma}\left\{\cap \mathrm{K}\right.$ with $\left.\mathrm{K} \subseteq \mathrm{A}_{\Sigma}\right\}$ "closed under $\{\mathrm{K} \cap\}\left(\mathbf{I}|\mathbf{H}| \mathbf{S}_{(>1)} \mid \mathbf{P}^{[\mathrm{SD} \| \mathrm{U}]}\right)$ "/ "containing each Σ-algebra with finitely-generated subalgebras in them"/"containing no infinite finitely-generated member" are called "\{relatively $\}$ abstract \mid imageclosed \mid (non-trivially-)hereditary|[ultra-||sub-]multiplicative"/local/locally-finite (cf. [15]). Then, a skeleton $\left\{\right.$ of $\mathrm{a}\left(\mathrm{n}\right.$ abstract) $\left.\mathrm{K} \subseteq \mathrm{A}_{\Sigma}\right\}$ is any $\mathrm{S} \subseteq \mathrm{A}_{\Sigma}$ without pair-wise distinct isomorphic members $\left\{\right.$ such that $\mathrm{S} \subseteq \mathrm{K} \subseteq \mathbf{I S}$ (i.e., $\mathrm{K}=\mathbf{I S}$) \}. Given $\mathrm{K}, \mathrm{K}^{\prime} \subseteq$ $\mathrm{A}_{\Sigma} \ni \mathfrak{A}$, set $\operatorname{hom}_{(\mathrm{I})}^{[\mathrm{S}]}(\mathfrak{A}, \mathrm{K}) \triangleq\{h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B}) \mid \mathfrak{B} \in \mathrm{K}[,(\operatorname{img} h)=B](,(\operatorname{ker} h)=$ $\left.\left.\Delta_{A}\right)\right\}$ and $\operatorname{Co}_{K}(\mathfrak{A}) \triangleq\{\theta \in \operatorname{Co}(\mathfrak{A}) \mid(\mathfrak{A} / \theta) \in \mathrm{K}\}$, whose elements are called K (relative)congruences of $\mathfrak{A}, \mathrm{K}^{\prime} \preceq \mathrm{K}$ standing for $\mathrm{K}^{\prime} \subseteq$ ISK and thus providing a quasi-ordering on A_{Σ}, in which case, by the Homomorphism Theorem, we have

$$
\begin{equation*}
\left(\operatorname{ker}\left[\operatorname{hom}^{\mathrm{S} \mid}(\mathfrak{A}, \mathrm{K})\right]\left\{\backslash\left(\varnothing \mid\left\{A^{2}\right\}\right)\right\}\right)=\operatorname{Co}_{\left(\mathbf{I} \mid\left(\mathbf{I} \mathbf{S}_{\{>1\}}\right)\right) \mathrm{K}(\mathfrak{A}), ~} \tag{2.4}
\end{equation*}
$$

and so "by the Homomorphism Theorem" \mid, for all $\mathfrak{B} \in \mathrm{A}_{\Sigma}$ and $h \in \operatorname{hom}^{\mathrm{S} \mid(\mathrm{S} \|)}(\mathfrak{B} \mid \mathfrak{A}$, $\mathfrak{A} \mid \mathfrak{B}):$

$$
\begin{align*}
& \forall \theta \in\left(\operatorname{Co}_{[(\mathbf{I} \mid \mathbf{(\mathbf { I } \| (\mathbf { I S }))) \mathrm { K }]}}(\mathfrak{B}) \cap \wp\left((\operatorname{ker} h) \mid \Delta_{B}, B^{2}\right)\right): \tag{2.5}\\
& h_{*}^{\mid(-1)}[\theta] \in\left(\operatorname{Co}_{[(\mathbf{I} \mid \mathbf{(I} \|(\mathbf{I} \mathbf{S}))) \mathrm{K}]}(\mathfrak{A}) \cap \wp\left(\Delta_{A} \mid(\operatorname{ker} h), A^{2}\right)\right), \\
& \quad h_{*}^{(-1) \mid}\left[h_{*}^{\mid(-1)}[\theta]\right]=\left(\theta \cap(B \mid h[A])^{2}\right)
\end{align*}
$$

"yielding an isomorphism between the posets $\operatorname{Co}_{[\mathbf{I K}]}(\mathfrak{B}) \cap \wp\left(\operatorname{ker} h, B^{2}\right)$ and $\operatorname{Co}_{[\mathbf{I K}]}(\mathfrak{A})$ ordered by inclusion as well as" || |"implying:

$$
\begin{equation*}
h_{*}^{-1}\left[\operatorname{Cg}_{[(\mathbf{I} \|(\mathbf{I S})) \mathbf{K}]}^{\mathfrak{B}}\left(h_{*}[X]\right)=\| \supseteq \operatorname{Cg}_{[(\mathbf{I} \|(\mathbf{I S})) \mathbf{K}]}^{\mathfrak{A}}(X \cup(\operatorname{ker} h)),\right. \tag{2.6}
\end{equation*}
$$

for all $X \subseteq A^{2} "$, while, as, for any set $I, \overline{\mathfrak{B}} \in \mathrm{~A}_{\Sigma}^{I}$ and $\bar{f} \in\left(\prod_{i \in I} \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{i}\right)\right)$:

$$
\begin{equation*}
\left(\prod^{\mathrm{F}} \bar{f}\right) \in \operatorname{hom}\left(\mathfrak{A}, \prod_{i \in I} \mathfrak{B}_{i}\right), \tag{2.7}
\end{equation*}
$$

by (2.1) and (2.2) with [finite] $I \triangleq \operatorname{Co}_{(\mathbf{I} \|(\mathbf{I} \mathbf{S})) \mathrm{K}}(\mathfrak{A})$ [if either A is finite or, by (2.4), both \mathfrak{A} is finitely-generated and K as well as all its members are finite] for B, $\overline{\mathfrak{B}} \triangleq\langle\mathfrak{B} / i\rangle_{i \in I}, D \triangleq\left(\bigcup_{i \in I} B_{i}\right)$ and $\bar{f} \triangleq\left\langle\nu_{i}\right\rangle_{i \in I}$, we get:

$$
\begin{equation*}
\left.\left(\mathfrak{A} \in \mathbf{I P}_{[\omega]}^{\mathrm{SD}}(\{\mathbf{I}\} \|(\{\mathbf{I}\} \mathbf{S})) \mathrm{K}\right)\right) \Leftrightarrow\left(\left(A^{2} \cap\left(\bigcap \operatorname{ker}\left[\operatorname{hom}^{\mathrm{S} \|}(\mathfrak{A}, \mathrm{K})\right]\right)\right)=\Delta_{A}\right) \tag{2.8}
\end{equation*}
$$

whereas, since, for any $I \triangleq \Theta \subseteq \operatorname{Co}_{\langle\mathrm{K}\rangle}(\mathfrak{A}), \theta \triangleq\left(A^{2} \cap(\bigcap \Theta)\right) \in \operatorname{Co}(\mathfrak{A}), \overline{\mathfrak{B}} \triangleq$ $\langle\mathfrak{A} / i\rangle_{i \in I} \in\left(\mathrm{~A}_{\Sigma}\langle\cap \mathrm{K}\rangle\right)^{I}$ as well as, by the Homomorphism Theorem, $\bar{f} \triangleq\left\langle\nu_{\theta}^{-1} \circ\right.$ $\left.\nu_{i}\right\rangle_{i \in I} \in\left(\prod_{i \in I} \operatorname{hom}\left(\mathfrak{A} / \theta, \mathfrak{B}_{i}\right)\right)$, taking (2.1), (2.2) and (2.7) into account, we see that $e \triangleq\left(\prod \bar{f}\right)$ is an embedding of \mathfrak{A} / θ into $\mathfrak{C} \triangleq\left(\prod_{i \in I} \mathfrak{B}_{i}\right)$ such that $\mathfrak{C} \upharpoonright(\operatorname{img} e)$, being isomorphic to \mathfrak{A} / θ, is a subdirect product of $\overline{\mathfrak{B}}\left\langle\right.$ in which case $(\mathfrak{A} / \theta) \in \mathbf{I P}^{\text {SD }} \mathrm{K}$, and so, providing K is both abstract and sub-multiplicative, $\left.\theta \in \mathrm{Co}_{\mathrm{K}}(\mathfrak{A})\right\rangle$. In particular, [providing K is both abstract and sub-multiplicative], $\mathrm{Co}_{[\mathrm{K}]}(\mathfrak{A})$ is a closure system over A^{2}, the dual closure operator being denoted by $\mathrm{Cg}_{[\mathbf{K}]}^{2}$.

Remark 2.2. By (2.4), the |-right alternative of (2.5) with $h=\nu_{\vartheta}$, where $\vartheta \in$ $\left.\mathrm{Co}_{\mathbf{I P}}{ }^{\mathrm{SD}}([\mathbf{I}] \|(\mathbf{I}] \mathbf{S})\right) \mathrm{K}(\mathfrak{A}), \mathfrak{B}=(\mathfrak{A} / \vartheta)$ and $\theta=\Delta_{B}$ as well as (2.8), since $\vartheta=h_{*}^{-1}[\theta]$, while h_{*}^{-1} preserves intersections, $\operatorname{Co}_{(\mathbf{I} \|(\mathbf{I S})) \mathrm{K}}(\mathfrak{A})$ is a basis of the closure system $\mathrm{Co}_{\mathbf{I P}}{ }^{\mathrm{SD}}([\mathbf{I}] \|([\mathbf{I}] \mathbf{S})) \mathrm{K}(\mathfrak{A})$ over A^{2}.

Given any Σ-algebra \mathfrak{A} and any function f with $(\operatorname{dom} f)=A$ and $(\operatorname{ker} f) \in$ $\left(\operatorname{Co}(\mathfrak{A}) /\left\{\Delta_{A}\right\}\right)$, we have its homomorphic/isomorphic image/copy $f[\mathfrak{A}]$ by f with carrier $f[A]$ and operations $\varsigma^{f[\mathfrak{L}]} \triangleq f_{*}\left[\varsigma^{\mathfrak{A}}\right]$, for each $\varsigma \in \Sigma$, in which case $f \in$ $\operatorname{hom}^{\mathrm{S}}(\mathfrak{A}, f[\mathfrak{A}])$, and so $f[\mathfrak{A}] \in(\mathbf{H} \mid \mathbf{I}) \mathfrak{A}$, such exhausting all members of $(\mathbf{H} \mid \mathbf{I}) \mathfrak{A}$.

According to [23], pre-varieties are abstract hereditary multiplicative subclasses of A_{Σ} (these are exactly model classes of theories constituted by Σ-implications of unlimited rank, and so are also called implicative/implicational; cf., e.g., [4]/[18]), $\mathbf{P V}(\mathrm{K}) \triangleq \mathbf{I S P K}=\mathbf{I P}^{\mathbf{S D}}(\mathbf{I}) \mathbf{S}_{[>1]} \mathrm{K}=\operatorname{Mod}(\mathcal{J}(\mathrm{K}))$ being the least one including and so called generated by a $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$. Likewise, [quasi-]varieties are [ultra-multiplicative] pre-varieties closed under $\mathbf{H}^{[\mathrm{II}]}[\triangleq \mathbf{I}]$ (these are exactly model classes of sets of Σ -[quasi-]identities of unlimited finite rank, and so are local and also called [quasiJequational; cf., e.g., [15]), $[\mathbf{Q}] \mathbf{V}(\mathrm{K}) \triangleq \mathbf{H}^{[\mathrm{I}]} \mathbf{S P}\left[\mathbf{P}^{\mathrm{U}}\right] \mathrm{K}=\operatorname{Mod}([Q] \mathcal{J}(\mathrm{K}))$ being the least one including and so called generated by a $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$. Then, ((pre-/quasi) varieties generated by finite classes of finite Σ-algebras are called finitely-generated, in which case, by [(2.8)] (and [6, Corollary 2.3]), they are locally-finite (and quasiequational)/. Further, intersections of a $K \subseteq A_{\Sigma}$ with [pre-/quasi-]varieties are called its relative sub-[pre-/quasi-]varieties, in which case, for any $\mathcal{E} \subseteq \mathrm{Eq}_{\Sigma}^{\omega}$,

$$
\begin{equation*}
\left(\mathbf{I P}^{\mathrm{SD}}(\mathrm{~K}) \cap \operatorname{Mod}(\mathcal{E})\right)=\mathbf{I} \mathbf{P}^{\mathrm{SD}}(\mathrm{~K} \cap \operatorname{Mod}(\mathcal{E})) \tag{2.9}
\end{equation*}
$$

and so $S \mapsto(S \cap K)$ and $R \mapsto I \mathbf{P}^{S D} R$ are inverse to one another isomorphisms between the lattices of relative sub-varieties of $\mathbf{I P}^{S D} \mathrm{~K}$ and those of K .

Then, a [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ is said to be [(relatively)] congruence-distributive, if, for each $\mathfrak{A} \in P, \operatorname{Co}_{[(P)]}(\mathfrak{A})$ is distributive.
Remark 2.3. Given a [quasi-equational] pre-variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ and $\alpha \in(\infty \backslash 1)$, by the \mid-right alternative of (2.4) with $\mathrm{K}=\mathrm{P}$ and $\mathfrak{A}=\operatorname{Tm}_{\Sigma}^{\alpha}$, any Σ-implication $\Gamma \rightarrow \Phi$ of rank α is true in P iff $\Phi \in \operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}(\Gamma)$ [in which case, by the Compactness Theorem for ultra-multiplicative classes of algebras (cf., e.g., [15]), $\mathrm{Cg}_{\mathrm{P}}^{\mathfrak{A}}$ is finitary, and so is $\mathrm{Cg}_{\mathrm{P}}^{\mathfrak{B}}$, for any $\mathfrak{B} \in \mathrm{A}_{\Sigma}$, in view of the left $\|$-alternative of (2.6), when taking $\alpha=|B|$ and h to extend any bijection from V_{α} onto $\left.B\right]$.

Furthermore, [given an abstract $K \subseteq A_{\Sigma}$] an $\mathfrak{A} \in\left(\mathrm{A}_{\Sigma}[\cap \mathrm{K}]\right)$ is said to be [K$\{$ relatively $\}$ Jsimple/(K-) subdirectly-irreducible /(where $K \subseteq \infty)$, if $\Delta_{A} \in\left(\max _{\subseteq} \subseteq\right.$ $\left.\mathrm{MI}^{(K)}\right)\left(\mathrm{Co}_{[\mathrm{K}]}(\mathfrak{A}) \backslash\left(\left\{A^{2}\right\} / \varnothing\right)\right)$, in which case $|A| \neq 1$, the class of \langle those of \rangle them $\left\langle\right.$ which are in a $\left.\mathrm{K}^{\prime} \subseteq\left(\mathrm{A}_{\Sigma}[\cap \mathrm{K}]\right)\right\rangle$ being denoted by $\left(\mathrm{Si} / \mathrm{SI}^{(K)}\right)_{[\mathrm{K}]}\left\langle\left(\mathrm{K}^{\prime}\right)\right\rangle,{ }^{1}$ and so, by (2.4) and (2.8),

$$
\begin{equation*}
(\mathrm{Si} \mid \mathrm{SI})_{\left[\mathbf{I P}^{\mathrm{SD}}(\mathbf{S}) \mathrm{K}^{\prime \prime}\right]}\left(\mathbf{I P}^{\mathrm{SD}}(\mathbf{S}) \mathrm{K}^{\prime \prime}\right) \subseteq \mathbf{I}\left(\mathbf{S}_{>1}\right) \mathrm{K}^{\prime \prime} \tag{2.10}
\end{equation*}
$$

for any $\mathrm{K}^{\prime \prime} \subseteq \mathrm{A}_{\Sigma}$. Then, a [pre-]variety P is said to be [\{relatively\}] (finitely) semi-simple/subdirectly-representable, if

$$
\left(\mathrm{SI}_{[\{\mathrm{P}\}]}^{(\omega)}(\mathrm{P}) / \mathrm{P}\right) \subseteq \mid=\left(\mathrm{Si}_{[\{\mathrm{P}\}]}(\mathrm{P}) / \mathbf{I P}^{\mathrm{SD}}\left(\mathrm{Si}^{\left(\mathrm{SI}^{(\omega)}\right.}\right)_{[\{\mathrm{P}\}]}(\mathrm{P})\right),
$$

any variety $\mathrm{V} \subseteq \mathrm{A}_{\Sigma}$ being well-known, due to Birkgoff's Theorem, to be subdirectlyrepresentable. More generally, we have:

Remark 2.4. Given any [quasi-]variety $\mathrm{Q} \subseteq \mathrm{A}_{\Sigma}$ and $\mathfrak{A} \in\left(\{\mathrm{Q} \cap\} \mathrm{A}_{\Sigma}\right)$, by Remarks 2.1, 2.2, 2.3 and the right $\|$-alternative of $(2.5), \mathrm{MI}^{(\omega)}\left(\mathrm{Co}_{Q}(\mathfrak{A})\right)=\operatorname{Co}_{\mathrm{SI}_{Q}^{(\omega)}(\mathbb{Q})}(\mathfrak{A})$ is

[^1]a basis of both $\mathrm{Co}_{\mathrm{Q}}(\mathfrak{A})$ and $\mathrm{Co}_{\mathbf{I P}^{\mathrm{SD}} \mathrm{SI}_{Q}^{(\omega)}(\mathbb{Q})}(\mathfrak{A})$ ，in which case these are equal $\{$ and so，since $\nu_{\Delta_{A}} \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{A}, \mathfrak{A} / \Delta_{A}\right)$ is injective， $\left.\mathfrak{A} \in \mathbf{I P}^{\mathrm{SD}} \mathrm{SI}_{\mathrm{Q}}^{(\omega)}(\mathrm{Q})\right\}$ ．In particular， Q is［relatively］（finitely）subdirectly－representable．

Recall that，according to［14］，a［n implicational］ $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$ is congruence－permutab－ $l e$ ，i．e．，for each $\mathfrak{A} \in \mathrm{K}$ and all $\theta, \vartheta \in \mathrm{Co}(\mathfrak{A}),(\theta \circ \vartheta) \subseteq(\vartheta \circ \theta)$ ，if［ $[\mathrm{f}]$ it has a congruence－ permutation term，viz．，a $\pi \in \operatorname{Tm}_{\Sigma}^{3}$ such that K satisfies the Σ－identities in $\left\{x_{1} \approx\right.$ $\left.\left(\sigma_{i}(\pi)\right) \mid i \in\{0,2\}\right\}$ ，where，for every $j \in 3, \sigma_{j} \triangleq\left[x_{j} / x_{1} ; x_{k} / x_{0}\right]_{k \in(3 \backslash\{j\})}$ ．Likewise， a minority \mid majority term for $\mathrm{K} \mid\left\{\right.$ with $\Sigma_{+} \triangleq\{\wedge, \vee\} \subseteq \Sigma$ and the Σ_{+}－reducts of members of K being lattices $\}$ is any $\mu \in \operatorname{Tm}_{\Sigma}^{3}$ such that K satisfies the Σ－identities in $\left\{x_{(1-\min (2-i, i)) \mid 0} \approx\left(\sigma_{i}(\mu)\right) \mid i \in 3\right\} \mid\left\{\mu_{+} \triangleq\left(\wedge_{+}\left\langle x_{i} \vee\left(x_{\max (1-i, 0)} \wedge x_{2+\min (i, 1-i)}\right)\right\rangle_{i \in 3}\right)\right.$ being so\}, in which case it is so "as well as a congruence-permutation term"| for the variety generated by K ，and so this is congruence－distributive［17］，while，for any congruence－permutation term π for $\mathrm{K}, \pi\left[x_{1} / \mu\right]$ is a majority｜minority term for K ＂and so $\mu\left[x_{1} / \mu\right]$ is a majority term for $\mathrm{K} " \mid$ ．Finally，a（ternary）｜dual discriminator （term）for K is any $\delta \in \mathrm{Tm}_{\Sigma}^{3}$ such that，for each $\mathfrak{A} \in \mathrm{K}$ ，$\delta^{\mathfrak{A}}=\left(\left(\pi_{2 \mid 0} \upharpoonright\left(\Delta_{A} \times\right.\right.\right.$ $\left.A)) \cup\left(\pi_{0 \mid 2} \upharpoonright\left(\left(A^{2} \backslash \Delta_{A}\right) \times A\right)\right)\right)$ ，in which case \mathfrak{A} is simple，because，for every $\theta \in$ $\left(\operatorname{Co}(\mathfrak{A}) \backslash\left\{\Delta_{A}\right\}\right)$ ，any $\langle a, b\rangle \in\left(\theta \backslash \Delta_{A}\right) \neq \varnothing$ and all $c \in A$ ，we have $(a \mid c)=\delta^{\mathfrak{A}}(a, b, c) \theta$ $\delta^{\mathfrak{A}}(a, a, c)=(c \mid a)$ ，so getting $\theta=A^{2}$ ，while δ is a｜dual discriminator for $\mathbf{I S P}^{\mathrm{U}} \mathrm{K}$ as well as a minority｜majority term for K ，whereas，for any congruence－permutation term π for $\mathrm{K}, \pi\left[x_{1} / \delta\right]$ is a dual｜discriminator for K ＂and so $\delta\left[x_{1} / \delta\right]$ is a dual discriminator for $\mathrm{K} " \mid$ ，$\{\langle$ quasi－／pre－\rangle varieties generated by classes of $\} \Sigma$－algebras with［dual］discriminator δ being called［dual］δ－discriminator，with denoting the class of［dual］δ－discriminator members of a $\mathrm{C} \subseteq \mathrm{A}_{\Sigma}$ by $\mathrm{C}_{\delta}^{[\partial]}$ ．Then，［dual］δ－ discriminator quasi－varieties are exactly quasi－equational［dual］δ－discriminator pre－ varieties．

2．2．1．Filtral congruences．Let I be a set， \mathcal{F} a $\{\mathrm{n}$ ultra－$\}$ filter on $I\left[\mathrm{P} \subseteq \mathrm{A}_{\Sigma}\right.$ a（quasi－ equational）pre－variety］，$\overline{\mathfrak{A}} \in\left(\mathrm{A}_{\Sigma}[\cap \mathrm{P}]\right)^{I}$ and \mathfrak{B} a subalgebra of its direct product． Then，by（2．5），for each $i \in I,\left(B^{2} \cap\left(\operatorname{ker} \pi_{i}\right)\right)=\left(\left(\pi_{i} \upharpoonright B\right)_{2}^{-1}\left[\Delta_{A_{i}}\right] \in \operatorname{Co}_{[\mathrm{P}]}(\mathfrak{B})\right.$ ，as $\left(\pi_{i} \backslash B\right) \in \operatorname{hom}\left(\mathfrak{B}, \mathfrak{A}_{i}\right)$ and $\Delta_{A_{i}} \in \operatorname{Co}_{[\mathrm{P}]}\left(\mathfrak{A}_{i}\right)$ ，in which case，for all $K \subseteq J \subseteq I$ ， the closure system $\operatorname{Co}_{[\mathrm{P}]}(\mathfrak{B})$ on B^{2} contains $\theta_{J}^{B} \triangleq\left(B^{2} \cap \varepsilon_{I}^{-1}[\wp(J, I)]\right)=\left(B^{2} \cap\right.$ $\left.\left(\bigcap_{j \in J} \operatorname{ker} \pi_{j}\right)\right) \subseteq \theta_{K}^{B}, \Theta_{\mathcal{F}}^{B} \triangleq\left\{\theta_{L}^{B} \mid L \in \mathcal{F}\right\}$ being thus upward－directed（and so $\mathrm{Co}_{[\mathrm{P}]}(\mathfrak{B})$ ，being inductive，in view of Remark 2．3，contains $\theta_{\mathcal{F}}^{B} \triangleq\left(\bigcup \Theta_{\mathcal{F}}^{B}\right)=\left(B^{2} \cap\right.$ $\left.\varepsilon_{I}^{-1}[\mathcal{F}]\right)$ ，called $\langle\mathcal{F}-\rangle\{$ ultra－$\}$ filtral $)$ ．Clearly，for any $\mathcal{X} \subseteq \operatorname{Fi}(I) \mid "$ with $(\bigcup \mathcal{X}) \in \operatorname{Fi}(I)$＂，

$$
\begin{equation*}
\theta_{\wp(I) \cap((\cap \mid \cup) X)}^{B}=\left(B^{2} \cap\left((\bigcap \mid \bigcup)\left\{\theta_{\mathcal{F}}^{B} \mid \mathcal{F} \in X\right\}\right)\right) \tag{2.11}
\end{equation*}
$$

A［pre－］variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ is said to be［relatively］（subdirectly）〈finitely／principally〉 filtral，if every 〈finitely－generated／principal〉［P－］congruence of each member of SP $\mathrm{SI}_{[\mathrm{P}]}(\mathrm{P})\left(\cap \mathbf{P}^{\mathrm{SD}} \mathrm{SI}_{[\mathrm{P}]}(\mathrm{P})\right)$ is filtral（cf．［7］for the equational case）．
2．2．1．1．Filtrality versus semi－simplicity．
Lemma 2．5．Any［relatively］subdirectly principally filtral［pre－］variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ is ［relatively］semi－simple．

Proof．Consider any $\mathfrak{A} \in \mathrm{SI}_{[\mathrm{P}]}(\mathrm{P})$ ，in which case $|A|>1$ ，and any $\theta \in\left(\mathrm{Co}_{[\mathrm{P}]}(\mathfrak{A}) \backslash\right.$ $\left.\left\{\Delta_{A}\right\}\right)$ as well as any $\bar{a} \in\left(\theta \backslash \Delta_{A}\right) \neq \varnothing$ ，in which case $\mathfrak{B} \triangleq \mathfrak{A}^{1} \in \mathbf{P}^{\mathrm{SD}} \mathrm{SI}_{[\mathrm{P}]}(\mathrm{P})$ ，while $h \triangleq\left(\pi_{0} \upharpoonright B\right) \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{B}, \mathfrak{A})$ is injective，whereas $B^{2} \ni \bar{b} \triangleq\left(\bar{a} \circ h^{-1}\right) \in \vartheta \triangleq \mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{B}}(\bar{b})=$ $\theta_{\mathcal{F}}^{B}$ ，for some $\mathcal{F} \in \operatorname{Fi}(1)$ ，and so，by $(2.5), \eta \triangleq h_{*}^{-1}[\theta] \in\left(\mathrm{Co}_{[\mathrm{P}]}(\mathfrak{B}) \cap \wp\left(\vartheta, B^{2}\right)\right)$ ，while $\theta=h_{*}[\eta]$ ，whereas $\varnothing=\varepsilon_{1}(\bar{b}) \in \mathcal{F}$ ．Then， $\mathcal{F}=\wp(1)$ ，in which case $\eta \supseteq \vartheta=B^{2}$ ，and so $\theta \supseteq h_{*}\left[B^{2}\right]=A^{2}$ ．Thus， $\mathfrak{A} \in \operatorname{Si}_{[\mathrm{P}]}(\mathrm{P})$ ，as required．
2.2.1.2. Filtrality versus congruence-distributivity.

Lemma 2.6 (cf. [10] for the []()-non-optional case). Let $\mathrm{Q} \subseteq \mathrm{A}_{\Sigma}$ be a [quasiJvariety, I a set, $\overline{\mathfrak{A}} \in \mathrm{Q}^{I}, \mathfrak{B} \in \mathbf{S}\left(\prod \overline{\mathfrak{A}}\right)$ and $\theta \in \mathrm{MI}^{(\omega)}\left(\mathrm{Co}_{[\mathrm{Q}]}(\mathfrak{B})\right)$. Suppose $\mathrm{Co}_{[\mathrm{Q}]}(\mathfrak{B})$ is distributive. Then, there is an ultra-filter \mathcal{U} on I such that $\theta_{\chi}^{B} \subseteq \theta$.
Proof. By (2.11), $S \triangleq\left\{\mathcal{F} \in \operatorname{Fi}(I) \mid \theta_{\mathcal{F}}^{B} \subseteq \theta\right\} \ni\{I\}$ is inductive, for $\operatorname{Fi}(I)$ is so, in which case, by Zorn Lemma, it, being non-empty, has a maximal element \mathcal{U}, and so, for any $X \in \wp_{\omega}(\wp(I))$ such that $Y \triangleq(\bigcup X) \in \mathcal{U}$, $(X \cap \mathcal{U}) \neq \varnothing$, as, for each $Z \in X, \theta_{\mathcal{F}_{Z}}^{B} \in \operatorname{Co}_{[Q]}(\mathfrak{B})$ with $\mathcal{U} \subseteq \mathcal{F}_{Z} \triangleq \operatorname{Fg}_{I}(\mathcal{U} \cup\{Z\}) \in \operatorname{Fi}(I)$, while $\mathcal{U}=\mathrm{Fg}_{I}(\mathcal{U})=\mathrm{Fg}_{I}(\mathcal{U} \cup\{Y\})=\left(\wp(I) \cap\left(\bigcap\left\{\mathcal{F}_{Z} \mid Z \in \mathcal{X}\right\}\right)\right)$, in view of (2.3), since Fg_{I} is finitary, whereas, by (2.11), $\theta=\operatorname{Cg}_{[\mathcal{Q}]}^{\mathfrak{B}}\left(\theta \cup \theta_{\mathcal{U}}^{B}\right)=\mathrm{Cg}_{[\mathcal{Q}]}^{\mathfrak{B}]}\left(\theta \cup\left(B^{2} \cap\left(\bigcap\left\{\theta_{\mathcal{F}_{Z}}^{B} \mid\right.\right.\right.\right.$ $Z \in X\}))=\left(B^{2} \cap\left(\cap\left\{\operatorname{Cg}_{[Q]}^{\mathfrak{B}]}\left(\theta \cup \theta_{\mathcal{F}_{Z}}^{B}\right) \mid Z \in X\right\}\right)\right.$, that is, for some $Z \in X$, $\theta=\operatorname{Cg}_{[Q]}^{\mathfrak{B}]}\left(\theta \cup \theta_{\mathcal{F}_{Z}}^{B}\right) \supseteq \theta_{\mathcal{F}_{Z}}^{B}$, i.e., $\mathcal{U} \subseteq \mathcal{F}_{Z} \in S$, viz., $Z \in \mathcal{F}_{Z}=\mathcal{U}$, as required.

This, by (2.5), Birkgoff's and the Homomorphism Theorems [as well as [6, Corollary 2.3$] /[21$, Lemma 2.1]], immediately yields:

Corollary 2.7. Let K be a [finite/] class of [finite/] Σ-algebras (with \{dual\} discriminator δ) and $\mathrm{P} \triangleq \mathbf{H}^{\langle\overline{ }\rangle} \mathbf{S P K}$. Suppose P is a \lceil relatively \rceil congruencedistributive [/locally-finite] 「quasi-ך variety. Then,

$$
\left(\mathrm{P}_{\delta}^{\{\partial\}} \subseteq \mathrm{Si}_{[\lceil\mathrm{P}\rceil\rfloor}(\mathrm{P}) \subseteq\right) \mathrm{SI}_{\lceil\mathrm{P}\rceil}^{\omega \mid \infty}(\mathrm{P}) \subseteq \mathbf{H}^{(\|\langle\mathrm{I})\|\rangle} \mathbf{S P}^{\mathrm{U}} \mathrm{~K}\left[\subseteq \mathbf{H}^{(\|\langle\mathrm{I})\|\rangle} \mathbf{S K}\right]\left(\subseteq \mathrm{P}_{\delta}^{\{\partial\}}\right)
$$

[in which case its members are finite, and so $\mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P})=\mathrm{SI}_{[\mathrm{P}\rceil}(\mathrm{P})$]/. In particular, $\{d u a l\}(\delta$-)discriminator quasi-varieties are exactly [semi-simple] $\{d u a l\}$ (δ)discriminator varieties.

Corollary 2.8. Let $\mathrm{Q} \subseteq \mathrm{A}_{\Sigma}$ be a ([relatively] semi-simple) [quasi-]variety, $I \in \Upsilon$, $\overline{\mathfrak{A}} \in \operatorname{Si}_{[\mathcal{Q}]}(\mathbb{Q})^{I}, \mathfrak{D} \triangleq\left(\prod \overline{\mathfrak{A}}\right), \mathfrak{B} \in \mathbf{S}\{\mathfrak{D}\}$ and $\theta \in\left(\mathrm{Co}_{[\mathbb{Q}]}(\mathfrak{B}) \backslash\left\{B^{2}\right\}\right)$. Suppose $\mathrm{Si}_{[\mathrm{Q}]}(\mathrm{Q})^{I}$ is both ultra-multiplicative and non-trivially-hereditary $\left\{\right.$ while $\mathrm{Co}_{[\mathrm{Q}]}(\mathfrak{B})$ is distributive $\}$. Then, θ is maximal in $\operatorname{Co}_{[\mathbb{Q}]}(\mathfrak{B}) \backslash\left\{B^{2}\right\}$ if $\{f\}$ it is ultra-filtral. $\left\{\left(\right.\right.$ In particular, all elements of $\mathrm{Co}_{[\mathbb{Q}]}(\mathfrak{B})$ are filtral. $\left.)\right\}$
Proof. First, assume $\theta=\theta_{U}^{B}$, for some ultra-filter \mathcal{U} on I, in which case $\mathfrak{C} \triangleq$ $\left(\mathfrak{D} / \theta_{\mathrm{u}}^{D}\right) \in \mathbf{P}^{\mathrm{U}} \mathrm{Si}_{[\mathrm{Q}]}(\mathrm{Q}) \subseteq \operatorname{Si}_{[\mathrm{Q}]}(\mathrm{Q})$, while $h \triangleq\left(\Delta_{B} \circ \nu_{\theta_{\mathrm{u}}^{D}}\right) \in \operatorname{hom}(\mathfrak{B}, \mathfrak{C})$, whereas $(\operatorname{ker} h)=\left(\Delta_{B}\right)_{*}^{-1}\left[\theta_{u}^{D}\right]=\theta$, and so by (2.4) and Footnote 1 , as $\theta \neq B^{2},(\mathfrak{B} / \theta) \in$ $\mathbf{I S}_{>1} \mathrm{Si}_{[\mathrm{Q}]}(\mathrm{Q}) \subseteq \mathrm{Si}_{[\mathrm{Q}]}(\mathrm{Q})$. Then, by $(2.5), \theta \in \max \left(\mathrm{Co}_{[\mathrm{Q}]}(\mathfrak{B}) \backslash\left\{B^{2}\right\}\right)$. \{Conversely, assume $\theta \in \max \left(\mathrm{Co}_{[\mathrm{Q}]}(\mathfrak{B}) \backslash\left\{B^{2}\right\}\right) \subseteq \mathrm{MI}\left(\mathrm{Co}_{[\mathrm{Q}]}(\mathfrak{B})\right)$, in which case, by Lemma 2.6, there is some ultra-filter \mathcal{U} on I such that, as $\theta \neq B^{2},\left(\mathrm{Co}_{[\mathbb{Q}]}(\mathfrak{B}) \backslash\left\{B^{2}\right\}\right) \ni \theta_{\mathcal{U}}^{B} \subseteq \theta$, and so, by the "if" part, $\theta=\theta_{\mathcal{U}}^{B}$. (Then, Remarks 2.1, 2.3, 2.4, (2.5) and (2.11) complete the argument.) $\}$

2.2.2. Subdirect products versus subalgebras.

Lemma 2.9 (cf. [12]). Let $\mathfrak{A} \in \mathrm{A}_{\Sigma}$ and \mathfrak{B} a subalgebra of \mathfrak{A}. Then, $h_{A}^{B} \triangleq\{\langle\bar{a}, b\rangle \in$ $\left(A^{\omega} \times B\right)\left|\left|\omega \backslash \varepsilon_{\omega}(\bar{a}, \omega \times\{b\})\right| \in \omega\right\} \supseteq(\bigcup\{\{\langle\omega \times\{b\}, b\rangle\} \cup\{\langle((\omega \backslash\{i\}) \times\{b\}) \cup$ $\{\langle i, a\rangle\}, b\rangle \mid i \in \omega, a \in A\} \mid b \in B\})$ is a function forming a subalgebra of $\mathfrak{A}^{\omega} \times \mathfrak{B}$, in which case it is a surjective homomorphism from $\mathfrak{C}_{A}^{B} \triangleq\left(\mathfrak{A}^{\omega} \upharpoonright\left(\operatorname{dom} h_{A}^{B}\right)\right)$ onto \mathfrak{B}, and so \mathfrak{C}_{A}^{B} is a subdirect product of $\omega \times\{\mathfrak{A}\}$. In particular, the variety generated by any $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$ is equal to $\mathbf{I P}^{\mathrm{SD}} \mathrm{K}$.
2.2.2.1. Filtrality versus non-trivial hereditarity of simplicity.

Corollary 2.10. Let $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ be a [relatively] subdirectly principally filtral [preJvariety. Then, $\left(\mathrm{SI}_{[\mathrm{P}]}(\mathrm{P}) \cup \mathrm{A}_{\Sigma}{ }^{1}\right)\left(\backslash \mathrm{A}_{\Sigma}{ }^{1}\right)$ is (non-trivially-)hereditary.

Proof. Let $\mathfrak{A} \in\left(\mathrm{SI}_{[\mathrm{P}]}(\mathrm{P}) \cup \mathrm{A}_{\bar{\Sigma}}^{=1}\right)$ and \mathfrak{B} a non-one-element subalgebra of \mathfrak{A}, in which case $|A| \neq 1$, and so, by Lemma 2.9, $h \triangleq h_{A}^{B}$ is a surjective homomorphism from the subdirect product $\mathfrak{C} \triangleq \mathfrak{C}_{A}^{B}$ of $(\omega \times\{\mathfrak{A}\}) \in \mathrm{SI}_{[\mathrm{P}]}(\mathrm{P})^{\omega}$ onto \mathfrak{B}. Consider any $\theta \in\left(\operatorname{Co}_{[\mathrm{P}]}(\mathfrak{B}) \backslash\left\{\Delta_{B}\right\}\right)$ and take any $\langle a, b\rangle \in\left(\theta \backslash \Delta_{B}\right) \neq \varnothing$, in which case, by (2.5), $\mathrm{Co}_{[\mathrm{P}]}(\mathfrak{C}) \ni \vartheta \triangleq h_{*}^{-1}[\theta] \ni\langle\bar{c}, \bar{d}\rangle \triangleq\langle\omega \times\{a\}, \omega \times\{b\}\rangle$, while $h_{*}[\vartheta]=\theta$, and so $\vartheta \supseteq \eta \triangleq \operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{C}}(\langle\bar{c}, \bar{d}\rangle)=\theta_{\mathcal{F}}^{C}$, for some $\mathcal{F} \in \operatorname{Fi}(\omega)$. Then, $\varnothing=\varepsilon_{\omega}(\bar{c}, \bar{d}) \in \mathcal{F}$, in which case $\mathcal{F}=\wp(\omega)$, and so $\vartheta \supseteq \eta=C^{2}$. Thus, $\theta \supseteq h_{*}\left[C^{2}\right]=B^{2}$, in which case $\theta=B^{2}$, and so $\mathfrak{B} \in \operatorname{Si}_{[\mathrm{P}]}(\mathrm{P})$, as required.
2.2.3. Locality versus local finiteness. As an immediate consequence of [21, Lemma 2.1], in its turn, being that of [6, Corollary 2.3], we, first, have the following useful universal observation:

Corollary 2.11. Any abstract hereditary local subclass of a locally-finite quasivariety is ultra-multiplicative.

Aside from quasi-varieties as such, certain representative subclasses of them are local as well.
2.2.3.1. Local subclasses of local pre-varieties.

Lemma 2.12. Let $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ be a [local (more specifically, quasi-equational) prejvariety. Then, $\left.\left.\left(\mathrm{SI}^{\omega} \mid \mathrm{Si}\right)_{[\mathrm{P}]}\right)(\mathrm{P}) \cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}\right)$ is local.

Proof. Consider any $\left.\mathfrak{B} \in\left(\mathrm{P} \backslash\left(\left(\mathrm{SI}^{\omega} \mid \mathrm{Si}\right)_{[\mathrm{P}]}\right)(\mathrm{P}) \cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}\right)\right)$, in which case there are some $\bar{a} \in\left(B^{2} \backslash \Delta_{B}\right) \neq \varnothing, n \in(\omega \mid\{1\})$ and $\bar{\theta} \in\left(\operatorname{Co}_{[\mathrm{P}]}(\mathfrak{B}) \backslash\left(\operatorname{img} \bar{\vartheta}^{B}\right)\right)^{n}$, where, for any $C \subseteq B, \bar{\vartheta}^{C} \triangleq\left(\left\langle\Delta_{C}\right\rangle \mid\left\langle\Delta_{C}, C^{2}\right\rangle\right)$, "such that $\left(B^{2} \cap(\bigcap(\operatorname{img} \bar{\theta}))\right)=\Delta_{B} " \mid$, and so some $\left\langle\bar{b}^{i, j}\right\rangle_{i \in n}^{j \in(1 \mid 2)} \in\left(\prod_{i \in n}^{j \in(1 \mid 2)}\left(\left(\theta_{i} \backslash \vartheta_{j}^{B}\right) \cup\left(\vartheta_{j}^{B} \backslash \theta_{i}\right)\right)\right) \neq \varnothing$. Let \mathfrak{A} be the finitelygenerated subalgebra of \mathfrak{B} generated by $\left\{a_{0}, a_{1}\right\} \cup\left\{b_{k}^{i, j} \mid i \in n, j \in(1 \mid 2), k \in 2\right\}$, in which case, by (2.5) with $h=\Delta_{A}, \bar{\eta} \triangleq\left\langle\theta_{i} \cap A^{2}\right\rangle_{i \in n} \in\left(\mathrm{Co}_{[\mathrm{P}]}(\mathfrak{A}) \backslash\left(\operatorname{img} \bar{\vartheta}^{A}\right)\right)^{n}$, as $\left\langle\bar{b}^{i, j}\right\rangle_{i \in n}^{j \in(1 \mid 2)} \in\left(\prod_{i \in n}^{j \in(1 \mid 2)}\left(\left(\eta_{i} \backslash \vartheta_{j}^{A}\right) \cup\left(\vartheta_{j}^{A} \backslash \eta_{i}\right)\right)\right)$, so $\left.\mathfrak{A} \in\left(\mathrm{P} \backslash\left(\left(\mathrm{SI}^{\omega} \mathrm{Si}\right)_{[\mathrm{P}]}\right)(\mathrm{P}) \cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}\right)\right)$, for $\bar{a} \in\left(A^{2} \backslash \Delta_{A}\right)$ "and $\left(A^{2} \cap(\bigcap(\operatorname{img} \bar{\eta}))\right)=\left(A^{2} \cap(\bigcap(\operatorname{img} \bar{\theta}))\right)=\left(A^{2} \cap \Delta_{B}\right)=\Delta_{A}$ " \mid.
2.2.3.1.1. Finite semi-simplicity versus semi-simplicity and local finiteness. Lemma 2.12 immediately yields:

Corollary 2.13. Any locally-finite [relatively] semi-simple [local (more specifically, quasi-equational) pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ with hereditary $\mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P}) \cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}$ is [relatively] finitely semi-simple.
2.2.4. Subdirect irreducibility versus homomorphisms onto simple algebras.

Lemma 2.14. Let $\mathfrak{A}, \mathfrak{B} \in \mathrm{A}_{\Sigma}$ and $h \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{A}, \mathfrak{B})$ (as well as $n \in(\omega \backslash 2)$). (Suppose \mathfrak{B} is simple, while $|A|=n$, whereas $|B|=(n-1)$.) Then, \mathfrak{A} is subdirectlyirreducible if(f) its congruences form the three-element chain $\Delta_{A} \subsetneq(\operatorname{ker} h) \subsetneq A^{2}$.
Proof. The "if" part is immediate. (Conversely, assume \mathfrak{A} is subdirectly-irreducible, in which case $\theta \triangleq\left(A^{2} \cap\left(\cap\left(\operatorname{Co}(\mathfrak{A}) \backslash\left\{\Delta_{A}\right\}\right)\right)\right) \in\left(\operatorname{Co}(\mathfrak{A}) \backslash\left\{\Delta_{A}\right\}\right)$, and so, by (2.5), $\{\theta \subseteq\}(\operatorname{ker} h) \in\left[\max _{\supseteq}\right]\left(\operatorname{Co}(\mathfrak{A}) \backslash\left\{\left\{\Delta_{A},\right\} A^{2}\right\}\right)$, for $1 \neq n\{\notin(n-1)\}$. Then, by the Homomorphism Theorem, $g \triangleq\left(\nu_{\theta}^{-1} \circ h\right) \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{A} / \theta, \mathfrak{B})$, in which case $(n-1) \leqslant$ $|A / \theta|<n$, for $\theta \neq \Delta_{A}$, and so $|A / \theta|=(n-1)$. Thus, g is injective, in which case $(\operatorname{ker} h)=\theta$, and so its maximality completes the argument.)

3. Preliminaries: quaternary equational schemes

A quaternary Σ-(equational)scheme is any $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$. This is called an implication scheme for a $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$, if this satisfies the Σ-implication:

$$
\begin{equation*}
\left(\left\{x_{0} \approx x_{1}\right\} \cup \mho\right) \rightarrow\left(x_{2} \approx x_{3}\right) \tag{3.1}
\end{equation*}
$$

Likewise, it is called an identity|reflexive|symmetric|transitive one, if K satisfies the Σ-implications of the form $\left(\varnothing|\varnothing| \mho \mid\left(\mho \cup\left(\mho\left[x_{2+i} / x_{3+i}\right]_{i \in 2}\right)\right)\right) \rightarrow \Psi$, where $\Psi \in$ $\left(\mho\left(\left[x_{3} / x_{2}\right]\left|\left[x_{2+i} / x_{i}\right]_{i \in 2}\right|\left[x_{3} / x_{2}, x_{2} / x_{3}\right] \mid\left[x_{3} / x_{4}\right]\right)\right)$, reflexive symmetric transitive ones being also called equivalence ones. Then, \mathcal{U} is called a congruence one, if it is an equivalence one, while, for each $\varsigma \in \Sigma$ of arity $n \in(\omega \backslash 1)$, K satisfies the Σ-implications of the form $\left(\bigcup_{j \in n}\left(\mho\left[x_{2+i} / x_{2+i+(2 \cdot j)}\right]_{i \in 2}\right)\right) \rightarrow \Psi$, where $\Psi \in$ $\left(\mho\left[x_{2+i} / \varsigma\left(\left\langle x_{2+i+(2 \cdot j)}\right\rangle_{j \in n}\right)\right]_{i \in 2}\right)$.] Finally, \mho [being finite] is called a "restricted equationally definable principal \{relative\} congruence ($R E D P\{R\} C$)"/"(equational) implicative|disjunctive scheme/system for a "\{pre-\}variety"/ $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$, if, for each $\mathfrak{A} \in \mathrm{K}$ and all $\bar{a} \in A^{4},\left(\forall \theta \in\left(\operatorname{Cos}_{\{\mathrm{K}\}}(\mathfrak{A}) /\left\{\Delta_{A}\right\}\right):\left(\left\langle a_{0}, a_{1}\right\rangle \in \mid \notin \theta\right) \Rightarrow\right.$ $\left.\left(\left\langle a_{3}, a_{3}\right\rangle \in \theta\right)\right) \Leftrightarrow\left(\mathfrak{A} \mid=(\bigwedge \mho)\left[x_{i} / a_{i}\right]_{i \in I}\right.$ [cf. $\left.[7] /[21] \mid[20]\right] /$ "and so for $\mathbf{I S}\left[\mathbf{P}^{\mathrm{U}}\right] \mathrm{K}$, \langle pre-varieties generated by classes of $\rangle \Sigma$-algebras with [finite] implicative|disjunctive system \mho being called 〈[finitely]〉 \mho-implicative|-disjunctive with the class of \mho -implicative|-disjunctive members of any $\mathrm{K}^{\prime} \subseteq \mathrm{A}_{\Sigma}$ denoted by $\mathrm{K}_{\mho}^{\prime}$ "in which case \mho, being an implication scheme for (the pre-variety generated by) K , providing this is quasi-equational, includes a finite one, by the Compactness Theorem for ultramultiplicative classes of algebras [15]"|, and so implicative quasi-varieties, being thus finitely so, are exactly those in the original sense of [21]. Then, by Remark 2.4 therein, quasi-equational/finitely implicative pre-varieties are finitely disjunctive.

Given any $\mathfrak{A} \in \mathrm{A}_{\Sigma}$, let $\mho^{\mathfrak{A}}: \wp(A)^{2} \rightarrow \wp(A),\langle X, Y\rangle \mapsto\left\{\left\langle\phi_{0}^{\mathfrak{A}}\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}\right.\right.$, $\left.\left.\phi_{1}^{\mathfrak{R}}\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}\right\rangle \mid \bar{\phi} \in \mho, \bar{a} \in X, \bar{b} \in Y\right\}$.

Given any $\tau \in \operatorname{Tm}_{\Sigma}^{3}$, put

$$
\begin{aligned}
\mho_{\tau}^{\supset} & \triangleq\left\{\tau \approx\left(\tau\left[x_{2} / x_{3}\right]\right)\right\}, \\
\mho_{\tau}^{\partial \supset} & \triangleq\left\{\left(\tau\left[x_{0} / x_{2+k}, x_{1} / x_{3-k}, x_{2} /\left(\tau\left[x_{2} / x_{2+k}\right]\right)\right]\right) \approx x_{2+k} \mid k \in 2\right\} \\
\mho_{\tau}^{\vee} & \triangleq\left\{\left(\tau\left[x_{0} / \tau, x_{1} /\left(\tau\left[x_{2} / x_{3}\right]\right)\right]\right) \approx\left(\tau\left[x_{0} / \tau, x_{1} /\left(\tau\left[x_{2} / x_{3}\right]\right), x_{2} / x_{3}\right]\right)\right\},
\end{aligned}
$$

in which case \mho_{τ}^{\vee} is defined by \mho_{τ}^{\supset} according to [21, Remark 2.4].
Remark 3.1. Given any [dual] discriminator $\tau \in \operatorname{Tm}_{\Sigma}^{3}$ for a $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}, \mho_{\tau}^{([\partial] \supset) / \vee}$ is a finite implicative/disjunctive system for K. In particular, any [dual] discriminator pre-variety is finitely both implicative and disjunctive.

This enables us to build easily an example of a non-quasi-equational finitely both implicative and disjunctive pre-variety well-justifying the generic framework of pre-varieties we follow here:

Example 3.2. Let $\Sigma=\{\neg, \nabla, \tau\}$, where \neg and ∇ are unary, while τ is ternary, \mathfrak{A} the Σ-algebra such that $A \triangleq \omega, \tau\left(x_{0}, x_{1}, x_{2}\right)$ is a (dual) discriminator for \mathfrak{A} and, for all $a \in A, \nabla^{\mathfrak{A}}(a) \triangleq \min (a, 1)$, whereas $\neg^{\mathfrak{A}}(a) \triangleq \max (0, a-1)$. Then, by Remark 3.1, the pre-variety \mathbf{P} generated by \mathfrak{A}, being (dual) τ-discriminator, is finitely both implicative and disjunctive. Let us show, by contradiction, that it is not a quasi-variety. For suppose it is a quasi-variety. By induction on any $n \in \omega$, put $\neg^{0[+n+1]} x_{i} \triangleq\left[\neg \neg^{n}\right] x_{i}\left[=\neg^{n} \neg x_{i}\right]$, where $i \in 2$, and set $\varepsilon^{n} \triangleq\left(\nabla\left(\neg^{n} x_{0}\right) \approx\right.$ $\left.\nabla\left(\neg^{n} x_{1}\right)\right)$. Then, given any $N \subseteq \omega$, set $\varepsilon_{N} \triangleq\left\{\varepsilon^{n} \mid n \in N\right\}$. Note that the Σ implication $\varepsilon_{\omega} \rightarrow\left(x_{0} \approx x_{1}\right)$ is true in \mathfrak{A}, and so in P. Hence, by Remark 2.3, there is some $N \in \wp_{\omega}(\omega)$ such that the Σ-quasi-identity $\varepsilon_{N} \rightarrow\left(x_{0} \approx x_{1}\right)$ is true in $\mathrm{P} \ni \mathfrak{A}$. However, $\mathfrak{A} \models \varepsilon_{N}\left[x_{i} /(i+m+1)\right]_{i \in 2}$, where $m \triangleq(\bigcup N) \in \omega$, though $(m+1) \neq(m+2)$. This contradiction means that P is not a quasi-variety.

3.1. Implicativity versus REDPRC and relative semi-simplicity.

Lemma 3.3. Let $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$ be an implication scheme for a [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$, $\mathfrak{A} \in \mathrm{P}, \bar{a}, \bar{b} \in A^{2}$ and $\theta \triangleq \mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{A}}(\bar{a})$. Suppose $\mathfrak{A} \vDash(\bigwedge \mho)\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}$. Then, $\bar{b} \in \theta$.

Proof. As (3.1) is true in $\mathrm{P} \ni(\mathfrak{A} / \theta) \vDash(\bigwedge \mho)\left[x_{i} / \nu_{\theta}\left(a_{i}\right), x_{2+i} / \nu_{\theta}\left(b_{i}\right)\right]_{i \in 2}$, while $\bar{a} \in$ $\theta=\left(\operatorname{ker} \nu_{\theta}\right)$, we get $\bar{b} \in \theta$.
Corollary 3.4. Let $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$ be an implication/REDPC scheme for a [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$. Then, $\mathrm{P}_{\mho} \subseteq /=\left(\mathrm{Si}_{[\mathrm{P}]}(\mathrm{P}) \cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}\right)$. In particular, any implicative [preJvariety is [relatively] both semi-simple and subdirectly representable.

Proof. Consider any non-one-element $\mathfrak{A} \in \mathrm{P}_{\mathcal{\vartheta}}$ and $\vartheta \in\left(\operatorname{Cog}_{[\mathrm{P}]}(\mathfrak{A}) \backslash\left\{\Delta_{A}\right\}\right)$, in which case there is some $\bar{a} \in\left(\vartheta \backslash \Delta_{A}\right) \neq \varnothing$, and so, for any $\bar{b} \in A^{2}, \mathfrak{A} \models$ $(\bigwedge \mho)\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}$. Then, "by Lemma 3.3"/ $\bar{b} \in \vartheta$, in which case $\vartheta=A^{2}$, and so \mathfrak{A} is $[\mathrm{P}-]$ simple. Conversely, for any $\mathrm{A} \in \operatorname{Si}_{[\mathrm{P}]}(\mathrm{P}), \operatorname{Co}_{[\mathrm{P}]}(\mathfrak{A})=\left\{\Delta_{A}, A^{2}\right\}$, in which case, for all $\bar{a} \in A^{4}$, as $\left\langle a_{2}, a_{3}\right\rangle \in A^{2}$, we have $\left(\forall \theta \in \operatorname{Co}_{[\mathrm{P}]}(\mathfrak{A}):\left(a_{0} \theta a_{1}\right) \Rightarrow\right.$ $\left.\left(a_{2} \theta a_{3}\right)\right) \Leftrightarrow\left(\left(a_{0}=a_{1}\right) \Rightarrow\left(a_{2}=a_{3}\right)\right)$, and so \mathfrak{A} is \mho-implicative, whenever \mho is an $\operatorname{REDP}[\mathrm{R}] \mathrm{C}$ scheme for $\mathrm{P} \ni \mathfrak{A}$.

Theorem 3.5. $A n y \mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$ is an identity congruence implication scheme for a/n equational] pre-variety $\mathrm{K} \subseteq \mathrm{A}_{\Sigma} i f[f]$ it is an $R E D P C$ one.

Proof. The "if" part is immediate. [Conversely, if \mho is an identity congruence implication scheme for K , then, by induction on construction of any $\varphi \in \operatorname{Tm}_{\Sigma}^{\omega}$, we conclude that K satisfies the Σ-identities in $\mho\left[x_{2+i} /\left(\varphi\left[x_{0} / x_{i}\right]\right)\right]_{i \in 2}$, in which case, by Mal'cev Lemma [14] (cf. [7, Lemma 2.1]), for any $\mathfrak{A} \in \mathrm{A}, \bar{a} \in A^{2}$ and $\bar{b} \in \operatorname{Cg}^{\mathfrak{A}}(\bar{a})$, we have $\mathfrak{A} \mid=(\bigwedge \mho)\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}$, and so Lemma 3.3 completes the argument $]$.

This, by Lemma 3.3 and the Compactness Theorem for ultra-multiplicative classes of algebras (cf., e.g., [15]), immediately yields:

Corollary 3.6. Any quasi-variety with $R E D P R C$ scheme \mho has a finite one $\subseteq \mho$.
Theorem 3.7. Let $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$. Then, any [(not necessarily) quasi-equational preJvariety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ is \mho-implicative iff it is [relatively (both subdirectly-representable and $)]$ semi-simple with $R E D P[R] C$ scheme \mho, in which case $\left((S I \mid S i)_{[P]}(P) \cup A_{\Sigma}{ }^{1}\right)=$ P_{\mho}.
Proof. If P is \mho-implicative, that is, is the pre-variety generated by P_{\mho}, then, for any $\mathfrak{A} \in \mathrm{P}$ and $\bar{a} \in A^{4}$ such that $\mathfrak{A} \not \models(\bigwedge \mho)\left[x_{i} / a_{i}\right]_{i \in 4}$, by (2.8), there are some $\mathfrak{B} \in \mathrm{P}_{\mho}$ and $h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B})$ such that $\mathfrak{B} \not \vDash(\bigwedge \mho)\left[x_{i} / h\left(a_{i}\right)\right]_{i \in 4}$, that is, $h\left(a_{0 \mid 2}\right)=\mid \neq h\left(a_{1 \mid 3}\right)$, in which case, by $(2.4),\left\langle a_{0 \mid 2}, a_{1 \mid 3}\right\rangle \in \mid \notin(\operatorname{ker} h) \in \operatorname{Co}_{[\mathrm{P}]}(\mathfrak{A})$, and so Remark 2.4, Lemma 3.3 and Corollary 3.4 complete the argument.

3.1.1. REDPC versus congruence decomposition.

Definition 3.8. Given any $n \in \omega$, a $\mho \subseteq \mathrm{Eq}_{\Sigma}^{2 \cdot(n+1)}$ is called $\mathrm{a}(\mathrm{n})$ restricted equationally definable n-generated [relative] congruence (n - $R E D G[R] C$) scheme for a [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$, if, for each $\mathfrak{A} \in \mathrm{P}$ and every $\bar{a} \in\left(A^{2}\right)^{n+1},\left(a_{n} \in \operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{2}}(\bar{a}[n])\right) \Leftrightarrow$ $\left(\mathfrak{A} \vDash(\bigwedge \mho)\left[x_{i+j} / \pi_{j}\left(a_{i}\right)\right]_{i \in(n+1), j \in 2}\right)$.

Given any $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$, by induction on any $n \in \omega$, define $\mho_{n} \subseteq \mathrm{Eq}_{\Sigma}^{2 \cdot(n+1)}$ by $\mho_{0} \triangleq\left\{x_{0} \approx x_{1}\right\}$ and $\mho_{n+1} \triangleq\left(\bigcup\left\{\mho_{n}\left[x_{(2 \cdot n)+i} / \varphi_{i}\right]_{i \in 2} \mid \bar{\varphi} \in\left(\mho\left[x_{j} / x_{(2 \cdot n)+j}\right]_{j \in 4}\right)\right\}\right)$.

Lemma 3.9. For any [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ with a $R E D P[R] C$ scheme $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$ and any $n \in \omega, \mho_{n}$ is an $n-R E D P G[R] C$ scheme for P .

Proof. By induction on n. For consider any $\mathfrak{A} \in \mathrm{P}$, in which case Δ_{A} is the least $[\mathrm{P}-]$ congruence of \mathfrak{A}, and so \mho_{0} is a 0 -REDPGRC scheme for P . Now, assume \mho_{n} is an n-REDPGRC scheme for P and consider any $\bar{a} \in\left(A^{2}\right)^{n+2}$, in which case, by the right alternative of (2.6) with $\mathfrak{B}=(\mathfrak{A} / \theta) \in \mathrm{P}$ and $h=$ $\nu_{\theta} \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{A}, \mathfrak{B})$, where $\theta \triangleq \operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{A}}(\bar{a}[n]) \in \mathrm{Co}_{[\mathrm{P}]}(\mathfrak{A})$, as $\theta=(\operatorname{ker} h)$, we have
$\left(a_{n+1} \in \operatorname{Cg}_{[\mathbf{P}]}^{\mathfrak{A}}(\bar{a}[n+1])=\operatorname{Cg}_{[\mathbf{P}]}^{\mathfrak{A}}\left(\theta \cup\left\{a_{n}\right\}\right)\right) \Leftrightarrow\left(h_{*}\left(a_{n+1}\right) \in \operatorname{Cg}_{[\mathbf{P}]}^{\mathfrak{B}}\left(\left\{h_{*}\left(a_{n}\right)\right\}\right)\right) \Leftrightarrow(\mathfrak{B} \models$ $\left.(\bigwedge \mho)\left[x_{(2 \cdot i)+j} / h\left(\pi_{j}\left(a_{n+i}\right)\right)\right]_{i, j \in 2}\right) \Leftrightarrow\left(\mho^{\mathfrak{A}}\left(\left\{a_{n}\right\},\left\{a_{n+1}\right\}\right) \subseteq \theta\right) \Leftrightarrow\left(\mathfrak{A} \models\left(\bigwedge \mho_{n+1}\right)\right.$ $\left.\left[x_{k+l} / \pi_{l}\left(a_{k}\right)\right]_{k \in(n+2), l \in 2}\right)$, and so \mho_{n+1} is an $(n+1)$-REDPGRC scheme for P .
Theorem 3.10. Let $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ be a ([relatively] semi-simple) \{[quasi-]equational\} [pre-]variety, $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}, I \in \Upsilon, \overline{\mathfrak{A}} \in\left(\mathrm{SI}_{[\mathrm{P}]}\right)(\mathrm{P})^{I}, \mathfrak{B}$ a subalgebra of $\prod_{i \in I} \mathfrak{A}_{i}$ and $X \in \wp_{\omega \mid \infty}\left(B^{2}\right)$. Suppose \mathcal{V} is an $R E D P[R] C$ scheme for P , while $|B| \in(\infty \mid \omega)$. Then, $\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{B}}(X)=\left(B^{2} \cap\left(\bigcap_{i \in I}\left(\pi_{i} \upharpoonright B\right)_{*}^{-1}\left[\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{A}_{i}}\left(\left(\pi_{i} \upharpoonright B\right)_{*}[X]\right)\right]\right)\right)\left(=\theta_{\wp\left(I \cap\left(\cap \varepsilon_{I}[X]\right), I\right)}^{B}\right)$, in which case (all elements of)

$$
\begin{align*}
&\left.\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{B}}[\wp\rangle(\omega \mid \infty) \cup\right\rangle(\langle\varnothing \cap\rangle(\omega\{\cup \infty\})) \tag{3.2}\\
&\left.\langle\subseteq|=\left\{B^{2}\right)\right] \\
&\left.\left.\left(\bigcap_{i \in I}\left(\pi_{i} \upharpoonright B\right)_{*}^{-1}\left[\theta_{i}\right]\right) \mid \bar{\theta} \in\left(\prod_{i \in I} \operatorname{Co}_{[\mathrm{P}]}\left(\mathfrak{A}_{i}\right)\right)\right\}\right\rangle
\end{align*}
$$

(are filtral in the \rangle-non-optional case $\{$ and so is P$\}$). In particular, any /"finitely\| [quasi-]equational" implicative [pre-]variety is [relatively] both subdirectly-representable and finitely/ filtral.

Proof. Take a bijection \bar{a} from $n \triangleq|X| \in \omega$ to X, in which case, by Lemma 3.9, $\forall \bar{b} \in$ $B^{2}:\left(\bar{b} \in \mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{Z}}(X)\right) \Leftrightarrow\left(\mathfrak{B} \models\left(\bigwedge \mho_{n}\right)\left[x_{j+k} / \pi_{k}\left(a_{j}\right) ; x_{(2 \cdot n)+l} / b_{l}\right]_{j \in n ; k, l \in 2}\right) \Leftrightarrow(\forall i \in I:$ $\left.\mathfrak{A}_{i} \models\left(\bigwedge \mho_{n}\right)\left[x_{j+k} / \pi_{i}\left(\pi_{k}\left(a_{j}\right)\right) ; x_{(2 \cdot n)+l} / \pi_{i}\left(b_{l}\right)\right]_{j \in n ; k, l \in 2}\right) \Leftrightarrow\left(\forall i \in I:\left(\pi_{i} \upharpoonright B\right)_{*}(\bar{b}) \in\right.$ $\left.\mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{A}_{i}}\left(\left(\pi_{i} \backslash B\right)_{*}[X]\right)\right) \Leftrightarrow\left(\bar{b} \in\left(B^{2} \cap\left(\bigcap_{i \in I}\left(\pi_{i} \upharpoonright B\right)_{*}^{-1}\left[\mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{A d}_{i}}\left(\left(\pi_{i} \backslash B\right)_{*}[X]\right)\right]\right)\right)\right)(\Leftrightarrow((I \cap$ $\left.\left.\left.\left(\bigcap \varepsilon_{I}[X]\right)\right) \subseteq\left(\varepsilon_{I}(\bar{b})\right)\right) \Leftrightarrow\left(\bar{b} \in \theta_{\wp\left(I \cap\left(\cap \varepsilon_{I}[X]\right), I\right)}^{B}\right)\right)$, and so $\langle(3.2)$ holds |"in view of (2.5)", while〉 (\{for every $\eta \in \operatorname{Co}_{[\mathrm{P}]}(\mathfrak{B})$, since, by Remark 2.3, $\mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{B}}$ is finitary, whereas $\operatorname{Fi}(I)$, being inductive, contains $\mathcal{F} \triangleq\left(\bigcup_{Y \in \wp_{\omega}(\eta)} \wp\left(I \cap\left(\bigcap \varepsilon_{I}[Y]\right), I\right)\right)$, for $\left\{\wp\left(I \cap\left(\bigcap \varepsilon_{I}[Z]\right), I\right) \mid Z \in \wp_{\omega}(\eta)\right\} \subseteq \operatorname{Fi}(I)$ is upward-directed, as $\wp_{\omega}(\eta)$ is so, by (2.11), $\left.\eta=\operatorname{Cg}_{[P]}^{\mathcal{B}}(\eta)=\left(\bigcup \operatorname{Cg}_{[\mathrm{P}]}^{\mathcal{B}}\left[\wp_{\omega}(\eta)\right]\right)=\theta_{\mathcal{F}}^{\mathcal{F}}\right\}$. Finally, assume \mho is finite, in which case, by Theorem 3.7, it, being an implicative system for $\mathrm{K}^{\prime} \triangleq \mathrm{SI}_{[\mathrm{P}]}(\mathrm{P})$, is so for $K^{\prime \prime} \triangleq \mathbf{I} \mathbf{P}^{U} K^{\prime} \supseteq K^{\prime}$, and so $\mathbf{Q} \triangleq \mathbf{Q V}\left(K^{\prime}\right)=\mathbf{P V}\left(K^{\prime \prime}\right) \supseteq \mathbf{P V}\left(K^{\prime}\right)=P$, being \mho-implicative, is [relatively] semi-simple with REDPC scheme \mho and $\mathrm{SI}_{[\mathrm{P}]}(\mathrm{P}) \supseteq \mathrm{K}^{\prime}$. Then, by the $\}$-optional case, P is filtral, for Q is so.) In this way, Corollary 3.4 and Theorem 3.7 complete the argument.

Whether the converse of the []-optional version of the /-right alternative of the $\|$-left one of the last statement holds remains an open problem. On the other hand, the \rangle-optional restriction by merely finitely-generated [P-]congruences of \mathfrak{B} in (3.2) can not be omitted, even if P is equational, as it is demonstrated by the following apparently simplest counter-example:

Example 3.11. Let $\Sigma \triangleq\left(\Sigma_{+} \cup 2 \cup\{\neg\}\right)$, P the variety of De Morgan algebras and $(\mathfrak{A} \mid \mathfrak{C}) \in(\mathrm{Si} \| \mathrm{SI})(\mathrm{P})$ the Kleene|Boolean algebra with carrier $(A \mid C) \triangleq\left(2 \cup\left(\left.\left\{\frac{1}{2}\right\} \right\rvert\, \varnothing\right)\right)$, in which case, by [22], P has an REDPC scheme, while \mathfrak{C} is a subalgebra of \mathfrak{A}, and so, by Lemma 2.9, there are a subdirect power \mathfrak{B} of \mathfrak{A} of degree $I \triangleq \omega$ and some $h \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{B}, \mathfrak{C})$. Then, by (2.5) and the subdiract irreducibility of $\mathfrak{C},(\operatorname{ker} h) \in$ $\operatorname{MI}(\mathrm{Co}(\mathfrak{B}))$. Therefore, if the \rangle-optional version of (3.2) held for arbitrary [P]congruences of \mathfrak{B}, then, by the simplicity of \mathfrak{A}, there would be some $J \subseteq I$ such that $(\operatorname{ker} h)=\left(B^{2} \cap\left(\bigcap_{i \in J}\left(\operatorname{ker}\left(\pi_{i} \upharpoonright B\right)\right)\right)\right)$, in which case there would be some $j \in J$ such that $(\operatorname{ker} h)=\left(\operatorname{ker}\left(\pi_{j} \upharpoonright B\right)\right)$, and so, by the Homomorphism Theorem, $h^{-1} \circ\left(\pi_{j} \upharpoonright B\right)$ would be an isomorphism from \mathfrak{C} onto \mathfrak{A}, contrary to the inequality $2 \neq 3$.
Corollary 3.12. Let $\mathrm{V} \subseteq \mathrm{A}_{\Sigma}$ be a variety with an REDPC scheme, $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ a prevariety, $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}[, \mathfrak{D}(, \mathfrak{E})] \in \mathrm{V}, \mathfrak{F} \in \mathrm{P}$ a finite subalgebra of $(\mathfrak{A}[(\times \mathfrak{E})]) \times \mathfrak{C}$ and [both] $(h[\mid g]) \in \operatorname{hom}_{[\mid(\mathrm{I})]}(\mathfrak{A}[\mid \mathfrak{C}], \mathfrak{B}[\mid \mathfrak{D}])$ Assume both $\operatorname{Co}(\mathfrak{A} \| \mathfrak{C}[(\| \mathfrak{E})])=\left\{\Delta_{A \| C[(\| E)]},(A \| C\right.$ $\left.[(\| E)])^{2}\right\} \cup(\{\operatorname{ker} h\} \|(\varnothing[\cup\{\operatorname{ker} g\}])[(\| \varnothing)])$, while $\left(\left\{\left(\pi_{0}^{2(+1)} \upharpoonright F\right)[\mathfrak{F}]\left[,\left(\left(\pi_{0}^{2(+1)} \upharpoonright F\right) \odot((\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.\pi_{1(+1)}^{2(+1)} \upharpoonright F\right) \circ g\right)\right)[\mathfrak{F}]\left(,\left(\left(\pi_{0}^{3} \upharpoonright F\right) \odot\left(\pi_{1}^{3} \upharpoonright F\right)\right)[\mathfrak{F}]\right)\right]\right\} \cap \mathrm{P}\right)=\varnothing\{c f . \quad(2.7)\}$, whereas $\mathfrak{F} \npreceq$ $((\mathfrak{B}[(\times \mathfrak{E})]) \times \mathfrak{C})$. Then, $\mathfrak{F} \in \operatorname{SIP}_{\mathrm{P}}(\mathrm{P})$.

Proof. Then, by (2.1), $\left\{\operatorname{ker}\left(\pi_{0}^{2(+1)} \mid F\right) \cap \theta \mid \theta \in\left\{F^{2}\left[, \operatorname{ker}\left(\left(\pi_{1(+1)}^{2(+1)} \mid F\right) \circ g\right)\left(, \operatorname{ker}\left(\pi_{1}^{3} \upharpoonright\right.\right.\right.\right.\right.$ $F))]\}\}$ is disjoint with $\Theta \triangleq \operatorname{Cop}(\mathfrak{F}) \supseteq \Theta^{\prime} \triangleq\left(\Theta \backslash\left\{\Delta_{F}\right\}\right) \not \supset \Delta^{F}=\left(\operatorname{ker}\left(\pi_{0}^{2(+1)} \upharpoonright F\right)[(\cap\right.$ $\left.\left.\left.\operatorname{ker}\left(\pi_{1}^{3} \upharpoonright F\right)\right)\right] \cap \operatorname{ker}\left(\pi_{1(+1)}^{2(+1)} \upharpoonright F\right)\right) \in \Theta$, in which case, by the finiteness of $\mathfrak{F} \in \mathrm{V}$ and Theorem 3.10(3.2) [(as well as the injectivity of $g)$], $\Theta^{\prime} \subseteq \wp\left(\operatorname{ker}\left(\left(\pi_{0}^{2(+1)} \upharpoonright F\right) \circ\right.\right.$ $h)\left[\left(\cap \operatorname{ker}\left(\pi_{1}^{3} \upharpoonright F\right)\right)\right] \cap \operatorname{ker}\left(\pi_{1(+1)}^{2(+1)}\lceil F), F^{2}\right)$, and so, for any $\Theta^{\prime \prime} \subseteq \Theta^{\prime},\left(F^{2} \cap\left(\cap \Theta^{\prime \prime}\right)\right) \supseteq$ $\left(\operatorname{ker}\left(\left(\pi_{0}^{2(+1)} \upharpoonright F\right) \circ h\right)\left[\left(\cap \operatorname{ker}\left(\pi_{1}^{3} \upharpoonright F\right)\right)\right] \cap \operatorname{ker}\left(\pi_{1(+1)}^{2(+1)} \upharpoonright F\right)\right) \neq \Delta_{F}$, for, otherwise, by (2.1) and $(2.7),\left(\left(\left(\pi_{0}^{2(+1)} \upharpoonright F\right) \circ h\right)\left(\odot\left(\pi_{1}^{2(+1)} \upharpoonright F\right)\right) \odot\left(\pi_{1(+1)}^{2(+1)} \upharpoonright F\right)\right.$ would be an embedding of \mathfrak{F} into $(\mathfrak{B}(\times \mathfrak{E})) \times \mathfrak{C}$.
3.1.1.1. Implicativity versus filtrality.

Theorem 3.13. Any [quasi-]equational/ [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ is implicative iff it is [relatively] /"both subdirectly-representable and" (subdirectly) /"finitely|principally" filtral.

Proof. The "only if" part is by Theorem 3.10. Conversely, assume P is [relatively] /"both subdirectly-representable and" subdirectly principally filtral, in which case, by "Remark 2.4 as well as"/ Footnote 1, Lemma 2.5 and Corollary 2.10, P is [relatively] both subdirectly-representable and semi-simple with abstract and non-trivially-hereditary $\mathrm{K} \triangleq(\mathrm{Si} \| \mathrm{SI})_{[\mathrm{P}]}(\mathrm{P})$. Let $I \triangleq\left\{\theta \in \mathrm{Co}_{\mathrm{K}}\left(\mathfrak{T m}_{\Sigma}^{4}\right) \mid\left(x_{0} \theta x_{1}\right) \Rightarrow\left(x_{2} \theta\right.\right.$ $\left.\left.x_{3}\right)\right\}, \overline{\mathfrak{A}} \triangleq\langle\mathfrak{A} / i\rangle_{i \in I} \in \mathrm{~K}^{I}, \mathfrak{D} \triangleq\left(\prod \overline{\mathfrak{A}}\right), h \triangleq\left(\prod_{i \in I} \nu_{i}\right)$ and $\bar{a} \triangleq\left\langle h\left(v_{j}\right)\right\rangle_{j \in 4}$, in which case, by (2.2) and $(2.7), h \in \operatorname{hom}\left(\mathfrak{T m}_{\Sigma}^{4}, \mathfrak{D}\right)$, while $\mathfrak{B} \triangleq(\mathfrak{D} \upharpoonright(\operatorname{img} h))$ is a subdirect product of $\overline{\mathfrak{A}}$, whereas $h \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{T}_{\Sigma}^{4}, \mathfrak{B}\right)$, and so $\vartheta \triangleq \mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{B}}\left(\left\langle a_{0}, a_{1}\right\rangle\right)=\theta_{\mathfrak{F}}^{B}$, for some $\mathcal{F} \in \operatorname{Fi}(I)$. Then, $\left\langle a_{0}, a_{1}\right\rangle \in \vartheta$, in which case $\varepsilon_{I}\left(\left\langle a_{2}, a_{3}\right\rangle\right) \supseteq \varepsilon_{I}\left(\left\langle a_{0}, a_{1}\right\rangle\right) \in \mathcal{F}$, and so $\varepsilon_{I}\left(\left\langle a_{2}, a_{3}\right\rangle\right) \in \mathcal{F}$, i.e., $\left\langle a_{2}, a_{3}\right\rangle \in \vartheta$. Let $\mho \triangleq(\operatorname{ker} h) \subseteq \operatorname{Eq}_{\Sigma}^{4}$. Consider any $\mathfrak{C} \in \mathrm{K}$ and $g \in \operatorname{hom}\left(\mathfrak{T} \mathfrak{m}_{\Sigma}^{4}, \mathfrak{C}\right)$. Then, providing $\mho \subseteq \eta \triangleq(\operatorname{ker} g) \ni\left\langle x_{0}, x_{1}\right\rangle$, by the Homomorphism Theorem, $f \triangleq\left(h^{-1} \circ g\right) \in \operatorname{hom}(\mathfrak{B}, \mathfrak{C})$, in which case, by (2.5), $\left\langle a_{0}, a_{1}\right\rangle \in \zeta \triangleq(\operatorname{ker} f)=f_{*}^{-1}\left[\Delta_{C}\right] \in \mathrm{Co}_{[\mathrm{P}]}(\mathfrak{B})$, and so $\left\langle a_{2}, a_{3}\right\rangle \in \vartheta \subseteq \zeta$. In that case, $\left\langle x_{2}, x_{3}\right\rangle \in \eta$. Now, assume $\left(\left\langle x_{0}, x_{1}\right\rangle \in \eta\right) \Rightarrow\left(\left\langle x_{2}, x_{3}\right\rangle \in \eta\right)$, in which case $\mho \subseteq \eta$, i.e., $\mathfrak{C} \models(\bigwedge \mho)[g]$, whenever $\eta=\mathrm{Eq}_{\Sigma}^{4}$. Otherwise, by the $\}$-optional version of the right alternative of (2.4), $\eta \in I$, in which case, by $(2.1), \mho \subseteq \eta$, i.e., $\mathfrak{C} \models(\bigwedge \mho)[g]$, and so \mho is an implicative system for K . Thus, P , being [relatively] subdirectly-representable, is \mho-implicative.

This relativezes [7].
3.1.2. Generic identity equivalence implication schemes for distributive lattice expansions. Here, it is supposed that $\Sigma_{+} \subseteq \Sigma$. Given any $\mathfrak{A} \in \mathrm{A}_{\Sigma}, X \subseteq A$ and $\Omega \subseteq \operatorname{Tm}_{\Sigma}^{1}$, we have $\Omega_{X}^{\mathfrak{A}}: A \rightarrow \wp(\Omega), a \mapsto\left\{\varphi \in \Omega \mid \varphi^{\mathfrak{A}}(a) \in X\right\}$.

Given any $\bar{\varphi} \in\left(\operatorname{Tm}_{\Sigma}^{1}\right)^{*}$ with $x_{0} \in \Xi \triangleq(\operatorname{img} \bar{\varphi}), \iota \in \Omega \in \wp\left(V_{1}, \Xi\right), i \in 2$ and $\Delta \in \wp(\Xi)$, let $\varepsilon_{\bar{\varphi}, \Delta}^{i, \iota} \triangleq\left(\left(\wedge_{+}\left\langle(\bar{\varphi} \cap \Delta) *\left((\bar{\varphi} \cap \Delta) \circ\left[x_{0} / x_{1}\right]\right), \iota\left(x_{2+i}\right)\right\rangle\right) \lesssim\left(\vee_{+}\langle(\bar{\varphi} \backslash \Delta) *\right.\right.$ $\left.\left.\left((\bar{\varphi} \backslash \Delta) \circ\left[x_{0} / x_{1}\right]\right), \iota\left(x_{3-i}\right)\right)\right) \in \mathrm{Eq}_{\Sigma}^{4}$ and $\mho_{\Omega}^{\bar{\varphi}} \triangleq\left\{\varepsilon_{\bar{\varphi}, \Delta}^{i, \iota} \mid i \in 2, \iota \in \Omega, \Delta \in \wp(\Xi)\right\} \in$ $\wp_{\omega}\left(\mathrm{Eq}_{\Sigma}^{4}\right)$.

Lemma 3.14. Let \mathfrak{A} be a Σ-algebra with (distributive) lattice Σ_{+}-reduct, $\bar{\varphi} \in$ $\left(\operatorname{Tm}_{\Sigma}^{1}\right)^{*}$ with $x_{0} \in \Xi \triangleq(\operatorname{img} \bar{\varphi})$ and $\Omega \in \wp\left(V_{1}, \Xi\right)$. Then, $\mho_{\Omega}^{\bar{\varphi}}$ is an identity reflexive symmetric (transitive implication) scheme for \mathfrak{A}.

Proof. Clearly, for all $j \in 2, \iota \in \Xi$ and $\Delta \in \wp(\Xi)$, there are some $\phi, \psi, \xi \in \operatorname{Tm}_{\Sigma}^{3}$ such that $\left(\varepsilon_{\bar{\varphi}, \Delta}^{j, \iota}\left[x_{3} / x_{2}\right]\right)=((\phi \wedge \xi) \lesssim(\psi \vee \xi))$, in which case this is satisfied in
lattice Σ-expansions, and so in \mathfrak{A}. Likewise, there are then some $\bar{\eta}, \bar{\zeta} \in\left(\operatorname{Tm}_{\Sigma}^{2}\right)^{+}$ with $((\operatorname{img} \bar{\eta}) \cap(\operatorname{img} \bar{\zeta})) \neq \varnothing$ such that $\left(\varepsilon_{\bar{\varphi}, \Delta}^{j, \iota}\left[x_{2+i} / x_{i}\right]_{i \in 2}\right)=\left(\left(\wedge_{+} \bar{\eta}\right) \lesssim\left(\vee_{+} \bar{\zeta}\right)\right)$, in which case this is satisfied in lattice Σ-expansions, and so in \mathfrak{A}. Furthermore, $\left(\mho_{\Omega}^{\bar{\varphi}}\left[x_{2} / x_{3}, x_{3} / x_{2}\right]\right)=\mho_{\Omega}^{\bar{\varphi}}$. (Next, since the Σ_{+}-quasi-identity $\left\{\left(x_{0} \wedge x_{1}\right) \lesssim\left(x_{2} \vee\right.\right.$ $\left.\left.x_{3}\right),\left(x_{0} \wedge x_{3}\right) \lesssim\left(x_{2} \vee x_{4}\right)\right\} \rightarrow\left(\left(x_{0} \wedge x_{1}\right) \lesssim\left(x_{2} \vee x_{4}\right)\right)$, being satisfied in distributive latices, is so in \mathfrak{A}, so are logical consequences of its substitutional Σ-instances $\left(\mho_{\Omega}^{\bar{\varphi}} \cup\left(\mho_{\Omega}^{\bar{\varphi}}\left[x_{2+i} / x_{3+i}\right]_{i \in 2}\right)\right) \rightarrow \Psi$, where $\Psi \in\left(\mho_{\Omega}^{\bar{\varphi}}\left[x_{3} / x_{4}\right]\right)$. Finally, consider any $a \in A$ and $\bar{b} \in\left(A^{2} \backslash \Delta_{A}\right)$, in which case, by the Prime Ideal Theorem, there are some $k \in 2$ and some prime filter F of \mathfrak{A} such that $b_{k} \in F \not \supset b_{1-k}$, and so, as $\Delta \triangleq \Xi_{F}^{\mathfrak{A}}(a) \in \wp(\Xi)$ and $x_{0} \in \Omega, \mathfrak{A} \not \vDash\left(\bigwedge \mho_{\Omega}^{\bar{\varphi}}\right)\left[x_{i} / a, x_{2+i} / b_{i}\right]_{i \in 2}$, for $\mathfrak{A} \not \vDash$ $\left.\varepsilon_{\bar{\varphi}, \Delta}^{k, x_{0}}\left[x_{i} / a, x_{2+i} / b_{i}\right]_{i \in 2}.\right)$

This, by Corollary 3.4, immediately yields:
Corollary 3.15. Let \mathfrak{A} be a non-one-element Σ-algebra with distributive lattice Σ_{+}-reduct, $\bar{\varphi} \in\left(\operatorname{Tm}_{\Sigma}^{1}\right)^{*}$ with $x_{0} \in \Xi \triangleq(\operatorname{img} \bar{\varphi})$ and $\Omega \in \wp\left(V_{1}, \Xi\right)$. Suppose $\mho_{\Omega}^{\bar{\varphi}}$ is an implicative system for \mathfrak{A}. Then, \mathfrak{A} is simple.
3.1.2.1. Equality determinants versus implicativity. Recall that a (logical) Σ-matrix is any pair $\mathcal{A}=\langle\mathfrak{A}, D\rangle$ with a Σ-algebra \mathfrak{A} and a $D \subseteq A$, in which case an $\Omega \subseteq \operatorname{Tm}_{\Sigma}^{1}$ is called an equality/identity determinant for \mathcal{A}, if $\bar{\Omega}_{D}^{\mathfrak{A}}$ is injective (cf. [20]), and so one for a class M of Σ-matrices, if it is so for each member of M .

Theorem 3.16. Let M be a class of Σ-matrices and $\bar{\varphi} \in\left(\operatorname{Tm}_{\Sigma}^{1}\right)^{*}$ with $x_{0} \in \Xi \triangleq$ ($\operatorname{img} \bar{\varphi}$). Suppose, for all $\mathcal{A} \in \mathrm{M}, \pi_{0}(\mathcal{A}) \upharpoonright \Sigma_{+}$is a distributive lattice with set of its prime filters $\pi_{1}\left[\mathrm{M} \cap \pi_{0}^{-1}\left[\left\{\pi_{0}(\mathcal{A})\right\}\right]\right]$. Then, Ξ is an equality determinant for M iff $\mho_{V_{1}}^{\bar{\varphi}}$ is an implicative system for $\left(\mathbf{I S}_{[>1]}\left\{\mathbf{P}^{\mathrm{U}}\right\}\right) \pi_{0}[\mathrm{M}]$ ($[$ in which case its members are simple]).

Proof. Let $\mathcal{A}=\langle\mathfrak{A}, D\rangle \in \mathrm{M}, \bar{a} \in A^{2}$ and, for any $\bar{b} \in A^{2}, h_{\bar{b}} \triangleq\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}$. First, assume Ξ is an equality determinant for M. Consider any $\bar{b} \in A^{2}$. Assume $\mathfrak{A} \not \vDash \varepsilon_{\bar{\varphi}, \Delta}^{j, x_{0}}\left[h_{\bar{b}}\right]$, for some $j \in 2$ and $\Delta \subseteq \Xi$, in which case, by the Prime Ideal Theorem, $\exists \mathcal{B}=\left\langle\mathfrak{A}, D^{\prime}\right\rangle \in \mathrm{M}: \forall k \in 2: \Delta=\Xi_{D^{\prime}}^{\mathfrak{A}}\left(a_{k}\right)$, and so $a_{0}=a_{1}$. Then, by Lemma 3.14 with $\Omega=\Xi, \mho_{V_{1}}^{\bar{\varphi}}$ is an implicative system for \mathfrak{A}. Conversely, assume $\mho_{V_{1} r}^{\bar{\varphi}}$ is an implicative system for \mathfrak{A} and $\Delta \triangleq \Xi_{D}^{\mathfrak{A}}\left(a_{0}\right)=\Xi_{D}^{\mathfrak{A}}\left(a_{1}\right)$. Take any $\bar{b} \in(D \times(A \backslash D)) \neq \varnothing$, in which case, as $\Delta \subseteq \Xi \ni x_{0}, \mathfrak{A} \not \vDash \varepsilon_{\bar{\varphi}, \Delta}^{0, x_{0}}\left[h_{\bar{b}}\right]$, for D is a prime filter of $\mathfrak{A} \mid \Sigma_{+}$, and so $a_{0}=a_{1}$. (Finally, Corollary 3.15 completes the argument.)
3.2. Disjunctivity. Unless otherwise specified, fix any $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$.
3.2.1. Disjunctivity versus finite subdirect irreducibility and congruence-distributivity.

Lemma 3.17. Any \mho-disjunctive /finite non-one-element $\mathfrak{A} \in \mathrm{A}_{\Sigma}$ is finitely/ sub-directly-irreducible. In particular, any disjunctive pre-variety is (relatively) finitely subdirectly-representable.

Proof. Consider any $\theta, \vartheta \in\left(\operatorname{Co}(\mathfrak{A}) \backslash\left\{\Delta_{A}\right\}\right)$ and take any $(\bar{a} \mid \bar{b}) \in\left((\theta \mid \vartheta) \backslash\left\{\Delta_{A}\right\}\right) \neq \varnothing$, in which case the Σ-identities in $\mho\left[x_{1 \mid 3} / x_{0 \mid 2}\right]$, being true in \mathfrak{A}, are so in $\mathfrak{A} /(\theta \mid \vartheta)$ (in particular, under $\left.\left[x_{0 \mid 2} / \nu_{\theta \mid \vartheta}\left((a \mid b)_{0}\right), x_{(2 \mid 0)+i} / \nu_{\theta \mid \vartheta}\left((b \mid a)_{i}\right)\right]_{i \in 2}\right)$, and so $\Delta_{A} \nsupseteq\left\{\left\langle\phi^{\mathfrak{A}}\left[x_{i} /\right.\right.\right.$ $\left.\left.\left.a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}, \phi^{\mathfrak{2}}\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}\right\rangle \mid(\phi \approx \psi) \in \mho\right\} \subseteq(\theta \cap \vartheta)$. Then, $(\theta \cap \vartheta) \neq \Delta_{A}$. Thus, induction on the cardinality of finite subsets of $\operatorname{Co}(\mathfrak{A})$ ends the proof.

Lemma 3.18. Let $\mathrm{P} \subseteq \mathrm{A}_{\Sigma} \ni \mathfrak{A}$ be a \mho-disjunctive pre-variety and $X, Y, Z \subseteq A^{2}$. Then, $\mathrm{Cg}_{\mathrm{P}}^{\mathfrak{A}}\left(\mho^{\mathfrak{A}}(X, Y) \cup Z\right)=\left(\mathrm{Cg}_{\mathrm{P}}^{\mathfrak{A}}(X \cup Z) \cap \mathrm{Cg}_{\mathrm{P}}^{\mathfrak{A}}(Y \cup Z)\right)$.

Proof. In that case, P is generated by $\mathrm{K} \triangleq \mathrm{P}_{\mho}=\mathbf{I S K}$, so, by Remark 2.2 and (2.8), $\operatorname{Cog}_{K}(\mathfrak{A})$ is a basis of $\operatorname{Cop}(\mathfrak{A})$. Then, for any $\theta \in \operatorname{Cog}_{K}(\mathfrak{A}), \mathfrak{A} / \theta$ is \mho-disjunctive, in which case $\left(\mho^{\mathfrak{A}}(X, Y) \cup Z\right) \subseteq \theta$ iff either $(X \cup Z) \subseteq \theta$ or $(Y \cup Z) \subseteq \theta$, and so, for any $\bar{a} \in A^{2},\left(\bar{a} \in \operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}\left(\mho^{\mathfrak{A}}(X, Y) \cup Z\right)\right) \Leftrightarrow\left(\forall \theta \in \operatorname{Co}_{K}(\mathfrak{A}):\left(\left(\mho^{\mathfrak{A}}(X, Y) \cup Z\right) \subseteq \theta\right) \Rightarrow\right.$ $(\bar{a} \in \theta)) \Leftrightarrow\left(\left(\forall \theta \in \operatorname{Cok}_{K}(\mathfrak{A}):(X \cup Z) \subseteq \theta\right) \Rightarrow(\bar{a} \in \theta)\right) \&\left(\forall \theta \in \operatorname{Có}_{\mathcal{K}}(\mathfrak{A}):((Y \cup Z) \subseteq\right.$ $\theta) \Rightarrow(\bar{a} \in \theta)) \Leftrightarrow\left(\bar{a} \in\left(\mathrm{Cg}_{\mathrm{P}}^{\mathfrak{A}}(X \cup Z) \cap \mathrm{Cg}_{\mathrm{P}}^{\mathfrak{A}}(Y \cup Z)\right)\right)$, as required.

Corollary 3.19. Any \mho-disjunctive [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ is [relatively] congruencedistributive, and so is any [quasi-equational/finitely] implicative one.
Proof. Then, by Lemma 3.18, for any $\mathfrak{A} \in \mathrm{P}$ and $\theta, \vartheta, \eta \in \operatorname{Cop}(\mathfrak{A})$, we have $\left(\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}(\theta \cup\right.$ $\left.\eta) \cap \operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}(\vartheta \cup \eta)\right)=\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}\left(\mho^{\mathfrak{A}}(\theta, \vartheta) \cup \eta\right)=\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}\left(\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}\left(\delta^{\mathfrak{A}}(\theta, \vartheta)\right) \cup \eta\right)=\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}\left(\left(\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}(\theta) \cap\right.\right.$ $\left.\left.\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}(\vartheta)\right) \cup \eta\right)=\operatorname{Cg}_{\mathrm{P}}^{\mathfrak{A}}((\theta \cap \vartheta) \cup \eta)$, as required.

Lemma 3.20. Let $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ be a \mho-implicative pre-variety and \mho^{\prime} a disjunctive system for P_{\mho}. Then, every \mho^{\prime}-disjunctive member of P is \mho-implicative.
Proof. In that case, \mathcal{J}, being is an identity implication scheme for P_{\mho}, is so for $\mathrm{P}=\mathbf{I S P P}_{\mho}$, while the Σ-identities in $\bigcup\left\{\mho^{\prime}\left[x_{2+i} / \varphi_{i}\right]_{i \in 2} \mid \bar{\varphi} \in \mho\right\}$, being true in P_{\mho}, are so in P , and so \mho^{\prime}-disjunctive members of P are \mho-implicative, as required.

Corollary 3.21. For any \mho-disjunctive [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}, \mathrm{P}_{\mho}=\left(\mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P}) \cup\right.$ $\mathrm{A}_{\bar{\Sigma}}^{=1}$). In particular, any [quasi-equational/finitely] implicative [pre-]variety is [relatively] finitely semi-simple.
Proof. Then, any one-element Σ-algebra is \mho-disjunctive, while, for any $\mathfrak{A} \in \mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P})$ and $\bar{a}, \bar{b} \in\left(A^{2} \backslash \Delta_{A}\right)$, since $\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{A}}(\bar{a} \mid \bar{b}) \in\left(\operatorname{Co}_{[\mathrm{P}]}(\mathfrak{A}) \backslash\left\{\Delta_{A}\right\}\right)$, whereas, by Lemma 3.18, $\left(\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{A}}(\bar{a}) \cap \mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{A}}(\bar{b})\right)=\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{A}}\left(\mho^{\mathfrak{A}}(\bar{a} \mid \bar{b})\right)$, we have $\mho^{\mathfrak{A}}(\bar{a} \mid \bar{b}) \neq \Delta_{A}=\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{A}}\left(\Delta_{A}\right)$, i.e., $\mathfrak{A} \not \vDash(\bigwedge \mho)\left[x_{i} / a_{i}, x_{2+i} / b_{i}\right]_{i \in 2}$, in which case \mathfrak{A} is \mho-disjunctive, because the Σ-identities in $\bigcup_{j \in 2} \mho\left[x_{(2 \cdot j)} / x_{(2 \cdot j)+1}\right]$, being true in P_{\mho}, are so in $\mathbf{I S P P}_{\mho}=\mathrm{P} \ni \mathfrak{A}$, and so Lemmas 3.4, 3.17, 3.20 and [21, Remark 2.4] complete the argument.

Theorem 3.22. Any [pre-]variety $\mathrm{P} \subseteq \mathrm{A}_{\Sigma}$ is disjunctive iff it is [relatively both] congruence-distributive [and finitely-subdirectly-representable] with $\mathrm{SI}_{[\mathbf{P}]}^{\omega}(\mathrm{P}) \cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}$ being "a universal (infinitary) model class"/hereditary.
Proof. The "only if" part is by Lemma 3.2.1 and Corollary 3.21. Conversely, assume P is [relatively both] congruence-distributive [and finitely-subdirectly-representable] with hereditary $\mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P}) \cup \mathrm{A}_{\Sigma}{ }^{1}$, in which case, by Remark 2.4, it is [relatively] finitely-subdirectly-representable, while, by (2.5), $\operatorname{Co}_{[\mathcal{P}]}\left(\mathfrak{T m}_{\Sigma}^{4}\right) \cap \wp\left(\theta, \mathrm{Eq}_{\Sigma}^{4}\right)$, where $\theta \triangleq\left(\operatorname{Eq}_{\Sigma}^{4} \cap\left(\bigcap \operatorname{Co}_{\mathrm{SI}}^{[\mathrm{P} \mid}(\mathrm{P})\left(\mathfrak{T}_{\Sigma}^{4}\right)\right)\right) \in \operatorname{Co}_{[\mathrm{P}]}\left(\mathfrak{T}^{4}{ }_{\Sigma}^{4}\right)$, is distributive, for $\operatorname{Co}_{[\mathrm{P}]}\left(\mathfrak{T}_{\Sigma}^{4} / \theta\right)$ is so. Let $\forall j \in 2: \vartheta_{j} \triangleq \operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{T} \mathfrak{m}_{\Sigma}^{4}}\left(\theta \cup\left\{\left\langle x_{2 \cdot j}, x_{(2 \cdot j)+1}\right\rangle\right\}\right) \in\left(\operatorname{Co}_{[\mathrm{P}]}\left(\mathfrak{T}^{4} \mathrm{~m}_{\Sigma}^{4}\right) \cap \wp\left(\theta, \mathrm{Eq}_{\Sigma}^{4}\right)\right) \ni$ $\mho \triangleq\left(\vartheta_{0} \cap \vartheta_{1}\right) \subseteq \mathrm{Eq}_{\Sigma}^{4}$. Consider any $\mathfrak{A} \in \mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P})$ and any $\bar{a} \in A^{4}$. Let $h \in$ $\operatorname{hom}\left(\mathfrak{T m}_{\Sigma}^{4}, \mathfrak{A}\right)$ extend $\left\{\left\langle x_{i}, a_{i}\right\rangle \mid i \in 4\right\}$, in which case $\mathfrak{B} \triangleq(\mathfrak{A} \upharpoonright(\operatorname{img} h)) \in\left(\mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P}) \cup\right.$ $\left.\mathrm{A}_{\bar{\Sigma}}^{=1}\right)$, and so $\left(\left(\left\{\left\langle a_{0}, a_{1}\right\rangle,\left\langle a_{2}, a_{3}\right\rangle\right\} \cap \Delta_{A}\right) \neq \varnothing\right) \& \mid \Leftrightarrow\left(\mathfrak{A} \models \Phi_{\mho}^{4}\left[h \upharpoonright V_{4}\right]\right)$, unless $\mathfrak{B} \in$ $\mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P})$. Otherwise, by (2.5) and the Homomorphism Theorem, $\theta \subseteq \eta \triangleq(\operatorname{ker} h) \in$ $\mathrm{MI}^{\omega}\left(\mathrm{Co}_{[\mathrm{P}]}\left(\mathfrak{T}_{\Sigma}^{4}\right)\right)$, in which case we have:

$$
\begin{aligned}
& \left(\mathfrak { A } \models \Phi _ { \mho } ^ { 4 } [h \lceil V _ { 4 }]) \Leftrightarrow ((\vartheta _ { 0 } \cap \vartheta _ { 1 }) = \mho \subseteq \eta) \Leftrightarrow \left(\eta=\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{T}_{\Sigma}^{4}}\left(\eta \cup\left(\vartheta_{0} \cap \vartheta_{1}\right)\right)=\right.\right. \\
& \left(\operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{T}^{4}}\left(\eta \cup \vartheta_{0}\right) \cap \operatorname{Cg}_{[\mathrm{P}]}^{\mathfrak{T}^{\frac{4}{4}}}\left(\eta \cup \vartheta_{1}\right)\right) \Leftrightarrow\left(\exists j \in 2: \eta=\mathrm{Cg}_{[\mathrm{P}]}^{\mathfrak{T}^{4}}\left(\eta \cup \vartheta_{j}\right)\right) \Leftrightarrow \\
& \left(\exists j \in 2: \vartheta_{j} \subseteq \eta\right) \Leftrightarrow\left(\exists j \in 2:\left\langle x_{2 \cdot j}, x_{(2 \cdot j)+1}\right\rangle \in \eta\right) \Leftrightarrow\left(\exists j \in 2: a_{2 \cdot j}=a_{(2 \cdot j)+1}\right),
\end{aligned}
$$

and so \mho is a disjunctive system for $\mathrm{SI}_{[\mathrm{P}]}^{\omega}(\mathrm{P})$. Thus, P , being [relatively] finitely-subdirectly-representable, is $\mathcal{\mho}$-disjunctive, as required.

This, by Remark 2.4 and Corollary 3.21 (as well as the Compactness Theorem for ultra-multiplicative classes; cf., e.g., [15]), immediately yields:
Corollary 3.23. Any [quasi-]variety $\mathrm{Q} \subseteq \mathrm{A}_{\Sigma}$ is (finitely) disjunctive iff it is [relatively] congruence-distributive with $\mathrm{S}_{[\mathrm{Q}]}^{\omega}(\mathrm{Q}) \cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}$ being " a universal (first-order) model class"/"hereditary (and ultra-multiplicative)".

This, in its turn, by Footnote 1, Corollary 2.11 and Lemma 2.12, immediately yields:
Corollary 3.24. Any locally-finite [quasi-]variety $\mathrm{Q} \subseteq \mathrm{A}_{\Sigma}$ is (finitely) disjunctive iff it is [relatively] congruence-distributive with $\mathrm{SI}_{[\mathrm{Q}]}^{\omega}(\mathrm{Q}) \cup \mathrm{A}_{\Sigma}{ }^{1}$ being "a universal \{infinitary\} model class"/hereditary.

Finally, this, by the congruence-distributivity of lattice expansions (cf., e.g., [17]) and Corollary 2.7, immediately yields:

Corollary 3.25. Suppose $\Sigma_{+} \subseteq \Sigma$. Then, any finitely-generated variety $\mathrm{V} \subseteq \mathrm{A}_{\Sigma}$ of lattice expansions with non-trivially-hereditary $\mathrm{SI}^{(\omega)}(\mathrm{V})$ is finitely disjunctive.

This provides an immediate (though far from being constructive) insight into the finite disjunctivity of the finitely-generated variety of distributive/Stone|"De Morgan" lattices/algebras|algebras||lattices, a constructive one being given by [19, Example 1/2] and [20, Lemma 11].
3.2.1.1. Implicativity versus finite semi-simplicity and disjunctivity. By Footnote 1, Theorem 3.13, Corollaries 2.8, 2.11, 2.13, 3.21, 3.23, 3.24, Lemma 2.12 and [21, Remark 2.4], we eventually get:
Theorem 3.26. Any locally-finite/ [quasi-]variety $\mathrm{Q} \subseteq \mathrm{A}_{\Sigma}$ is implicative iff it is /finitely both disjunctive and [relatively] semi-simple iff it is [relatively] both congruence-distributive and semi-simple with $\mathrm{Si}_{[\mathrm{Q}]}(\mathrm{Q}) \cup \mathrm{A}_{\bar{\Sigma}}^{=1}$ being "a universal /first-order model class"|"hereditary /"and ultra-multiplicative"".

This, by the congruence-distributivity of lattice expansions (cf., e.g., [17]), Corollaries 2.7, 3.4 and Footnote 1, immediately yields:

Corollary 3.27. Suppose $\Sigma_{+} \subseteq \Sigma$. Then, any locally-finite variety $\mathrm{V} \subseteq \mathrm{A}_{\Sigma}$ of lattice expansions is implicative iff it is semi-simple "and (finitely) disjunctive"| "with non-trivially-hereditary (Si $\mid \mathrm{SI})(\mathrm{V})$ ".
Corollary 3.28. Suppose $\Sigma_{+} \subseteq \Sigma$. Let $\mathrm{K} \subseteq \mathrm{A}_{\Sigma}$ be a finite set of finite lattice expansions without non-simple non-one-element subalgebras and V the variety generated by K . Then, V is implicative with $(\mathrm{Si} \mid \mathrm{SI})(\mathrm{V})=\mathbf{I S}_{>1} \mathrm{~K}$.

These provide an immediate / \{though far from being constructive\} insight into the not/ implicativity of (and so not/ REDPC for; cf. Theorem 3.7) the not/ semisimple finitely-generated variety of Stone/distributive|"De Morgan" algebras/lattices|algebras||lattices /(cf. [9]|[22]\|) / "a constructive one being given by Theorem 3.16 and [19, Example 1]|"Remark 4.3"".

Whether the /-alternative stipulations are necessary in Theorem 3.26 remains an open issue. On the other hand, the necessity of the "[relative] congruencedistributivity"//"lattice expansion" stipulation therein// as well as in Corollaries $3.23,3.24,3.25,3.27,3.28$ and Theorem 3.22 is demonstrated by:

Example 3.29. Let $\Sigma=\{\wedge\}$ and $S L$ the variety of semi-lattices, in which case, for any filter $F \neq A$ of any $\mathfrak{A} \in \mathrm{SL}, \chi_{A}^{F}$ is a surjective homomorphism from \mathfrak{A} onto $\mathfrak{S}_{2} \in \mathrm{SL}$ with $S_{2} \triangleq 2$ and $\wedge^{\mathfrak{A}} \triangleq\left(\cap \upharpoonright 2^{2}\right)$, and so, by (2.8), $\mathrm{SL}=\mathbf{I P}^{\mathrm{SD}} \mathfrak{S}_{2}$. Now, assume $|A|>2$, in which case, providing \mathfrak{A} is a chain, for any $\bar{a} \in A^{3}$ with $|\operatorname{img} \bar{a}|=3$ such that $a_{0} \leqslant^{\mathfrak{A}} a_{1} \leqslant^{\mathfrak{A}} a_{2}$ and $i \in 2, \Delta_{A} \neq \theta_{i} \triangleq\left(\left[a_{i}, a_{i+1}\right]_{\mathfrak{A}}^{2} \cup\right.$
$\left.\Delta_{A}\right)=\operatorname{Cg}^{\mathfrak{A}}\left(\left\{\left\langle a_{i}, a_{i+1}\right\rangle\right\}\right) \in \operatorname{Co}(\mathfrak{A})$, while $\left(\theta_{0} \cap \theta_{1}\right)=\Delta_{A}$, and so \mathfrak{A} is not finitely-sibdirectly-irreducible. Otherwise, take any $\bar{b} \in A^{2}$ such that $c \triangleq\left(b_{0} \wedge^{\mathfrak{A}} b_{1}\right) \notin$ (img \bar{b}), in which case, for each $j \in 2, \vartheta_{j} \triangleq\left(\left(\bigcup\left\{\left[c \wedge^{\mathfrak{A}} d, b_{j} \wedge^{\mathfrak{A}} d\right]_{\mathfrak{A}}^{2} \mid d \in A\right\}\right) \cup \Delta_{A}\right) \supsetneq$ Δ_{A} is symmetric and forms a subalgebra of \mathfrak{A}^{2}, and so the transitive closure $\eta_{j}=$ $\mathrm{Cg}^{\mathfrak{A}}\left(\left\{\left\langle c, b_{j}\right\rangle\right\}\right) \supseteq \vartheta_{j}$ of ϑ_{j} is a congruence of \mathfrak{A} distinct from Δ_{A}. By contradiction, prove that $\left(\eta_{0} \cap \eta_{1}\right) \subseteq \Delta_{A}$. For suppose $\left(\eta_{0} \cap \eta_{1}\right) \nsubseteq \Delta_{A}$. Take any $\bar{e} \in\left(\left(\eta_{0} \cap \eta_{1}\right) \backslash\right.$ $\left.\Delta_{A}\right) \neq \varnothing$, in which case, for all $k, l \in 2,\left\langle e_{k}, e_{1-k}\right\rangle \in\left(\theta_{l} \backslash \Delta_{A}\right)$, that is, there are some $m_{l} \in \omega, \bar{f}^{l} \in A^{m_{l}+2}$ and $\bar{g}^{l} \in A^{m_{l}+1}$ such that $f_{0}^{l}=e_{k}, f_{m_{l}+1}^{l}=e_{1-k}$ and, for every $n \in\left(m_{l}+1\right), f_{n[+1]}^{l} \in\left[c \wedge^{\mathfrak{A}} g_{n}^{l}, b_{l} \wedge^{\mathfrak{A}} g_{n}^{l}\right]_{\mathfrak{A}}$, and so $e_{k} \leqslant^{\mathfrak{A}} c$, when taking $n=0$, because $\{l, 1-l\}=2$, while $e_{k}=f_{0}^{l \mid(1-l)} \leqslant^{\mathfrak{A}}\left(b_{l \mid(1-l)} \wedge^{\mathfrak{A}} g_{0}^{l \mid(1-l)}\right) \leqslant^{\mathfrak{A}} b_{l \mid(1-l)}$. By induction on any $\ell \in\left(m_{l}+2\right)$, show that $e_{k} \leqslant^{\mathfrak{A}} f_{\ell}^{l}$. The case $\ell=0$ is by the equality $e_{k}=f_{0}^{l}$. Otherwise, $\left(m_{l}+2\right) \ni(\ell-1)<\ell$, in which case, by induction hypothesis, we have $c \geqslant^{\mathfrak{A}} e_{k} \leqslant^{\mathfrak{A}} f_{\ell-1}^{l} \leqslant^{\mathfrak{A}}\left(b_{l} \wedge^{\mathfrak{A}} g_{\ell-1}^{l}\right) \leqslant^{\mathfrak{A}} g_{\ell-1}^{l}$, and so we get $e_{k} \leqslant^{\mathfrak{A}}\left(c \wedge^{\mathfrak{A}} g_{\ell-1}^{l}\right) \leqslant^{\mathfrak{A}} f_{\ell}^{l}$. In particular, $e_{k} \leqslant^{\mathfrak{A}} e_{1-k}$, when taking $\ell=\left(m_{l}+1\right)$, since $f_{m_{l}+1}^{l}=e_{1-k}$. Then, $e_{0}=e_{1}$, in which case this contradiction shows that $\left(\eta_{0} \cap \eta_{1}\right)=\Delta_{A}$, and so \mathfrak{A} is not finitely-sibdirectly-irreducible. Thus, by (2.10) as well as the simplicity of two-element algebras and absence of their proper non-one-element subalgebras, $\left(\left(\mathrm{SI}^{(\omega)} \mid \mathrm{Si}\right)(\mathrm{SL})\left\{\cup \mathrm{A}_{\bar{\Sigma}}{ }^{1}\right\}\right)=\left(\mathbf{I} \mathfrak{S}_{2}\left\{\cup \mathrm{~A}_{\bar{\Sigma}}{ }^{1}\right\}\right)$ is the class of \{no-more-than-\}two-element semi-lattices $\{$ that is, the universal first-order model subclass of SL relatively axiomatized by the single universal first-order sentence $\left.\forall_{\imath \in 3} x_{2}\left(\left(x_{2} \approx x_{1}\right) \vee\left(x_{2} \approx x_{0}\right) \vee\left(x_{1} \approx x_{0}\right)\right)\right\}$, while SL, being finitely-semi-simple and finitely-generated, is semi-simple and locally-finite. On the other hand, since $\operatorname{Fi}(2)=\{\wp(N, 2) \mid N \subseteq 2\}$, the set $\left\{\Delta_{2^{2}},\left(2^{2}\right)^{2}\right\} \cup\left\{\operatorname{ker}\left(\pi_{\jmath} \mid 2^{2}\right) \mid \jmath \in 2\right\}$ of filtral congruences of \mathfrak{S}_{2}^{2} does not contain its congruence $\Delta_{2^{2}} \cup\{\langle\langle 0, \mathbb{k}\rangle,\langle 0,1-\mathbb{k}\rangle\rangle \mid \mathbb{k} \in 2\}$, in which case, by Theorem 3.13, SL, not being filtral, is not implicative, and so, by Theorem 3.26, is neither congruence-distributive nor disjunctive.

3.2.2. Disjunctivity versus distributivity of lattices of sub-varieties.

Lemma 3.30. Let K be a class of Σ-algebras with a disjunctive system $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$ as well as R and S are relative sub-varieties of K . Then, so is $\mathrm{R} \cap \| \cup \mathrm{S}$. In particular, relative sub-varieties of K form a distributive lattice.

Proof. Take any $\mathcal{J}, \mathcal{J} \subseteq \operatorname{Tm}_{\Sigma}^{\omega}$ with $(R \mid S)=(\mathrm{K} \cap \operatorname{Mod}(\mathcal{J} \mid \mathcal{J}))$, in which case $(\mathrm{R} \cap \| \cup \mathrm{S})$ $=\left(\mathrm{K} \cap \operatorname{Mod}\left((\mathcal{J} \cup \mathcal{J}) \| \bigcup\left\{\mho\left[x_{i} / \phi_{i}, x_{2+i} / \psi_{i}\right]_{i \in 2} \mid(\bar{\phi} \mid \bar{\psi}) \in\left((\mathcal{J} \mid \mathcal{J})\left[x_{j} / x_{(2 \cdot j)+(0 \mid 1)}\right]_{j \in \omega}\right)\right\}\right)\right)$, and so the distributivity of unions with intersections completes the argument.

This, by (2.10), (2.9) and Lemma 3.17, immediately yields:
Corollary 3.31. Let K be a [finite] class of finite Σ-algebras with a disjunctive system $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$ and P the pre-variety generated by K . Suppose P is a variety. Then, $\mathrm{SI}(\mathrm{P})=\mathbf{I} \mathbf{S}_{>1} \mathrm{~K}$, in which case $\mathrm{S} \mapsto\left(\mathrm{S} \cap \mathbf{S}_{\{>1\}} \mathrm{K}\right)$ and $\mathrm{R} \mapsto \mathbf{I} \mathbf{P}^{\mathrm{SD}} \mathrm{R}$ are inverse to one another isomorphisms between the lattices of sub-varieties of P and relative ones of $\mathbf{S}_{\{>1\}} \mathrm{K}$, and so they are distributive [and finite].

Likewise, by (2.10), (2.9), Theorem 3.7 (as well as [21, Remark 2.4] and Lemma 3.30), we immediately have:

Corollary 3.32. Let K be a [finite] class of [finite] Σ-algebras with a (finite) implicative system $\mho \subseteq \mathrm{Eq}_{\Sigma}^{4}$ and P the pre-variety generated by K . Suppose P is a variety. Then, $(\mathrm{SI} \mid \mathrm{Si})(\mathrm{P})=\mathrm{P}_{\vartheta}^{>1}=\mathbf{I} \mathbf{S}_{>1} \mathrm{~K}$, in which case $\mathrm{S} \mapsto\left(\mathrm{S} \cap \mathbf{S}_{\{>1\}} \mathrm{K}\right)$ and $\mathrm{R} \mapsto \mathbf{I P}^{\mathrm{SD}} \mathrm{R}$ are inverse to one another isomorphisms between the [finite] (distributive) lattices of sub-varieties of P and relative ones of $\mathbf{S}_{\{>1\}} \mathrm{K}$.

4. Morgan-Stone lattices versus distributive ones

From now on, we deal with the signatures $\Sigma_{+[, 01]}^{(-)} \triangleq\left(\Sigma_{+}(\cup\{\neg\})[\cup\{\perp, \top\}]\right)$, [bounded] \{distributive\} lattices being supposed to be $\Sigma_{+[, 01]}$-algebras with their variety denoted by $[B]\{D\} L$ and the chain [bounded] distributive lattice with carrier $n \in(\omega \backslash 2)$ and the natural ordering on this denoted by $\mathfrak{D}_{n[, 01]}$, in which case $\epsilon_{2}^{n} \triangleq\{\langle 0,0\rangle,\langle 1, n-1\rangle\}$ is an embedding of $\mathfrak{D}_{2[, 01]}$ into $\mathfrak{D}_{n[, 01]}$, while, for each $i \in 2$, $\epsilon_{3: i}^{4} \triangleq\left(\chi_{3}^{3 \backslash(2-i)} \times \chi_{3}^{3 \backslash(1+i)}\right)$ is an embedding of $\mathfrak{D}_{3[, 01]}$ into $\mathfrak{D}_{2[, 01]}^{2}$. First, taking the Prime Ideal Theorem, (2.8), (2.10) and Corollary 3.14 into account, we immediately have the following well-known fact (cf. [9] as to REDPC for [B]DL):
Lemma 4.1. Let $\mathfrak{A} \in[\mathrm{B}] \mathrm{L}$ and $F \subseteq A$. Suppose F is either a prime filter of \mathfrak{A} or in $\{\varnothing, A\}$. Then, [unless $F \in\{\varnothing, A\}] h \triangleq \chi_{A}^{F} \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{D}_{2[, 01]}\right)$ [and $\left.h[A]=2\right]$, in which case $[\mathrm{B}] \mathrm{DL}=\mathbf{I P}^{\mathrm{SD}} \mathfrak{D}_{2[, 01]}$, and so $[\mathrm{B}] \mathrm{DL}$ is the semi-simple [pre-/quasiJvariety generated by $\mathfrak{D}_{2[, 01]}$ with $(\mathrm{Si} \mid \mathrm{SI})([\mathrm{B}] \mathrm{DL})=\mathbf{I}_{2[, 01]}$ and REDPC scheme $\mho_{V_{1}}^{\left\langle x_{0}\right\rangle}$.

A [bounded] (De) Morgan-Stone $\{(D) M S\}$ lattice is any $\Sigma_{+[, 01]}^{-}$-algebra, whose $\Sigma_{+[, 01]}$-reduct is a [bounded] distributive lattice and which satisfies the Σ_{+}^{-} identities:

$$
\begin{align*}
\neg\left(x_{0} \wedge x_{1}\right) & \approx\left(\neg x_{0} \vee \neg x_{1}\right), \tag{4.1}\\
x_{0} & \lesssim \neg \neg x_{0}, \tag{4.2}
\end{align*}
$$

in which case, by (4.1) [and (4.2) $\left.\left.x_{0} / T\right]\right]$, it satisfies the Σ_{+}^{-}-quasi-identity [and the $\Sigma_{+[, 01]}^{-}$-identity]:

$$
\begin{align*}
\left(x_{0} \lesssim x_{1}\right) & \rightarrow\left(\neg x_{1} \lesssim \neg x_{0}\right)[, \tag{4.3}\\
\neg \neg \top & \approx \top], \tag{4.4}
\end{align*}
$$

and so the $\Sigma_{+[, 01]}^{-}$-identities:

$$
\begin{align*}
\neg\left(x_{0} \vee x_{1}\right) & \approx\left(\neg x_{0} \wedge \neg x_{1}\right), \tag{4.5}\\
\neg \neg \neg x_{0} & \approx \neg x_{0}[, \tag{4.6}\\
\neg \perp & \approx \top], \tag{4.7}
\end{align*}
$$

their variety being denoted by $[B](D) M S L$. Then, bounded Morgan-Stone lattices, satisfying the $\Sigma_{+, 01}^{-}$-identity:

$$
\begin{equation*}
\neg \top \approx \perp, \tag{4.8}
\end{equation*}
$$

are nothing but (De) Morgan-Stone $\{M S\}$ algebras [3] 〈cf. [24]〉, their variety being denoted by (D)MSA. An $a \in A$ is called $\{\mathrm{a}\}$ (negatively-)idempotent $\{$ element of an $\mathfrak{A} \in \mathrm{MSL}\}$, if $\left\{\left(\neg^{\mathfrak{A}}\right) a\right\}$ forms a subalgebra of $\mathfrak{A}\left[\mid \Sigma_{+}^{-}\right]$, i.e., $\neg^{\mathfrak{A}}\left(\neg^{\mathfrak{A}}\right) a=\left(\neg^{\mathfrak{A}}\right) a$, with their set denoted by $\Im_{(\neg)}^{\mathfrak{A}}$, [bounded] Morgan-Stone lattices with carrier of cardinality no less than $2(\{-1\})$ and with(\{out non- $\}$ negatively-)idempotent elements being said to be ($\{$ totally $\}$ negatively-) idempotent.
Remark 4.2. By (4.1), (4.5), (4.6), Corollary 3.14 and Theorem 3.5, $\mho_{\left\{x_{0}, \neg x_{0},\left\{\neg \neg x_{0}\right\}\right.}^{\left\langle x_{0}, \neg x_{0}, \neg x_{0}\right\rangle}$ is an REDPC scheme for $[\mathrm{B}] \mathrm{MS}(\mathrm{L}[/ \mathrm{A}])$.
4.1. Subdirectly-irreducibles. Let $\mathfrak{M S}_{6}$ be the Σ_{+}^{-}-algebra with $\left(\mathfrak{M S}_{6} \mid \Sigma_{+}^{-}\right) \triangleq$ $\left(\left(\mathfrak{D}_{2}^{2} \upharpoonright\left(2^{2} \backslash\{\langle 1,0\rangle\}\right)\right) \times \mathfrak{D}_{2}\right)$ and $\neg^{\mathfrak{M} \mathfrak{S}_{6}} \bar{a} \triangleq\left\langle 1-a_{2}, 1-a_{2}, 1-a_{1}\right\rangle$, for all $\bar{a} \in M S_{6}$ (the Hasse diagram of its lattice reduct with its [non-]idempotent elements marked by [non-]solid circles and arrows reflecting action of its operation \neg on its nonidempotent elements is depicted at Figure 1), in which case it is routine to check to be a Morgan-Stone lattice, and so are both $\mathfrak{M S}_{5(: 0)} \triangleq\left(\mathfrak{M} \mathfrak{S}_{6} \upharpoonright\left(M S_{6} \backslash\{\langle 0,0,1\rangle\}\right)\right.$

Figure 1. The Morgan-Stone lattice $\mathfrak{M S}_{6}$.
and $\mathfrak{M S}_{2(: 0)} \triangleq\left(\mathfrak{M S}_{5} \upharpoonright\{\langle i, 1,0\rangle \mid i \in 2\}\right)$ as well as, for each $j \in 2, \mathfrak{M} \mathfrak{S}_{4: j} \triangleq$ $\left(\mathfrak{M S}_{5+j} \upharpoonright\left(M S_{5+j} \backslash(((j+1) \times\{1\}) \times\{1-j\})\right)\right)$. Likewise, let $(((\mathfrak{D}) \mathfrak{M}) \mid \mathfrak{S})_{4 \mid 3}$ be the Σ_{+}^{-}-algebra with $\left(\left((\mathfrak{M} \mid \mathfrak{S})_{4 \mid 3} \mid \Sigma_{+}^{-}\right) \triangleq \mathfrak{D}_{2 \mid 3}^{2 \mid}\right.$ and $\neg^{(\mathfrak{M} \mid \mathfrak{S})_{4 \mid 3}} \triangleq\left(\left(\left(\left(\pi_{1} \mid 2\right) \circ\left(2^{2} \backslash \Delta_{2}\right)\right) \times\right.\right.$ $\left.\left.\left(\left(\pi_{0} \upharpoonright 2\right) \circ\left(2^{2} \backslash \Delta_{2}\right)\right)\right) \mid \chi_{3}^{1}\right)$, in which case $\epsilon_{4 \mid 3}^{6 \mid 5} \triangleq\left(\left(\left(\left(\pi_{0} \upharpoonright 2^{2}\right) \times\left(\pi_{0} \upharpoonright 2^{2}\right)\right) \times\left(\pi_{1} \upharpoonright 2^{2}\right)\right) \mid\left(\epsilon_{3: 0}^{4} \times\right.\right.$ $\left.\chi_{3}^{3 \backslash 1}\right)$) is an embedding of $(\mathfrak{D M} \mid \mathfrak{S})_{4 \mid 3}$ into $(\mathfrak{M S} \mid \mathfrak{M S})_{6 \mid 5}$. Finally, for any $n \in$ $(\{3,4\} \mid\{2\})$, let $(\mathfrak{K} \mid \mathfrak{B})_{n}$ be the Σ_{+}^{-}-algebra with $\left((\mathfrak{K} \mid \mathfrak{B})_{n} \mid \Sigma_{+}^{-}\right) \triangleq \mathfrak{D}_{n}$ and $\neg^{(\mathfrak{K} \mid \mathfrak{B})_{n} \triangleq}$ $\{\langle m, n-1-m\rangle \mid m \in n\}$, in which case $\epsilon_{2}^{3 \| 4}$ is an embedding of \mathfrak{B}_{2} into $\mathfrak{K}_{3 \| 4}$, while, for every $l \in 2, \epsilon_{3: l}^{4}$ is an embedding of \mathfrak{K}_{3} into $\mathfrak{D M}_{4}$, and so $\epsilon_{3: l}^{4} \circ \epsilon_{4}^{6}$ is that into $\mathfrak{M S}_{4:(1-l)}$. Moreover, $\left\{M S_{6}, M S_{5}, M S_{2}, \operatorname{img}\left(\epsilon_{2}^{3} \circ \epsilon_{3}^{5}\right)\right\} \cup\left(\bigcup\left\{\left\{M S_{4: k}, \operatorname{img}\left(\epsilon_{3: k}^{4} \circ\right.\right.\right.\right.$ $\left.\left.\left.\epsilon_{4}^{6}\right)\right\} \mid k \in 2\right\}$) are exactly the carriers of members of $\mathbf{S}_{>1} \mathfrak{M S}_{6}$, in which case these are isomorphic to those of the skeleton $\mathrm{MS} \triangleq\left(\left\{\mathfrak{M S}_{\ell} \mid \ell \in\{6,5,2\}\right\} \cup\right.$ $\left\{\mathfrak{M S}_{4: \mathbb{k}} \mid \mathbb{k} \in 2\right\} \cup\left\{\mathfrak{D M}_{4}, \mathfrak{K}_{3}, \mathfrak{S}_{3}, \mathfrak{B}_{2}\right\}$), and so this is that of $\mathbf{I S}_{>1} \mathfrak{M S}_{6}$ with the embeddability partial ordering \preceq between members of MS, for these are all finite. And what is more, $D_{6} \triangleq\left(M S_{6} \cap \pi_{0}^{-1}[\{1\}]\right)$ is a prime filter of $\mathfrak{M} \mathfrak{S}_{6} \mid \Sigma_{+}$, while $\Omega \triangleq\left\{x_{0}, \neg x_{0}, \neg \neg x_{0}\right\}$ is an equality determinant for $\left\langle\mathfrak{M} \mathfrak{S}_{6}, D_{6}\right\rangle$, in which case, by [20, Lemma 11], $\mho_{\Omega} \triangleq\left\{\left(\tau\left(x_{\imath}\right) \wedge \rho\left(x_{2+\jmath}\right)\right) \lesssim\left(\tau\left(x_{1-\imath}\right) \vee \rho\left(x_{3-\jmath}\right)\right) \mid \imath, \jmath \in 2, \tau, \rho \in \Omega\right\}$ is a disjunctive system for $\mathfrak{M S}_{6}$, and so, for $\mathbf{I S M S} \mathscr{S}_{6}$.
Remark 4.3. Elements of $\mathcal{P} \mathcal{F}_{4} \triangleq\left\{2^{2} \cap \pi_{i}^{-1}[\{1\}] \mid i \in 2\right\}$ are exactly all prime filters of \mathfrak{D}_{2}^{2}, while $\left\{x_{0}, \neg x_{0}\right\}$ is an equality determinant for $\mathrm{M} \triangleq\left(\left\{\mathfrak{D M}_{4}\right\} \times \mathcal{P} \mathcal{F}_{4}\right)$, in which case, by Theorem 3.16, $\mho_{V_{1}}^{\left\langle x_{0}, \neg x_{0}\right\rangle}$ is an implicative system for $\mathbf{I S}_{\{>1\}} \mathfrak{D M}_{4}$ \{and so, by Corollary 3.15, its members are simple, as it is well-known but shown directly in a more cumbersome way\}.

Theorem 4.4. For any prime filter F of the Σ_{+}-reduct of any $\mathfrak{A} \in \mathrm{MSL}$ there is an $h \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{M} \mathfrak{M}_{6}\right)$ with $(\operatorname{ker} h) \subseteq\left(\operatorname{ker} \chi_{A}^{F}\right)$, in which case MSL is the [pre-/quasiJvariety generated by $\mathfrak{M S}_{6}$ with $R E D P C$ scheme $\mho_{\Omega}^{\left\langle x_{0}, \neg x_{0}, \neg \neg x_{0}\right\rangle}$, and so $\mathrm{SI}(\mathrm{MSL})=$ IMS.
Proof. Let $f \triangleq \chi_{A}^{F}, G \triangleq\left(\neg^{\mathfrak{A}}\right)^{-1}\left[\left(\neg^{\mathfrak{A}}\right)^{-1}[F]\right], H \triangleq\left(A \backslash\left(\neg^{\mathfrak{A}}\right)^{-1}[F]\right)$ and $h \triangleq(f \odot$ $\left.\left.\chi_{A}^{G}\right) \odot \chi_{A}^{H}\right)$, in which case, by (2.1) and (4.6), $(\operatorname{ker} f) \supseteq\left(\left((\operatorname{ker} f) \cap\left(\operatorname{ker} \chi_{A}^{G}\right)\right) \cap\right.$ $\left.\left(\operatorname{ker} \chi_{A}^{H}\right)\right)=(\operatorname{ker} h) \subseteq\left(\neg^{\mathfrak{A}} \circ h\right)$, while, by (4.1) and (4.5), $G \mid H$ is either a prime filter of $\mathfrak{A} \upharpoonright \Sigma_{+}$or in $\{\varnothing, A\}$, whereas, by (4.2), $F \subseteq G$, and so, by $(2.2), \pi_{0}(h(a)) \leqslant$ $\pi_{1}(h(a))$, for all $a \in A$. Then, by (2.7), Lemma 4.1 and the Homomorphism Theorem, h is a surjective homomorphism from \mathfrak{A} onto the Σ_{+}^{-}-algebra \mathfrak{B} with $\left(\mathfrak{B} \upharpoonright \Sigma_{+}\right) \triangleq\left(\mathfrak{D}_{2}^{3} \upharpoonright h[A]\right)$ as well as $\neg^{\mathfrak{B}} \triangleq\left(h^{-1} \circ \neg^{\mathfrak{A}} \circ h\right)$, in which case $B \subseteq M S_{6}$, since $\pi_{0}(h(a)) \leqslant \pi_{1}(h(a))$, for all $a \in A$, and so $\mathfrak{B}=\left(\mathfrak{M S}_{6} \upharpoonright h[A]\right)$, as, for all $a \in A,\left(\neg^{\mathfrak{A}} a \in G\right) \Leftrightarrow\left(\neg^{\mathfrak{A}} a \in F\right) \Leftrightarrow(a \notin H)$, in view of (4.6), as well as $\left(\neg^{\mathfrak{A}} a \in\right.$ $H) \Leftrightarrow\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \notin F\right) \Leftrightarrow(a \notin G)$. Hence, $h \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{M} \mathfrak{S}_{6}\right)$ and $(\operatorname{ker} h) \subseteq(\operatorname{ker} f)$.

Thus, the Prime Ideal Theorem, (2.8), Corollary 3.31 and Remark 4.2 complete the argument.

The Σ_{+}^{-}-reduct of any $\mathfrak{A} \in \mathrm{MS}$, being a finite lattice, has zero/unit a / b, in which case we have the bounded Morgan-Stone lattice \mathfrak{A}_{01} with $\left(\mathfrak{A}_{01} \mid \Sigma_{+}^{-}\right) \triangleq \mathfrak{A}$ and $(\perp / T)^{\mathfrak{A}_{01}} \triangleq(a / b)$, and so, for all $\mathfrak{C} \in \mathrm{MS}_{01} \triangleq\left\{\mathfrak{B}_{01} \mid \mathfrak{B} \in \mathrm{MS}\right\}$ and $\mathfrak{D} \in$ $\mathrm{MS}_{-2,01} \triangleq\left(\mathrm{MS}_{01} \backslash\left\{\mathfrak{M} \mathfrak{S}_{2,01}\right\}\right),\left(\left(\mathfrak{D} \mid \Sigma_{+}^{-}\right) \preceq\left(\mathfrak{C} \mid \Sigma_{+}^{-}\right)\right) \Rightarrow(\mathfrak{D} \preceq \mathfrak{C})$. Then, since $\mathfrak{M S}_{2,01} \notin \mathrm{MSA} \supseteq\left(\mathbf{I S M S}_{6,01}\right) \supseteq \mathrm{MS}_{-2,01}$, while surjective lattice homomorphisms preserve lattice bounds (if any), whereas expansions by constants alone preserve congruences, by (2.8), (2.9) and Theorem 4.4, we immediately get:

Corollary 4.5. Let $\mathrm{K} \triangleq\left(\varnothing \mid\left\{\mathfrak{M S}_{2,01}\right\}\right.$. Then, $\mathrm{V} \triangleq(\mathrm{BMSL} \mid \mathrm{MSA})$ is the [pre-/quasiJvariety generated by $\left\{\mathfrak{M S}_{6,01}, \mathfrak{M S}_{2,01}\right\} \backslash \mathrm{K}$ with $\mathrm{SI}(\mathrm{V})=\mathbf{I}\left(\mathrm{MS}_{01} \backslash \mathrm{~K}\right)$ and $R E D P C$ scheme $\mho_{\Omega}^{\left\langle x_{0}, \neg x_{0}, \neg \neg x_{0}\right\rangle}$.

This subsumes [3] and also yields a uniform insight into REDPC for Stone and De Morgan algebras, originally given by separate distinct schemes in [13, 22] and a bit enhanced in Corollary 4.7.
4.2. The lattice of sub-varieties. [Bounded/] Morgan-Stone lattices[/algebras], satisfying either of the following equivalent - in view of (4.2) - Σ_{+}^{-}-identities:

$$
\begin{equation*}
\left(\neg \neg x_{0}\left(\vee \neg x_{0}\right)\right) \approx \| \lesssim\left(x_{0}\left(\vee \neg x_{0}\right)\right) \tag{4.9}
\end{equation*}
$$

are called [bounded/] (nearly) \{De\} Morgan lattices[/algebraas], their variety being denoted by $[\mathrm{B} /](\mathrm{N})\{\mathrm{D}\} \mathrm{M}(\mathrm{L}[/ \mathrm{A}])$. Likewise, those, satisfying the Σ_{+}^{-}-identity:

$$
\begin{equation*}
\left(x_{0} \wedge \neg x_{0}\right) \lesssim x_{1}, \tag{4.10}
\end{equation*}
$$

are nothing but [bounded/] Stone lattices[/algebras] [cf., e.g., [8]], their variety being denoted by $[B /] S(L[/ A])$. Then, members of $[[B /] B(L[/ A]) \triangleq([B] D M(L[/ A]) \cap$ $[\mathrm{B}] \mathrm{S}(\mathrm{L}[/ \mathrm{A}])$) are exactly [bounded/] Boolean lattices[/algebras]. Further, [bounded/] Morgan-Stone lattices[/algebras], satisfying "either of the former"|"the latter" of the following Σ_{+}^{-}-identities:

$$
\begin{align*}
&\left(\neg \neg x_{0} \wedge \neg x_{0}\right) \approx \| \tag{4.11}\\
& \neg \neg x_{0} \lesssim \tag{4.12}\\
& \lesssim\left(x_{0} \wedge \neg x_{0}\right), \\
&\left(x_{0} \vee\left(\neg \neg x_{1} \vee \neg x_{1}\right)\right),
\end{align*}
$$

"in which case they satisfy the $\Sigma_{+[, 01]}^{-}$-quasi-identities [(4.8) and]:

$$
\begin{align*}
\left\{\left(\neg x_{0}\left\{\wedge x_{1}\right\}\right)\right. & \lesssim\left(\neg \neg x_{0}\left\{\vee x_{2}\right\}\right)\left(,\left(\neg x_{0} \vee \neg \neg x_{0}\right)\right. \tag{4.13}\\
& \left.\left.\approx\left(\neg x_{0} \vee x_{0}\right)\right)\right\} \rightarrow \\
& \left(\neg x_{0}\left\{\wedge x_{1}\right\}\right) \lesssim\left(\left(x_{0}\left\{\vee x_{2}\right\}\right)\right),
\end{align*}
$$

[in view of (4.7)]" | are said to be quasi-|pseudo-strong, their variety being denoted by $[B /](Q \mid P) S M S(L[/ A])$. Then, members of

$$
\begin{aligned}
& {[\mathrm{B} / \mathrm{SMS}(\mathrm{~L}[/ \mathrm{A}]) \triangleq([\mathrm{B} /] \mathrm{QSMS}(\mathrm{~L}[/ \mathrm{A}]) \cap[\mathrm{B} /] \mathrm{PSMS}(\mathrm{~L}[/ \mathrm{A}])) \supseteq} \\
& \quad([\mathrm{B} /] \mathrm{DM}(\mathrm{~L}[/ \mathrm{A}]) \cup[\mathrm{B} /] \mathrm{S}(\mathrm{~L}[/ \mathrm{A}]))
\end{aligned}
$$

are said to be strong. Next, [bounded/] ((\lfloor โquasi-|pseudo- \rceil strong $\rfloor)\{$ weakly $\}$ Klee-ne〈-Morgan \rangle (-Stone) lattices [/algebras] are [bounded/] (\lceil quasi- \mid pseudo-ך \rceil strong $\rfloor)$ De-Morgan(-Stone) lattices[/algebras] satisfying the following Σ_{+}^{-}-identity:

$$
\mathcal{K}_{\langle\mathrm{M}\rangle}^{\{\mathrm{W}\}} \triangleq\left(\left(\left\langle\neg \neg x_{2} \wedge\right\rangle\left(x_{0} \wedge \neg x_{0}\right)\right) \lesssim\left(\left\langle x_{2} \vee\right\rangle\left(\neg x_{1} \vee\{\neg \neg\} x_{1}\right)\right)\right),
$$

their variety being denoted by

$$
\begin{array}{r}
[\mathrm{B} /]([\mathrm{LQ} \mid \mathrm{P}\rceil \mathrm{S}])\{\mathrm{W}\} \mathrm{K}\langle\mathrm{M}\rangle(\mathrm{S})(\mathrm{L}[/ \mathrm{A}]) \supseteq(\varnothing(\mathrm{U}([\mathrm{~B} / \mathrm{S}(\mathrm{~L} / / \mathrm{A}]))) \\
\{\mathrm{U}[\mathrm{~B} / \mathrm{]}(\mathrm{~L} \mathrm{Q} \mid \mathrm{P}\rceil \mathrm{S}\rfloor) \mathrm{K}(\langle\mathrm{M}\rangle \mathrm{S})(\mathrm{L}[/ \mathrm{A}])\}
\end{array}
$$

$$
(\langle[\mathrm{B} / \mathrm{DDM}(\mathrm{~L}[/ \mathrm{A}]) \cup[\mathrm{B} /](\mathrm{L}[\mathrm{Q} \mid \mathrm{P}\rceil \mathrm{S}\rfloor)\{\mathrm{W}\} \mathrm{K}(\mathrm{~S})(\mathrm{L}[/ \mathrm{A}])\rangle))
$$

\{in view of (4.2) \}. Likewise, members of

$$
[\mathrm{B} /] \mathrm{NK}(\mathrm{~L}[/ \mathrm{A}]) \triangleq([\mathrm{B} /]\{\mathrm{W}\} \mathrm{KS}(\mathrm{~L}[/ \mathrm{A}]) \cap[\mathrm{B} /] \mathrm{NDM}(\mathrm{~L}[/ \mathrm{A}]))
$$

are called [bounded/] nearly Kleene lattices[/algebras]. Further, the variety of totally negatively-idempotent [bounded] Morgan-Stone lattices, being relatively axiomatized by the Σ_{+}^{-}-identity:

$$
\begin{equation*}
\neg \neg x_{0} \approx \neg x_{0} \tag{4.14}
\end{equation*}
$$

is denoted by [B]TNIMSL. Likewise, the variety of one-element [bounded/] MorganStone lattices[/algebras], being (relatively) axiomatized by the Σ_{+}^{-}-identity:

$$
\begin{equation*}
x_{0} \approx x_{1}, \tag{4.15}
\end{equation*}
$$

is denoted by $[B /] O M S(L[/ A])$. Furthermore, members of $[B /](M \mid\{W\} K) S(L[/ A])$, satisfying the following Σ_{+}^{-}-identity:

$$
\begin{equation*}
\left(\left(\neg x_{0} \wedge \neg \neg x_{0}\right) \wedge \neg \neg x_{1}\right) \lesssim\left(\left(\neg x_{0} \wedge x_{0}\right) \vee \neg x_{1}\right) \tag{4.16}
\end{equation*}
$$

are said to be almost quasi-strong, their variety being denoted by

$$
[\mathrm{B} /] \mathrm{AQS}(\mathrm{M} \mid\{\mathrm{W}\} \mathrm{K}) \mathrm{S}(\mathrm{~L}[/ \mathrm{A}]) \supseteq([\mathrm{B} /] \mathrm{QS}(\mathrm{M} \mid\{\mathrm{W}\} \mathrm{K}) \mathrm{S}(\mathrm{~L}[/ \mathrm{A}]) \cup([\mathrm{B}] \mathrm{TNIMSL}[/ \varnothing]))
$$

Then, members of

$$
\begin{aligned}
& {[\mathrm{B} /] \mathrm{AS}(\mathrm{M} \mid\{\mathrm{W}\} \mathrm{K}) \mathrm{S}(\mathrm{~L}[/ \mathrm{A}]) \triangleq([\mathrm{B} /] \mathrm{AQS}(\mathrm{M} \mid\{\mathrm{W}\} \mathrm{K}) \mathrm{S}(\mathrm{~L}[/ \mathrm{A}]) \cap} \\
& \quad[\mathrm{B} /] \mathrm{PS}(\mathrm{M} \mid\{\mathrm{W}\} \mathrm{K}) \mathrm{S}(\mathrm{~L}[/ \mathrm{A}])) \supseteq([\mathrm{B} / \mathrm{S}(\mathrm{M} \mid\{\mathrm{W}\} \mathrm{K}) \mathrm{S}(\mathrm{~L}[/ \mathrm{A}]) \cup([\mathrm{B}] \operatorname{TNIMSL}[/ \varnothing]))
\end{aligned}
$$

are said to be almost strong, in which case, due to the truth of the Σ_{+}-quasi-identity

$$
\begin{align*}
&\left\{\left(\left(x_{0} \wedge x_{2}\right)\left(\wedge x_{3}\right)\right)\right. \lesssim\left(\left(x_{1} \wedge x_{2}\right)\left(\vee x_{4}\right)\right),\left(x_{0} \vee x_{2}\right) \tag{4.17}\\
&\left(\left(x_{0}\left(\wedge x_{3}\right)\right)\right. \\
&\left.\left(x_{1} \vee x_{2}\right)\right\} \rightarrow \\
&\left.\left(x_{1}\left(\vee x_{4}\right)\right)\right)
\end{align*}
$$

in distributive lattices:

$$
\begin{equation*}
([\mathrm{B}](\mathrm{A})\{\mathrm{Q}\} \mathrm{SMSL} \cap[\mathrm{~B}] \mathrm{NDML})=[\mathrm{B}](\mathrm{A}) \mathrm{DML} . \tag{4.18}
\end{equation*}
$$

Likewise, members of $[\mathrm{B} /](\mathrm{M} \mid\{\mathrm{W}\} \mathrm{K}) \mathrm{S}(\mathrm{L}[/ \mathrm{A}])$, satisfying the following Σ_{+}^{-}-identity:

$$
\begin{equation*}
\left(\neg \neg x_{0} \wedge \neg \neg x_{1}\right) \lesssim\left(x_{0} \vee \neg x_{1}\right), \tag{4.19}
\end{equation*}
$$

are called [bounded/] almost "De Morgan"|"\{weakly\} Kleene" lattices[/algebras], their variety being denoted by $[B /] A(D M \mid\{W\} K)(L[/ A]) \supseteq([B /](D M \mid\{W\} K)(L[/ A])$ $\cup([B]$ TNIMSL[/ $\varnothing]))$. Finally, [bounded/] Morgan-Stone lattices[/algebras], satisfying the optional|non-optional version of the following Σ_{+}^{-}-identity:

$$
\begin{equation*}
\left(\neg x_{0} \vee\lceil\neg \neg\rceil x_{0}\right) \gtrsim x_{1}, \tag{4.20}
\end{equation*}
$$

are called [bounded/] almost Stone|Boolean lattices[/algebras], their variety being denoted by $[\mathrm{B} /] \mathrm{A}(\mathrm{S} \mid \mathrm{B})(\mathrm{L}[/ \mathrm{A}])$.

Let 2

$$
\begin{aligned}
\mathcal{M} S_{[01]}\lfloor(\mathfrak{A})\rfloor \triangleq\left(\left\{[(4.8),](4.9),((4.9)),(4.10),(4.11),(4.12), \mathcal{K}, \mathcal{K}^{\mathrm{W}}\right.\right. \\
\left.\left.\mathcal{K}_{\mathrm{M}}, \mathcal{K}_{\mathrm{M}}^{\mathrm{W}},(4.16),(4.19),(4.20),\lceil(4.20)\rceil,(4.14)\right\}\lfloor\cap \mathcal{E}(\mathfrak{A})\rfloor\right)
\end{aligned}
$$

$\left\lfloor\right.$ where $\left.\mathfrak{A} \in \mathrm{MS}_{[01]}\right\rfloor$.

[^2]

Figure 2. The poset $\left\langle\mathrm{MS}_{[01]}, \preceq\right\rangle$ [with merely thick lines].

Lemma 4.6. For any $\mathfrak{A} \in \mathrm{MS}_{[01]}$, $\mathcal{M} \S_{[01]}(\mathfrak{A l})$ is given by Table 1, in which case
 implicative members marking (non-)solid circles-nodes [and merely thick lines], and so, for any $\mathfrak{B} \in \mathrm{MS}_{[01]}$, $\left(\mathrm{MS}_{[01]} \cap \mathbf{H B}\right) \subseteq \mathbf{I S}$. In particular, relative sub-varieties of $\mathrm{MS}_{[01]}$ are exactly its relatively both abstract and hereditary subclasses.
Proof. Clearly, for any line of Table 1, the identities of the second column of it are true in the algebra of the first one. Conversely,

$$
\begin{aligned}
\mathfrak{M S}_{(5 \mid[\mid[\mid, 01]} & \not \models \mathcal{X}_{\| \mathbb{M}}^{\mid \mathrm{W}}\left[x_{i} /\langle 1-\min (1, i), 1 \mid \max (1-i, i-1), \min (1, i)\rangle\right]_{i \in(2 \| 3)}, \\
\mathfrak{S}_{3[01]} & \not \vDash(((4.9)) \|(4.9)) \mid((4.19) \|(4.20)))\left[x_{i} /(1+i)\right]_{i \in(1 \mid 2)}, \\
\mathfrak{D M}_{(4[01]} & \not \models \mathcal{K}^{\{\mathrm{W}\}}\left[x_{i} /(\langle i, i, 1-i\rangle]_{i \in 2},\right. \\
\mathfrak{M S}_{4: 1[01]} & \not \vDash(4.12)\left[x_{0} /\langle 0,1,1\rangle, x_{1} /\langle 0,0,1\rangle\right],
\end{aligned}
$$

Table 1. Identities of $\mathcal{M} S_{[01]}$ true in members of $\mathrm{MS}_{[01]}$.

$\mathfrak{M S}$	$\emptyset[\cup\{(4.8)\}]$
$\mathfrak{M S}_{5[, 01]}$	$\left\{[(4.8)],(4.12), \mathcal{K}^{\mathrm{W}}, \mathcal{K}_{\mathrm{M}}^{\mathrm{W}}\right\}$
$\mathfrak{M S}_{4: 0[01]}$	$\left\{[(4.8)],((4.9)),(4.12), \mathcal{K}, \mathcal{K}^{\mathrm{W}}, \mathcal{K}_{\mathrm{M}}, \mathcal{K}_{\mathrm{M}}^{\mathrm{W}}\right\}$
$\mathfrak{M S}_{4: 1[01]}$	$\left\{[(4.8)],(4.11), \mathcal{K}, \mathcal{K}_{\mathrm{M}}, \mathcal{K}_{\mathrm{M}}, \mathcal{K}_{\mathrm{M}}^{\mathrm{W}},(4.16)\right\}$
$\mathfrak{D M}_{4[01]}$	$\mathcal{M} \mathcal{S}_{[01]} \backslash\left\{\mathcal{K}, \mathcal{K}^{\mathrm{W}},(4.10),(4.20),\lceil(4.20)\rceil,(4.14)\right\}$
$\mathfrak{M S}_{2[, 01]}$	$\mathcal{M S S}_{[01]} \backslash\{[(4.8)],(4.9),(4.11),(4.10)\}$
$\mathfrak{K}_{3[01]}$	$\mathcal{M} \mathcal{S}_{[01]} \backslash\{(4.10),(4.20),\lceil(4.20)\rceil,(4.14)\}$
$\mathfrak{S}_{3[01]}$	$\mathcal{M S S}{ }_{[01]} \backslash\{(4.9),((4.9)),(4.19),(4.20),(4.14)\}$
$\mathfrak{B}_{2[, 01]}$	$\mathcal{M} S_{[01]} \backslash\{(4.14)\}$

$$
\begin{aligned}
\mathfrak{M S}_{4: 0[, 01]} & \not \models(4.16)\left[x_{i} /\langle i, 1, i\rangle\right]_{i \in 2}, \\
\mathfrak{K}_{3[, 01]} & \not \vDash((4.10) \mid(\lceil(4.20)\rceil \|(4.20)))\left[x_{0} / 1, x_{1} /(0 \mid 2)\right], \\
(\mathfrak{B} \mid \mathfrak{M S})_{2[, 01]} & \not \vDash(4.14 \mid(4.9 \| 4.11))\left[x_{0} /(0 \mid\langle 0,1,0\rangle)\right][, \\
\mathfrak{M S}_{2,01} & \not \models(4.8)] .
\end{aligned}
$$

Moreover, by Remark 4.2, $\mho_{\Omega}^{\left\langle x_{0}, \neg x_{0}, \neg \neg x_{0}\right\rangle}$ is an REDPC scheme for $[\mathrm{B}] \mathrm{MSL} \supseteq \mathrm{MS}_{[01]}$, in which case, by Corollary 3.4, any simple member \mathfrak{A} of it is $\mathcal{V}_{\Omega}^{\left\langle x_{0}, \neg x_{0}, \neg \neg x_{0}\right\rangle}$ implicative, and so all those members of MS, which are embeddable into \mathfrak{A}, being then $\mho_{\Omega}^{\left\langle x_{0}, \neg x_{0}, \neg \neg x_{0}\right\rangle}$-implicative as well, are simple too. On the other hand,

$$
\begin{equation*}
\chi_{3}^{3 \backslash 1}=\left(\epsilon_{3}^{5} \circ \pi_{2}\right) \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{S}_{3[, 01]}, \mathfrak{B}_{2[, 01]}\right), \tag{4.21}
\end{equation*}
$$

in which case $\left(\operatorname{ker} \chi_{3}^{3 \backslash 1}\right) \in\left(\operatorname{Co}\left(\mathfrak{S}_{3[, 01]}\right) \backslash\left\{\Delta_{3}, 3^{2}\right\}\right)$, and so $\mathfrak{S}_{3[, 01]}$ is not simple. Likewise,

$$
\begin{equation*}
\hbar_{0} \triangleq\left\{\left.\left\langle\bar{a},\left[\frac{a_{0}+a_{1}+a_{2}+1}{2}\right]\right\rangle \right\rvert\, \bar{a} \in M S_{4: 0}\right\} \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{M S}_{4: 0[01]}, \mathfrak{K}_{3[, 01]}\right), \tag{4.22}
\end{equation*}
$$

in which case $\left(\operatorname{ker} \hbar_{0}\right) \in\left(\operatorname{Co}\left(\mathfrak{M S}_{4: 0[, 01]}\right) \backslash\left\{\Delta_{M S_{4: 0}}, M S_{4: 0}^{2}\right\}\right)$, and so $\mathfrak{M S}_{4: 0[01]}$ is not simple. Thus, the fact that varieties are abstract, image-closed and hereditary, the simplicity of two-element algebras, the equality $(4.11)=\left((4.10)\left[x_{0} / \neg x_{0}, x_{1} /\left(x_{0} \wedge\right.\right.\right.$ $\left.\neg x_{0}\right)$], Lemma 3.17, Theorem 4.4, Corollary 4.5, Remarks 4.2, 4.3 and the truth of the identity $(4.9) \mid\left(\neg x_{0} \approx \neg x_{1}\right)$ in $(\mathfrak{D M} \mid \mathfrak{M S})_{4 \mid 2}$ complete the argument.

Corollary 4.7. Sub-varieties of $[\mathrm{B} / \mathrm{MS}(\mathrm{L}[/ \mathrm{A}])$ form the non-chain distributive lattice with $29[(+11) /(-9)]$ elements, whose Hasse diagram with [both thick and] thin lines is depicted at Figure 3, any (non-)solid circle-node of it being marked by a (non-)semi-simple \mid filtral $\mid\left\langle\mho_{\left.\left\{x_{0}\left\lceil, \neg x_{0} \downarrow, \neg \neg x_{0}\right\rfloor\right\rceil\right\}}^{\left\langle x_{0}, \neg x^{\prime}\left\lceil, \neg x_{0}\right\rangle\right\rangle}-\right\rangle$ implicative variety $\mathrm{V} \subseteq[\mathrm{B} /] \mathrm{MS}(\mathrm{L}$ [/A]), numbered from $1[+(0 / 20)]$ to $29[+11]$ according to Table 2 with $\mathbb{k} \triangleq(9$. $(1[/ 0]))$ [as well as $\ell \triangleq(29 \cdot(0 / 1))]$ and $\mathrm{MS}_{\mathrm{V}[, 01]} \triangleq \max _{\preceq}\left(\left(\mathrm{MS}_{[-2,01]}[\cup \mathrm{K}]\right) \cap \mathrm{V}\right)$,

TABLE 2. Maximal subdirectly-irreducibles of varieties of [bounded/] Morgan-Stone lattices[/algebras].

$1[+\ell$]	[B]MS(L[/A])	$\left\{\mathfrak{M S}_{6[, 01]}\right\}[\mathrm{UK}]$
$2[+\ell]$		$\left\{\mathfrak{M S}_{5[, 01]}, \mathfrak{D M}_{4[, 01]}\right\}[\cup K]$
$3[+17[+\ell]$	[B]WK[M]S(L[/A])	$\left\{\mathfrak{M S}_{5[, 01]}, \mathfrak{M}^{\left(S_{4: 1}[01]\right.}\right.$ $\left.\left[, \mathfrak{D} \mathfrak{M}_{4[, 01]}\right]\right\}[\cup \mathrm{K}]$
$5[+\ell]$	[B]PSWKS(L[/A])	$\left\{\mathfrak{M S}_{5[, 01]}\right\}[\cup \mathrm{K}]$
$6[+17[+\ell]$	[B]K「M]S(L[/A])	$\left\{\mathfrak{M S}_{4: i}[01]\right.$ \| $\left.i \in 2\right\}\left\lceil\cup\left\{\mathfrak{D M}_{4[, 01]}\right\}\right\rceil[\mathrm{UK}]$
$8[+1][+\ell]$	[B]PSK「M7S(L[/A])	$\left\{\mathfrak{M S}_{4: 0[01]}, \mathfrak{S}_{3[, 01]}\left\lceil, \mathfrak{D M}_{4[, 01]}\right]\right\}[\mathrm{UK}]$
$10[+\ell]$	[B]NDM(L[/A])	$\left\{\mathfrak{M S}_{4: 0[, 01]}, \mathfrak{D M}_{4[, 01]}\right\}[\cup \mathrm{K}]$
$11[+\ell]$	[B]NK(L[/A])	$\{\mathfrak{M \subseteq} 4: 0[01]\}[\cup K]$
12	[B]TNIMSL	$\left\{\mathfrak{M S}_{2[01]}\right\}$
$22\lfloor-\mathbb{k}\rfloor$	[B/][A]QSMS ${ }^{\text {L }}$ [/A])	$\left\{\mathfrak{M S}_{4: 1[, 01]}, \mathfrak{D M}_{4[, 01]}\right\}[\cup K\rfloor$
$23\lfloor-\mathbb{k}\rfloor$	[B/]LA]QS\{W\}KS(L[/A])	$\left\{\mathfrak{M S}_{4: 1[, 01]}\right\}[\cup K]$
$24[-\mathbb{k}\rfloor$	[B/]LA]SMS(L[/A])	$\left\{\mathfrak{S}_{3[01]}, \mathfrak{D M}_{4[01]}\right\}\lfloor\cup K\rfloor$
$25[-\mathbb{k}\rfloor$	[B/][A]DM(L[/A])	$\left\{\mathfrak{D M}_{4,01]}\right\}[\cup K]$
$26[-\mathbb{k}\rfloor$	[B/][A]S\{W\}KS(L[/A])	$\left\{\mathfrak{S}_{3[01]}, \mathfrak{K}_{3[, 01]}\right\}[\cup K]$
$27[-\mathbb{k}\rfloor$	[B/][A]\{W\}K(L[/A])	$\left\{\mathfrak{K}_{3[, 01]}\right\}$ [UK ${ }^{\text {a }}$
$28[-\mathbb{k}$]	[B/][A]S $\mathrm{L}[/ \mathrm{A}])$	$\left\{\mathfrak{S}_{3[, 01]}\right\}[$ UK $]$
$29[-\mathbb{k}\rfloor$	B/][A]B(L[/A])	$\left\{\mathfrak{B}_{2[, 01]}\right\}\lfloor\cup K$]
21	[B/]OMS(L[/A])	\varnothing

Figure 3. The lattice of varieties of [bounded/] Morgan-Stone lattices[/algebras].
where $\mathrm{K} \triangleq\left(\left\{\mathfrak{M S}_{2[, 01]}\right\}[/ \varnothing]\right)$, given by the third column, in which case $\mathrm{SI}(\mathrm{V})=$ $\mathbf{I S}_{>1} \mathrm{MS}_{\mathrm{V}[, 01]}$, and so V is the (pre- $\|$ quasi-) variety generated by $\mathrm{MS}_{\mathrm{V}[, 01]}$, while $[\mathrm{B}] \mathrm{SMSL}$ is that generated by $\{\mathrm{SI}\}([\mathrm{B}] \mathrm{DML} \cup[\mathrm{B}] \mathrm{SL})$ with REDPC scheme $\mho_{\left\{x_{0}, \neg x_{0}\right\}}^{\left\langle x_{0}, \neg x_{0}\right\rangle}$, whereas any disjunctive sub-pre-variety of $[\mathrm{B} / \mathrm{MS}(\mathrm{L}[/ \mathrm{A}])$ is equational, and so is any quasi-equational//finitely implicative one.

Proof. We use Lemma 4.6 tacitly. Then, the intersections of $\mathrm{MS}_{[-2,01]}[\cup K]$ with the $29[(+11) /(-9)]$ sub-varieties of $[B /] \mathrm{MS}(\mathrm{L}[/ \mathrm{A}])$ involved are exactly all lower cones of the poset $\left\langle\mathrm{MS}_{[-2,01]}[\cup K], \preceq\right\rangle$, i.e., the sets appearing in the third column of Table 2 are exactly all anti-chains of the poset. So, (2.8), (2.9), (4.1), (4.5), Theorems 3.7, 3.13, 4.4, Corollaries 3.14, 4.5, Lemmas 3.17, 3.30, [21, Remark 2.4], the truth of the Σ_{+}^{-}-quasi-identities in $\left\{\left(\bigcup_{i \in 2}\left\{\left(x_{2} \wedge x_{i}\right) \lesssim\left(x_{1-i} \vee x_{3}\right),\left(x_{2} \wedge \neg x_{i}\right) \lesssim\right.\right.\right.$ $\left.\left.\left.\left(\neg x_{1-i} \vee x_{3}\right)\right\}\right) \rightarrow\left(\left(x_{2} \wedge \neg \neg x_{j}\right) \lesssim\left(\neg \neg x_{1-j} \vee x_{3}\right)\right) \mid j \in 2\right\}$ in $\left\{\mathfrak{D M}_{4}, \mathfrak{S}_{3}\right\}$ and the fact that pre-varieties are abstract and hereditary complete the argument.

It is in this sense that $[B] S M S L$ is the implicational/[quasi-]equational join of $[B] D M L$ and $[B] S L$. Likewise, QSMSL is the greatest sub-variety of MSL not containing $\mathfrak{M S}_{2}$, in which case it is that containing the Σ_{+}^{-}-reduct of no member of BMSL \backslash MSA, and so it is in this sense that it is viewed as "an equational unbounded approximation of MSA" due to absence of any class of Σ_{+}^{-}-implications axiomatizing MSA relatively to BMSL, simply because any sub-pre-variety of MSL including $\mathrm{K}^{\prime} \triangleq\left(\mathrm{MS} \backslash\left\{\mathfrak{M S}_{2}\right\}\right)$ contains $\mathfrak{M S}_{2} \in \mathbf{S K}^{\prime}$ (this is why the node 30 at Figure 3
corresponds to no sub-variety of MSL). The finite lattice of its sub-quasi-varieties is found in the next Section. This task (as well as that solved in [18]) cannot be solved with using tools elaborated in [21] because of Proposition 5.11 therein. And what is more, despite of implicativity of \{sub-varieties of $[B](A) D M L$ and Remark 3.1, we have:

Remark 4.8. Clearly, $\theta \triangleq\left(\Delta_{3} \cup(\{1\} \times 3)\right) \subseteq\left(3^{2} \backslash\left(\{0,2\}^{2} \backslash \Delta_{\{0,2\}}\right)\right)$ forms a subalgebra of $\mathfrak{K}_{3[01]}^{2}$, in which case, if $\mathfrak{K}_{3[, 01]}$ had a dual discriminator δ, then we would have $2=\delta^{\mathfrak{R}_{3[, 01]}}(1,0,2) \theta \delta^{\mathfrak{K}_{3[, 01]}}(0,0,2)=0$, and so, by Theorem 4.4 and Corollary 2.7, no sub-variety of [B]MSL containing |"the non-simple subdirectly-irreducible" $\mathfrak{K} \mid \mathfrak{S}_{3[, 01]}$ (viz., including $[\mathrm{B}](\mathrm{K} \mid \mathrm{S}) \mathrm{L}$; cf. Corollary 4.7) is \{dual\} discriminator.

On the other hand, the majority term μ_{+}for the variety of lattices, being a dual discriminator for \mathfrak{D}_{2}, is that for $\left\{\mathfrak{B}_{2[, 01]}, \mathfrak{M} \mathfrak{S}_{2[, 01]}\right\}$, in which case, by Corollary 4.7, sub-varieties of $[\mathrm{B}] \mathrm{ABL}$ are dual μ_{+}-discriminator, and so, by Remark 4.8, these are exactly all dual ($\mu_{+}-$)discriminator sub-varieties of [B]MSL. Nevertheless, since $\neg x_{0} \approx \top$ is true in $\mathfrak{M} \mathfrak{S}_{2,01}$, its isomorphic copy by $\pi_{0} \upharpoonright M S_{2}$ is term-wisedefinitionally equivalent to $\mathfrak{D}_{2,01}$ generating the variety BDL (cf., e.g., [2] or Lemma 4.1), in its turn, being well-known (e.g., due to [5] \{cf. [21, Lemma 2.10]\} and existence of a three-element subdirect square of $\mathfrak{D}_{2,01}$ with carrier $2^{2} \backslash\{\langle 0,1\rangle\}$, though $3 \neq 1$ is odd), in which case $\mathfrak{M S}_{2[, 01]}$ has no congruence-permutation term, for, otherwise, $\mathfrak{D}_{2,01}$ would have one, and so, by Corollaries 2.7 and 4.7 , $[B] B L$ is the only discriminator sub-variety of [B]MSL.

5. Quasi-varieties of almost quasi-strong Morgan-Stone lattices

5.1. Non-idempotencity versus two-valued Boolean homomorphisms. Given any $K \subseteq[B] M S L,(N) I K$ stands for the class of (non-)idempotent members of K (in which case it is the relative sub-quasi-variety of K , relatively axiomatized by the Σ_{+}^{-}-quasi-identity:

$$
\begin{equation*}
\left(\neg x_{0} \approx x_{0}\right) \rightarrow\left(x_{0} \approx x_{1}\right), \tag{5.1}
\end{equation*}
$$

and so a quasi-variety, whenever K is so).
Given any $\mathrm{K}^{\prime}, \mathrm{K}^{\prime \prime} \subseteq[\mathrm{B}] \mathrm{MSL}$, set $\left(\mathrm{K}^{\prime} \otimes \mathrm{K}^{\prime \prime}\right) \triangleq\left\{\mathfrak{A} \times \mathfrak{B} \mid(\mathfrak{A} \mid \mathfrak{B}) \in\left(\mathrm{K}^{\prime} \mid \mathrm{K}^{\prime \prime}\right)\right\}$.
Let $\boldsymbol{\mu} \triangleq\left(\neg x_{0} \vee \neg \neg x_{0}\right) \in \operatorname{Tm}_{\Sigma_{+}^{-}}^{1}$ and $\boldsymbol{\pi} \triangleq\left(\left(x_{0} \vee \neg x_{1}\right) \wedge x_{1}\right) \in \operatorname{Tm}_{\Sigma_{+}^{-}}^{2}$. Then, given any $\tau \in \operatorname{Tm}_{\Sigma_{+}^{-}}^{1}$, [by induction on any $\left.i \in \omega\right]$ put

$$
\boldsymbol{\iota}_{\tau, 1[+i+1]} \triangleq\left(\left(x_{0}\left[\left[x_{0} / \boldsymbol{\pi}\right]\right]\right)\left[x_{0} /\left(\tau\left[x_{0} / x_{0[+i+1]}\right]\right)\left[, x_{1} / \boldsymbol{\iota}_{\tau, i+1}\right]\right]\right) \in \operatorname{Tm}_{\Sigma_{+}^{-}}^{1[+i+1]}
$$

Finally, for any $n \in(\omega \backslash 1)$, set $\boldsymbol{\iota}_{n} \triangleq \boldsymbol{\iota}_{\boldsymbol{\mu}, n} \in \operatorname{Tm}_{\Sigma_{+}^{-}}^{n}$.
Lemma 5.1. Any (non-one-element finitely-generated) $\mathfrak{A} \in[\mathrm{B}] \mathrm{MSL}$ is non-idempotent if $(f) \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right) \neq \varnothing$, in which case $\mathrm{I}[\mathrm{B}] \mathrm{SMSL} \subseteq[\mathrm{B}] \mathrm{DML}$, and so $[\mathrm{B}] \mathrm{S}(\mathrm{M} \mid \mathrm{K}) \mathrm{SL}=(\mathrm{NI}[\mathrm{B}] \mathrm{S}(\mathrm{M} \mid \mathrm{K}) \mathrm{SL} \cup[\mathrm{B}](\mathrm{M} \mid \mathrm{K}) \mathrm{L})$. In particular, $(\mathrm{NI}[\mathrm{B}] \mathrm{SMSL} \cup[\mathrm{B}] \mathrm{KL})$ $=(\mathrm{NI}[\mathrm{B}] \mathrm{SMSL} \cup[\mathrm{B}] \mathrm{SKSL})$, while $\mathrm{NIMS}_{[01]}=\left\{\mathfrak{S}_{3[, 01]}, \mathfrak{B}_{2[, 01]}\right\}$, whereas any variety $\mathrm{V} \subseteq[\mathrm{B}] \mathrm{MSL}$ with NIV $\nsubseteq[\mathrm{B}] \mathrm{OMSL}$ contains $\mathfrak{B}_{2[, 01]}$.
Proof. The "if" part is by the fact that $\mathfrak{B}_{2[, 01]}$ has no idempotent element. (Conversely, assume $\operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right)=\varnothing$, in which case, by (4.21), $\operatorname{hom}\left(\mathfrak{A}, \mathfrak{S}_{3[, 01]}\right)=\varnothing$, and so $\left(\operatorname{hom}\left(\mathfrak{A},\left\{\mathfrak{M} \mathfrak{S}_{6[, 01]}\left[, \mathfrak{M} \mathfrak{S}_{2,01}\right]\right\}\right) \cap\left(\operatorname{img} \epsilon_{3}^{5}\right)^{A}\right)=\varnothing$. Then, by (2.8), Theorem 4.4 [resp., Corollary 4.5] and the right alternative of the following claim, \mathfrak{A}, being non-one-element, is idempotent:)
Claim 5.2. Let $\mathfrak{B} \in[\mathrm{B}] \mathrm{MSL}, n \in(\omega \backslash 1), \bar{b} \in B^{n}, \mathfrak{C} \in\left\{\mathfrak{M S}_{6[, 01]}\left[, \mathfrak{M S}_{2,01}\right]\right\}$, $h \in\left(\operatorname{hom}(\mathfrak{B}, \mathfrak{C}) \backslash\left(\varnothing \mid\left(\operatorname{img} \epsilon_{3}^{5}\right)^{B}\right)\right)$ and $\tau \in\left(\operatorname{Tm}_{\Sigma_{+}^{-}}^{1} \mid\{\boldsymbol{\mu}\}\right)$. Suppose" "for each $i \in n$,
$h\left(\neg^{\mathfrak{B}} \tau^{\mathfrak{B}}\left(b_{i}\right)\right) \leqslant{ }^{\mathfrak{C}} h\left(\neg^{\mathfrak{B}} \neg^{\mathfrak{B}} \tau^{\mathfrak{B}}\left(b_{i}\right)\right) " \mid " \mathfrak{B}$ is generated by $\operatorname{img} \bar{b}$ ". Then, $h\left(\neg^{\mathfrak{B}} \boldsymbol{\iota}_{\tau, n}^{\mathfrak{B}}(\bar{b})\right)$ $\leqslant^{\mathfrak{C}} \mid=h\left(\neg^{\mathfrak{B}} \neg^{\mathfrak{B}} \boldsymbol{\iota}_{\tau, n}^{\mathfrak{B}}(\bar{b})\right)$, in which case $\neg^{\mathfrak{B}} \iota_{\tau, n}^{\mathfrak{B}}(\bar{b}) \leqslant{ }^{\mathfrak{B}} \neg^{\mathfrak{B}} \neg^{\mathfrak{B}} \boldsymbol{\iota}_{\iota, n}^{\mathfrak{B}}(\bar{b})$, and so the Σ_{+}^{-}-(quasi-)identity $\left(\left\{\neg x_{j} \lesssim \neg \neg x_{j} \mid j \in n\right\} \rightarrow\right)\left(\neg \boldsymbol{\iota}_{(\tau,) n} \lesssim \neg \neg \boldsymbol{\iota}_{(\tau,) n}\right)$ of rank n is true in [B]MSL.

Proof. By induction on $n,(2.8)$, Theorem 4.4 [resp., Corollary 4.5], the equality $\left(C \backslash\left(\operatorname{img} \epsilon_{3}^{5}\right)\right)=\Im_{\neg}^{\mathcal{C}}$ as well as the truth of the Σ_{+}^{-}-quasi-identities

$$
\begin{align*}
\left.\varnothing \|\left\{\neg x_{0} \approx \neg \neg x_{0}\right\}\right) & \rightarrow(\neg \boldsymbol{\mu} \lesssim \| \approx \neg \neg \boldsymbol{\mu}), \tag{5.2}\\
\left\{\neg x_{j} \lesssim \| \approx \neg \neg x_{j}, \neg x_{1-j} \lesssim \neg \neg x_{1-j}\right\} & \rightarrow(\neg \boldsymbol{\pi} \lesssim \| \approx \neg \neg \boldsymbol{\pi}), \tag{5.3}
\end{align*}
$$

where $j \in 2$, in $[\mathrm{B}] \mathrm{MSL}$, in their turn, being due to that of (4.1), (4.5) and (4.6).
Finally, (2.8), (4.21), Corollary 4.7 and absence of proper subalgebras of $\mathfrak{B}_{2[, 01]}$ complete the argument.

Lemma 5.3. $\mathfrak{K}_{3[, 01]} \upharpoonright(\{0,2\}(\cup\{1\}))$ is embeddable into any $\mathfrak{A} \in([\mathrm{MSA} \cap \mathrm{B}] \mathrm{MSL}) \backslash$ $((\mathrm{NI}[\mathrm{B}] \mathrm{MSLU})[\mathrm{B}] \mathrm{TNIMSL}))[=((\mathrm{I}) \mathrm{MSA} \backslash \mathrm{OMSA})] \supseteq((\mathrm{I})([\mathrm{MSA} \cap \mathrm{B}] \mathrm{QSMSL}) \backslash$ [B]OMSL).

Proof. Then, we have some $(a), b \in A$ such that $\left(\neg^{\mathfrak{A}} a=\right)\left(\left(a \vee^{\mathfrak{A}}\right)\left(\left(a \wedge^{\mathfrak{A}}\right) \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)\right) \neq$ $\neg^{\mathfrak{A}} b$, in which case, by (4.1), (4.3), (4.5) and (4.6) [as well as (4.7) and (4.8)], $c \triangleq\left(\left(\left[\perp^{\mathfrak{A}} \wedge^{\mathfrak{A}}\right]\left(a \wedge^{\mathfrak{A}}\right)\left(\neg^{\mathfrak{A}} b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)\right)\right)=\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c \leqslant^{\mathfrak{A}}\left(a \leqslant^{\mathfrak{A}}\right) d \triangleq \neg^{\mathfrak{A}} c$, while $\neg^{\mathfrak{A}} d=$ $c\left(\neq a\right.$, for, otherwise, we would have $\neg^{\mathfrak{A}} b \geqslant^{\mathfrak{A}} a \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b$, the latter implying, by (4.3) and (4.6), $\neg^{\mathfrak{A}} b \leqslant^{\mathfrak{A}} a$), whereas $d \notin\{c(, a)\}$, for, otherwise, we would get $\left(\left(c \vee^{\mathfrak{A}}\right)\left(\left(c \wedge^{\mathfrak{A}}\right)\left(\left[\perp^{\mathfrak{A}} \wedge^{\mathfrak{A}}\right] \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)\right)\right)=\left(\left(a \vee^{\mathfrak{A}}\right)\left(\left(a \wedge^{\mathfrak{A}}\right)\left(\left[\top^{\mathfrak{A}} \vee^{\mathfrak{A}}\right] \neg^{\mathfrak{A}} b\right)\right)\right.$, and so $\{\langle 0, c\rangle,(\langle 1, a\rangle),\langle 2, d\rangle\}$ is an embedding of $\mathfrak{K}_{3[, 01]} \upharpoonright(\{0,2\}(\cup\{1\}))$ into \mathfrak{A}, as required, for, by Corollary 4.7, $([\mathrm{B}] \mathrm{QSMSL} \cap[\mathrm{B}]$ TNIMSL $)=[\mathrm{B}] \mathrm{OMSL} \subseteq \mathrm{NI}[\mathrm{B}]$ MSL.

The stipulation of quasi-strength [resp., MS-algebraicity] here can be neither omitted nor replaced by the one of pseudo-strength nor, even, weakened with replacing it by that of almost quasi-strength, when taking $\mathfrak{A}=\mathfrak{M} \mathfrak{S}_{2[, 01]}$.

The above two lemmas, by (2.1), (2.7) with $I=2,(2.8),(2.10)$, Corollary 4.7, the locality of quasi-varieties, the quasi-equationality of finitely-generated pre-varieties, the simplicity of two-element algebras and the equality $\mathrm{NI}[\mathrm{B}]$ TNIMSL $=[\mathrm{B}]$ OMSL, immediately yield:

Corollary 5.4. Let $\mathrm{K} \subseteq[\mathrm{B}] \mathrm{MSL}$ and $\mathrm{P} \triangleq \mathbf{P V}(\mathrm{K})$. Suppose either $\mathfrak{B}_{2[, 01]} \in 1 \preceq$ $(\mathrm{P} \mid \mathrm{K})$ (more specifically, either $[\mathrm{B}] \mathrm{OMSL} \nsupseteq(\mathrm{K} \| \mathrm{P}) \subseteq[\mathrm{B}] \mathrm{QSMSL}$ or both $[\mathrm{B}] \mathrm{OMSL} \nsupseteq$ $\mathrm{NI}(\mathrm{K} \| \mathrm{P})$ and P is equational) or $\mathrm{IK}=\varnothing$. Then, $\mathrm{NIP}=\mathbf{P V}\left(\left(\mathrm{IK} \otimes\left(\left\{\mathfrak{B}_{2[, 01]}\right\} \cap\right.\right.\right.$ $(\mathrm{P} \mid(\mathbf{I S K})))) \cup \mathrm{NIK})$, in which case, for any variety $\mathrm{V} \subseteq[\mathrm{B}] \mathrm{MSL}\{$ such that $[\mathrm{B}] \mathrm{BL} \subseteq \mathrm{V}$ (i.e., $[\mathrm{B}]$ TNIMMSL $\nsupseteq \mathrm{V})\}$, NIV $=(\mathbf{P} / / \mathbf{Q}) \mathbf{V}\left(\varnothing\left\{\cup\left(\left(\mathrm{MS}_{\mathrm{V}[, 01]} \backslash\left\{\mathfrak{S}_{3[, 01]}, \mathfrak{B}_{2[, 01]}\right\}\right) \otimes\right.\right.\right.$ $\left.\left.\left.\left\{\mathfrak{B}_{2[, 01]}\right\}\right)\right\} \cup\left(\mathrm{MS}_{\mathrm{V}[, 01]} \cap\left\{\mathfrak{S}_{3[, 01]}, \mathfrak{B}_{2[, 01]}\right\}\right)\right)$, and so $\mathrm{NI}[\mathrm{B} /]\{(\mathrm{PSM})|(\mathrm{WK}\langle\mathrm{M}\rangle)|(\mathrm{PSWK})$ $\} \mathrm{S}(\mathrm{L}[/ \mathrm{A}])$ is the pre-//quasi-variety generated by $\left(\left\{\mathfrak{M S}_{(6\{-1\})[, 01]}\right\}\left\{\cup\left(\left\{\mathfrak{D M}_{4[, 01]}\right\} \mid\right.\right.\right.$ $\left.\left.\left.\left\{\mathfrak{M S}_{(4: 1)[, 01]}\left\langle, \mathfrak{D M}_{4[01]}\right\rangle\right\} \mid \varnothing\right)\right\}\left[\cup\left(\left\{\mathfrak{M S}_{2,01}\right\} / \varnothing\right)\right]\right) \otimes\left\{\mathfrak{B}_{2[, 01]}\right\}$, while $\mathrm{NI}[\mathrm{B} /]\{(\mathrm{PS}) \mid(\langle\mathrm{A}$ $\rangle\lfloor\mathrm{Q}\rfloor \mathrm{S})\}(\{\mid \mathrm{M} \|\}(\mathrm{K}\lceil\mathrm{M}\rceil)) \mathrm{S}(\mathrm{L}[/ \mathrm{A}])$ is the one generated by $\left(\left(\left\{\mathfrak{M S}_{(4: i)[, 01]} \mid i \in(2\{\backslash(\{1\right.\right.\right.$ $\} \mid(2\lfloor\cap 1\rfloor))\})\} \cup\left(\left\{\mid\left\{\mathfrak{D M}_{4[, 01]}\right\} \|\right\}\left(\varnothing \cup\left(\varnothing \mid\left(\varnothing \cup\left(\left\{\mathfrak{K}_{3[, 01]}\right\}[\cap \varnothing\rceil\right)\right)\right)\left\lceil\cup\left\{\mathfrak{D M}_{4[, 01]}\right\}\right\rceil\right)\right) \cup$ $\left.\left.\left(\left(\varnothing\left[\cup\left(\left\{\mathfrak{M S}_{2,01}\right\} / \varnothing\right)\right]\right) \mid\left(\varnothing\left\langle\cup\left(\left\{\mathfrak{M S}_{2[, 01]}\right\}[/ \varnothing]\right)\right\rangle\right)\right)\right) \otimes\left\{\mathfrak{B}_{2[, 01]}\right\}\right) \cup\left(\left\{\mathfrak{S}_{3[, 01]}\right\} \mid\left(\left\{\mathfrak{S}_{3[, 01]}\right\} L\right.\right.$ $\left.\left.\backslash\left\{\mathfrak{S}_{3[, 01]}\right\}\right\rfloor\right)$), whereas $\mathrm{NI}[\mathrm{B} /]\{\mathrm{N}\}(\mathrm{M} \mid \mathrm{K})(\mathrm{L}[/ \mathrm{A}])$ is that generated by $((\{((\mathfrak{D M}) \mid$ $\left.\left.\left.\mathfrak{K})_{(4 \mid 3)[, 01]}\right\}\left\{\backslash\left(\varnothing \mid\left\{\mathfrak{K}_{3[01]}\right\}\right)\right\}\right)\left\{\cup\left\{\mathfrak{M S}_{(4: 0)[, 01]}\right\}\left[\cup\left(\left\{\mathfrak{M S}_{2,01}\right\} / \varnothing\right)\right]\right\}\right) \otimes\left\{\mathfrak{B}_{2[, 01]}\right\}$. In particular, any (non-one-element) $\mathfrak{A} \in[\mathrm{B}] \mathrm{MSL}$ is non-idempotent if(f) hom $\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right.$) $\neq \varnothing$.

Corollary 5.5. $\mathrm{NI}[\mathrm{B}] \mathrm{MSL} \cup[\mathrm{B}]$ TNIMSL is the sub-quasi-variety of $[\mathrm{B}] \mathrm{MSL}$ relatively axiomatized by the Σ_{+}^{-}-quasi-identity:

$$
\begin{equation*}
\left(\neg x_{0} \approx x_{0}\right) \rightarrow\left(x_{0} \approx \neg x_{1}\right) \tag{5.4}
\end{equation*}
$$

and is the pre-/quasi-variety generated by $\left\{\mathfrak{M S}_{6[, 01]} \times \mathfrak{B}_{2[, 01]}, \mathfrak{M S}_{2[, 01]}\right\}$.
Proof. Clearly, $(5.4)=\left(5.1\left[x_{1} / \neg x_{1}\right]\right)$ is true in both $\mathrm{NI}[\mathrm{B}]$ MSL and $\mathfrak{M} \mathfrak{S}_{2[, 01]}$. Conversely, any $\mathfrak{A} \in \mathrm{I}[\mathrm{B}] \mathrm{MSL}$, satisfying (5.4), has an idempotent element a, in which case, for any $b \in A$, as $\mathfrak{A}=(5.4)\left[x_{0} / a, x_{1} /\left(\neg^{\mathfrak{A}}\right) b\right]$, we have $\neg^{\mathfrak{A}} b=a\left(=\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)$, and so $\mathfrak{A} \in[\mathrm{B}]$ TNIMSL. Then, Corollaries 4.7 and 5.4 complete the argument.

Likewise, we have:
Corollary 5.6. For any (equational) /quasi-equational pre-variety $\mathrm{P} \subseteq[\mathrm{B}] \mathrm{MSL}$, the class $\operatorname{NIP} \cup(\mathrm{P} \cap[\mathrm{B}]\{\mathrm{W}\} \mathrm{KSL})$ is the relative/ sub-quasi-variety of P relatively axiomatized by the Σ_{+}^{-}-quasi-identity:

$$
\begin{equation*}
\left(\neg x_{0} \approx x_{0}\right) \rightarrow\left(x_{0} \lesssim\left(\{\neg \neg\} x_{1} \vee \neg x_{1}\right)\right) \tag{5.5}
\end{equation*}
$$

(and is the pre-|quasi-variety generated by $\mathrm{MS}_{\mathrm{P} \cap[\mathrm{B}]\{\mathrm{W}\} \mathrm{KSL})[, 01]} \cup\left(\left(\mathrm{MS}_{\mathrm{V}[, 01]} \backslash\left\{\mathfrak{S}_{3[, 01]}\right.\right.\right.$, $\left.\left.\left.\mathfrak{B}_{2[, 01]}\right\}\right) \otimes\left\{\mathfrak{B}_{2[, 01]}\right\}\right)$). In particular, $\operatorname{NI}[\mathrm{B}]\lfloor\mathrm{A}\rfloor(\mathrm{D}\langle\|\lceil\mathrm{Q}\rceil \mathrm{S}\rangle) \mathrm{M}\langle\mathrm{S}\rangle \mathrm{L} \cup\lfloor\mathrm{A}\rfloor\langle\lceil\mathrm{Q}\rceil \mathrm{S}\rangle \mathrm{K}\langle\mathrm{S}\rangle \mathrm{L}$ is the sub-quasi-variety of $[\mathrm{B}]\lfloor\mathrm{A}\rfloor(\mathrm{D}\langle\|\lceil\mathrm{Q}\rceil \mathrm{S}\rangle) \mathrm{M}\langle\mathrm{S}\rangle \mathrm{L}$ relatively axiomatized by either version of (5.5) and is the pre-|quasi-variety generated by

$$
\left.\left(\left\{\mathfrak{D M}_{4[, 01]} L, \mathfrak{M S}_{2[, 01]}\right]\right\} \otimes \mathfrak{B}_{2[, 01]}\right) \cup\left(\left\{\mathfrak{K}_{3[, 01]}\left\langle, \mathfrak{S}_{3[, 01]}\right\rangle\right\}\langle\lceil\cap \varnothing\rceil)\left\langle\left\lceil\cup\left\{\mathfrak{K}_{4: 1[, 01]}\right\}\right\rceil\right\rangle\right.
$$

Proof. Clearly, (5.5) is satisfied in NIP $\cup(\mathrm{P} \cap[\mathrm{B}]\{\mathrm{W}\} \mathrm{KSL})$. Conversely, consider any $\mathfrak{A} \in \mathbb{I P}$ satisfying (5.5) and any $a, b \in A$, in which case there is some $c \in A$ such that $\neg^{\mathfrak{A}} c=c$, and so, as $\mathfrak{A}(5.5)\left[x_{0} / c, x_{1} /(a \mid b)\right]$, we have $c \leqslant^{\mathfrak{A}}\left(\neg^{\mathfrak{A}}(a \| b) \vee^{\mathfrak{A}}\right.$ $\left\{\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right\}(a \| b)$). Then, by (4.2), (4.3) and (4.5) \{as well as (4.6)\}, we get $\left(a \wedge^{\mathfrak{A}}\right.$ $\left.\neg^{\mathfrak{A}} a\right) \leqslant^{\mathfrak{A}} c$, in which case $\mathfrak{A} \in(\mathrm{P} \cap[\mathrm{B}]\{\mathrm{W}\} \mathrm{KSL})$, and so Corollaries 4.7, 5.3 and 5.4 complete the argument.

More generally, we, clearly, have:
Lemma 5.7. For any $\alpha \in(\infty \backslash 1)$, any $\mathcal{J} \subseteq\left(\wp\left(\mathrm{Eq}_{\Sigma_{+[, 01]}^{-}}^{\alpha}\right) \times \mathrm{Eq}_{\Sigma_{+[, 01]}^{-}}^{\alpha}\right)$ and any $\mathrm{K} \subseteq \mathrm{A}_{\Sigma_{+[, 01]}^{-}},\left(\mathrm{K} \cap(\operatorname{Mod}(\mathcal{J}) \cup \operatorname{Mod}((5.1)))=\left(\mathrm{K} \cap \operatorname{Mod}\left(\left\{\left(\left\{\neg x_{\alpha} \approx x_{\alpha}\right\} \cup \Gamma\right) \rightarrow \Phi \mid\right.\right.\right.\right.$ $(\Gamma \rightarrow \Phi) \in \mathcal{J}\})$).

This, by Corollaries 4.7, 5.4 and Lemma 4.6, immediately yields:
Corollary 5.8. Let $\mathrm{V} \triangleq[B]<\lceil A\rceil Q S>M S L$. Then,

$$
(\operatorname{NIV}\{\langle\cap[\mathrm{B}] \mathrm{KSL}\rangle\} \cup([\mathrm{B}](\mathrm{A})\lfloor\mathrm{QS}\rfloor \mathrm{M}\lfloor\mathrm{~S}\rfloor \mathrm{L}\{\cap[\mathrm{~B}] \mathrm{KSL}\}<\cap \mathrm{V}>)
$$

is the sub-quasi-variety of V relatively axiomatized by the Σ_{+}^{-}-quasi-identity:

$$
\begin{equation*}
\left.\left\{\neg x_{1(+1)} \approx x_{1(+1)} \downharpoonright, x_{0} \lesssim \neg x_{0}\right\rfloor\right\} \rightarrow\left(\left(\left(\neg \neg x_{0}\left(\wedge \neg \neg x_{1}\right)\right) \approx\left(x_{0}\left(\vee \neg x_{1}\right)\right)\right)\right. \tag{5.6}
\end{equation*}
$$

$\left\{\right.$ collectively with the one $\left.\left(\left\{\neg x_{2} \approx x_{2}\right\}\langle\cap \varnothing\rangle\right) \rightarrow \mathcal{K}\right\}<$ and is the pre-/quasi-variety generated by $\left\{\mathfrak{M S}_{4: 1[, 01]} \times \mathfrak{B}_{2[, 01]}^{\lfloor 0\rfloor}\left\lceil, \mathfrak{M S}_{2[, 01]} \times \mathfrak{B}_{2[, 01]}^{(0)}\right\rceil, \mathfrak{D M}_{4[, 01]}^{\{\langle 0\rangle\}} \times \mathfrak{B}_{2[, 01]}^{0\{+1\rangle\}}\{\right.$, $\left.\left.\mathfrak{K}_{3[, 01]}^{\lfloor 0\rfloor}\right\}\right\}>$.

5.2. Regularizations versus regularity.

Definition 5.9 (cf. [18, Definition 4.6] for the non-otional case). Members of any /quasi-equational $\mathrm{K} \subseteq[\mathrm{B}] \mathrm{MSL}$, satisfying the Σ_{+}^{-}-quasi-identity of rank $2\{+1\}$:

$$
\begin{aligned}
\mathcal{R}_{\{\mathrm{M}\}}^{(\mathrm{W})} \triangleq\left(\left(\left\{\neg x_{0} \lesssim x_{0},\left(x_{0} \wedge \neg x_{1}\right) \lesssim\left(\left(\neg x_{0} \vee\right.\right.\right.\right.\right. & \left.\left.\left.x_{1}\right)\right\}\right) \rightarrow \\
& \left(\left(\neg x_{1}\left\{\wedge \neg \neg x_{2}\right\}\right) \lesssim\left((\neg \neg) x_{1}\left\{\vee x_{2}\right\}\right)\right)
\end{aligned}
$$

are called (weakly-)\{Morgan-\}regular, their relative/ sub-quasi-variety of K being denoted by ((W)\{M\}RK.

Given any［bounded］\｛quasi－strong\} 〈(weakly) Kleene〉 MS lattice \mathfrak{A} ，by（4．1）， （4．2），（4．3）and（4．5）（as well as（4．6））〈together with $\left.\mathcal{K}^{(\mathrm{W})}\right\rangle\{$ collectively with （4．13）$\},(\mathcal{J} \mid \mathcal{F})_{(\mathrm{W})}^{\mathfrak{A}} \triangleq\left\{a \in A \mid\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) a(\leqslant \mid \geqslant)^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\} \supseteq\left\{b(\wedge \mid \vee)^{\mathfrak{A}} \neg^{\mathfrak{A}} b \mid b \in A\right\} \neq \varnothing$ ， for $A \neq \varnothing$ ，is a｜an lower｜upper cone of the poset $\left\langle A, \leqslant^{\mathfrak{A}}\right\rangle\langle$ being an a ideal｜filter of $\mathfrak{A}\left|\Sigma_{+}\right\rangle$such that $\neg^{\mathfrak{A}}\left[(\mathcal{J} \mid \mathcal{F})_{(\mathrm{W})}^{\mathfrak{A}}\right] \subseteq(\mathcal{F} \mid \mathcal{J})_{(\mathrm{W})}^{\mathfrak{A}}\left(=\left((\mathcal{F} \mid \mathcal{J})^{\mathfrak{A}} \cup\left(\left(\mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}\{\cap \varnothing\}\right) \mid \varnothing\right)\right)\right)\langle$ in which case $\Re_{(\mathrm{W})}^{\mathfrak{A}} \triangleq\left(\left(\mathcal{F}_{(\mathrm{W})}^{\mathfrak{A}} \times\{1\}\right) \cup\left(\mathcal{J}_{(\mathrm{W})}^{\mathfrak{L}} \times\{0\}\right)\right)\left(\left\{=\Re^{\mathfrak{A}}\right\}\right)$ forms a subalgebra of $\mathfrak{A} \times \mathfrak{B}_{2[, 01]}$ such that，for every $\bar{d} \in \Re_{(\mathrm{W})}^{\mathfrak{A}},\left(d_{1}=1\right) \Rightarrow\left(d_{0} \in \mathcal{F}_{(\mathrm{W})}^{\mathfrak{A}}\right)$ ，and so the （weak）regularization $\Re_{(\mathrm{W})}(\mathfrak{A}) \triangleq\left(\left(\mathfrak{A} \times \mathfrak{B}_{2[, 01]}\right) \Re_{(\mathrm{W})}^{\mathfrak{A}}\right)(\{=\Re(\mathfrak{A})\})$ of \mathfrak{A} is（weakly） regular \rangle ．Then，$\left(\pi_{0} \mid \Re^{\mathfrak{S}_{3[, 01]}}\right) \in \operatorname{hom}\left(\Re\left(\mathfrak{S}_{3[, 01]}\right), \mathfrak{S}_{3[, 01]}\right)$ is bijective，so，by Corol－ lary 4．7， $\mathfrak{S}_{3[, 01]} \in \mathrm{R}[\mathrm{B}]$ SKSL．Likewise，$\left(\epsilon_{2}^{4} \|\left\{\left\langle i,\left\langle\chi_{4}^{4 \backslash 3}(i)+\chi_{4}^{4 \backslash 1}(i), \chi_{4}^{4 \backslash 2}(i)\right\rangle\right\rangle \mid i \in\right.\right.$ $4\}) \in \operatorname{hom}\left((\mathfrak{B} \| \mathfrak{K})_{(2 \| 4)[, 01]}, \mathfrak{K}_{4[, 01]} \| \Re\left(\mathfrak{K}_{3[, 01]}\right)\right)$ is injective\｜bijective，so，by Corollary 4．7，$(\mathfrak{B} \| \mathfrak{K})_{(2 \| 4)[01]} \in \mathrm{R}[\mathrm{B}] \mathrm{KL}$ ．

Lemma 5．10．Any（（weakly）\｛Morgan－\}regular [bounded/] MS lattice[/algebra] \mathfrak{A} is a［bounded／］（weakly）Kleene－\｛Morgan－\}Stone lattice[/algebra].
Proof．Consider any $a, b\{, c\} \in A$ ．Let $d \triangleq\left(a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)$ and $e \triangleq\left(\left(b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \wedge^{\mathfrak{A}} d\right)$ ， in which case，by（4．5），we have $\neg^{\mathfrak{A}} d=\left(\neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right) \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} a \leqslant^{\mathfrak{A}} d$ ，and so，by （4．1）and（4．5），we get $\left(d \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)=\left(\left(d \wedge^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} d \vee^{\mathfrak{A}}\right.\right.$ $\left.\left.\left(b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)\right) \wedge^{\mathfrak{A}} d\right)=\left(\neg^{\mathfrak{A}} d \vee^{\mathfrak{A}} e\right)$ ．Then，since $\mathfrak{A}=\mathcal{R}_{\{\mathrm{R}\}}^{(\mathrm{W})}\left[x_{0} / d, x_{1} / e\left\{, x_{2} / c\right\}\right]$ ，by（4．1）， （4．2）and（4．5）（as well as（4．6）），we eventually get $\left(\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)\left\{\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right\}\right) \leqslant^{\mathfrak{A}}$ $\left(\left(\neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)\left\{\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right\}\right)=\left({\left.\neg \mathfrak{A} d\left\{\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right\}\right) \leqslant^{\mathfrak{A}}\left(\left(\left(\neg^{\mathfrak{A}} b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \vee^{\mathfrak{A}} .\right.\right.}^{\mathfrak{A}}\right.$ $\left.\left.\neg^{\mathfrak{A}} d\right)\left\{\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right\}\right)=\left(\neg^{\mathfrak{A}} e\left\{\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right\}\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) e\left\{\vee^{\mathfrak{A}} c\right\}\right)=\left(\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) b \vee^{\mathfrak{A}}\right.\right.$ $\left.\left.\left.\neg^{\mathfrak{A}} b\right) \wedge^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) d\right)\left\{\vee^{\mathfrak{A}} c\right\}\right) \leqslant^{\mathfrak{A}}\left(\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)\left\{\vee^{\mathfrak{A}} c\right\}\right)$ ，as required．

Corollary 5．11．$\left(\varnothing\left\{\cup\left\{\mathfrak{S}_{3[, 01]}\left\langle, \mathfrak{D M}_{4[, 01]}\right\rangle\left(, \mathfrak{M S}_{2[, 01]}\right)\right\}\right\}\right) \subseteq(\mathrm{W})\langle\mathrm{M}\rangle \mathrm{R}[\mathrm{B}] \mathrm{M}\{\mathrm{S}\} \mathrm{L} \subseteq$ （NI $[\mathrm{B}] \mathrm{K}\{\langle\mathrm{M}\rangle \mathrm{S}\} \mathrm{L}(\cup[\mathrm{B}]$ TNIMSL）$\langle\cup[\mathrm{B}](\mathrm{A}) \mathrm{DML}\rangle)$ ．In particular，$[\mathrm{B}](\mathrm{A})\langle\{\mathrm{S}\} \mathrm{M}\rangle\{\mathrm{S}\} \mathrm{L} \subseteq$ $[B](\mathrm{W})\langle\mathrm{M}\rangle \mathrm{RSMSL}$ ．

Proof．The first inclusion is immediate．For proving the second one，consider any $\mathfrak{A} \in(\mathrm{W})\langle\mathrm{M}\rangle \mathrm{R}[\mathrm{B}] \mathrm{M}\{\mathrm{S}\} \mathrm{L}$ and any $a, b, c\langle, d(, e)\rangle \in A$ such that $\neg^{\mathfrak{A}} a=a$ ，in which case，as $\mathfrak{A} \models\left((4.1) \mid \mathcal{R}_{\langle\mathrm{R}\rangle}^{(\mathrm{W})}\right)\left[x_{0} / a, x_{1} /\left(c \mid\left(a \wedge^{\mathfrak{A}} c\right)\right)\left\langle\mid, x_{2} / d\right\rangle\right]$（and $\mathfrak{A} \models(4.5)\left[x_{0} / \neg^{\mathfrak{A}} a, x_{1} /\right.$ $\left.\neg^{\mathfrak{A}} c\right]$ ），we have $\left(\neg^{\mathfrak{A}} c\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right)\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right)=\left(\neg^{\mathfrak{A}}\left(a \wedge^{\mathfrak{A}}\right.\right.$ c）$\left.\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right)\left(a \wedge^{\mathfrak{A}} c\right)\left\langle\vee^{\mathfrak{A}} d\right\rangle\right)=\left(\left(a \wedge^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) c\right)\left\langle V^{\mathfrak{A}} d\right\rangle\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) c\right.$ $\left\langle\vee^{\mathfrak{A}} d\right\rangle$ ），and so，as $\mathfrak{A} \vDash(4.2(\| 4.6))\left[x_{0} / b\right]$ ，we get both $\left(b\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right) \leqslant\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right.$ $\left.\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) \neg^{\mathfrak{A}} b\left\langle\vee^{\mathfrak{A}} d\right\rangle\right)=\left(\neg^{\mathfrak{A}} b\left\langle\vee^{\mathfrak{A}} d\right\rangle\right)$ ，when taking $c=\neg^{\mathfrak{A}} b$ ，and $\left(\neg^{\mathfrak{A}} b\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) b\left\langle\vee^{\mathfrak{A}} d\right\rangle\right)$ ，when taking $c=b$ ．Then，as，by Lemma 5．10， $\mathcal{K}_{\langle\mathrm{M}\rangle}^{(\mathrm{W})}$ ，being true in \mathfrak{A} ，is so under $\left[x_{0} /\left(a \|\left(\neg^{\mathfrak{A}}\right) b\right), x_{1} /(b \| a)\left\langle, x_{2} / d\right\rangle\right]$ and $\left.\mathfrak{A} \vDash(4.2)\left[x_{0} / d\right]\right\rangle$ ，we have both $\left(\left(\neg^{\mathfrak{A}}\right) b\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right) \leqslant^{\mathfrak{A}}\left(a\left\langle\vee^{\mathfrak{A}} d\right\rangle\right)$（in which case， when taking $b=\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d$（resp．，$\left.b=\neg^{\mathfrak{A}} e\right)$ ，we get $\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\left(\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)\right) \leqslant^{\mathfrak{A}}\left(a \vee^{\mathfrak{A}}\right.$ $\left.\left.d\left(\vee^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)\right)\right\rangle$ and $\left(a\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right\rangle\right) \leqslant^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}}\right) b\left\langle\vee^{\mathfrak{A}} d\right\rangle\right)$（in which case，when taking $b=d$（resp．，$b=e)$ ，we get $\left.\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\left(\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)\right) \leqslant^{\mathfrak{A}}\left(d\left(\vee^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)\right)\right\rangle$ ，and so eventually get $a=\left(\neg^{\mathfrak{A}}\right) b\left\langle\right.$ resp．，$\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\left(\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)\right) \leqslant^{\mathfrak{A}}\left(d\left(\vee^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)\right)$ ，since the Σ_{+}－quasi－identity $\left\{\left(x_{0} \wedge x_{1}\right) \lesssim x_{2}, x_{1} \lesssim\left(x_{0} \vee x_{2}\right)\right\} \rightarrow\left(x_{1} \lesssim x_{2}\right)$ is true in distribu－ tive lattices〉．This，by Corollary 4.7 （and 5．5）〈as well as 5.8\rangle ，ends the proof．

Before pursuing，note that，for each $i \in 2$ ，

$$
\epsilon_{i}^{4} \triangleq\left(\{\langle 3 \cdot(1-i),\langle 1-i, 1,1-i, 1-i\rangle\rangle\} \cup\left\{\left\langle j,\left\langle\epsilon_{3: 0}^{4}(j-i), i\right\rangle\right\rangle \mid j \in((3+i) \backslash i)\right\}\right),
$$

being an isomorphism from $\mathfrak{D}_{4[, 01]}$ onto $\mathfrak{M S}_{4: i[, 01]} \mid \Sigma_{+[, 01]}$ ，is the one from $\mathfrak{K}_{4: i[, 01]} \triangleq$ $\left(\epsilon_{i}^{4}\right)^{-1}\left[\mathfrak{M S}_{4: i[, 01]}\right]$ onto $\mathfrak{M S}_{4: i[, 01]}$ ，in which case $\epsilon_{i}^{8} \triangleq\left(\epsilon_{i}^{4} \times \Delta_{2}\right)$ is that from $\mathfrak{K}_{4: i[, 01]} \times \mathfrak{B}_{2[, 01]}$ onto $\mathfrak{M S}_{4: i[, 01]} \times \mathfrak{B}_{2[, 01]}$ ，and so $\epsilon_{i}^{5} \triangleq\left(\epsilon_{i}^{8} \upharpoonright \Re^{\mathfrak{K}_{4: i}[, 01]}\right)$ is so from
$\Re\left(\mathfrak{K}_{4: i[, 01]}\right)$ onto $\Re\left(\mathfrak{M S}_{4: i[, 01]}\right)$, the former [bounded] MS lattices being preferably used below due to their having more transparent representation/notation of elements than those of the latter ones. Likewise, $\epsilon_{i}^{5} \triangleq\left\{k+l \mid\langle k, l\rangle \in \Re^{\mathfrak{K}_{4: i[, 01]}}\right\}$, being clearly injective, is an isomorphism from $\Re\left(\mathfrak{K}_{4: 1[, 01]}\right)$ onto $\mathfrak{K}_{5: 1[, 01]} \triangleq \Re\left(\mathfrak{K}_{4: 1[, 01]}\right)$ with $\left(\mathfrak{K}_{5: 1[, 01]} \mid \Sigma_{+[, 01]}\right)=\mathfrak{D}_{5[, 01]}$. Finally, let $\mathfrak{K}_{2(: 0)[, 01]} \triangleq\left(\pi_{0} \upharpoonright M S_{2}\right)\left[\mathfrak{M} \mathfrak{S}_{2[, 01]}\right]$, in which case $\epsilon_{4}^{4} \triangleq\left(\left(\left(\pi_{0} \upharpoonright 2^{2}\right)\left(\pi_{0} \upharpoonright M S_{2}\right)^{-1}\right) \times\left(\pi_{1} \upharpoonright 2^{2}\right)\right)$ is an isomorphism from $\mathfrak{K}_{2[, 01]} \times \mathfrak{B}_{2[, 01]}$ onto $\mathfrak{M S}_{2[, 01]} \times \mathfrak{B}_{2[, 01]}$, and so $\epsilon_{3}^{3} \triangleq\left(\epsilon_{4}^{4} \upharpoonright \Re^{\mathfrak{K}_{2[, 01]}}\right)$ is the one from $\Re\left(\mathfrak{K}_{2[01]}\right)$ onto $\Re\left(\mathfrak{M S}_{2[01]}\right),\left(\epsilon_{3: 1}^{4}\right)^{-1}$ being that from $\Re\left(\mathfrak{K}_{2[, 01]}\right)$ onto $\mathfrak{K}_{3: 0[01]} \triangleq\left(\epsilon_{3: 1}^{4}\right)^{-1}\left[\Re\left(\mathfrak{K}_{2[01]}\right)\right]$.

Theorem 5.12. Let $\mathrm{V} \subseteq[\mathrm{B} /](\mathrm{W}) \mathrm{K}\{\mathrm{M}\} \mathrm{SL}[/ \mathrm{A}]$ be a variety and $\mathrm{K} \triangleq\left(\mathrm{MS}_{\mathrm{V}[, 01]} \cap\right.$ $\left.\left\{\mathfrak{B}_{2[, 01]}, \mathfrak{S}_{3[, 01]}\left\{, \mathfrak{D M}_{4[, 01]}, \mathfrak{K}_{3[, 01]}\right\}\left(, \mathfrak{K}_{2[, 01]}\right)\right\}\right)$. Then, $\mathrm{Q} \triangleq(\mathrm{W})\{\mathrm{M}\} \mathrm{RV}$ is the pre$/ /$ quasi-variety generated by $\Re_{(\mathrm{W})}\left[\mathrm{MS}_{\mathrm{V}[01]} \backslash \mathrm{K}\right] \cup \mathrm{K},\lfloor(\mathrm{W}) \downarrow\rfloor\{\lceil\mathrm{M}] \mid\}((\mathrm{R}[\mathrm{B} /]\lfloor\mathrm{A} \downarrow\rfloor(\{\langle\mathrm{Q} \imath \mathrm{P}$ $\rangle \mathrm{S}\}(\mathrm{K}\{[\| \mathrm{M}\rceil\})\{\mathrm{S}\})\lfloor|\mathrm{S}| \mathrm{B}\rfloor)(\mathrm{L}[/ \mathrm{A}])$ being the one generated by $\left\{\mathfrak{K}_{4\{\langle+1: 120\rangle\}[, 01]} \mid \mathfrak{S}_{3[, 01]}\right.$ $\left.\mid \mathfrak{B}_{2[, 01]}\right\}\left\{\cup\left(\left\{\mathfrak{S}_{3[, 01]}\right\}\langle\cap \varnothing\rangle\right)\left\langle\cup\left(\varnothing \imath\left(\left\{\mathfrak{S}_{3[, 01]}\right\}\left[\cup\left(\left\{\mathfrak{K}_{3: 0,01}\right\} / \varnothing\right)\right]\right)\right)\right\rangle\left\lceil\cup\left(\left\{(\mathfrak{K} \mid \boldsymbol{M})_{(3 \| 4)[, 01]}\right\} \mid\right.\right.\right.$ $\varnothing \mid \varnothing)\rceil\}\left\lfloor\cup\left(\left\{\mathfrak{K}_{3(-1): 0[, 01]}\right\}[/ \varnothing]\right)\right\rfloor$.
Proof. Consider any finitely-generated

$$
\mathfrak{A} \in(\mathrm{Q} \backslash([\mathrm{~B}] \mathrm{OMSL}(\cup[\mathrm{~B}] \mathrm{TNIMSL})\{\lceil\cup[\mathrm{B}](\mathrm{A}) \mathrm{DML}\rceil\}) .
$$

Take any $\bar{a} \in A^{+}$such that \mathfrak{A} is generated by $\operatorname{img} \bar{a}$. Let $n \triangleq(\operatorname{dom} \bar{a}) \in(\omega \backslash 1)$ and $b \triangleq \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} \iota_{n}^{\mathfrak{A}}(\bar{a})$, in which case, by (4.6) and the left alternative of Claim 5.2, we have $\neg^{\mathfrak{A}} b \leqslant^{\mathfrak{A}} b$. Consider any $\mathfrak{B} \in K^{\prime} \triangleq\left(\left\{\mathfrak{M} \mathfrak{S}_{6[, 01]}\right\}\left[\cup\left(\left\{\mathfrak{M S}_{2,01}\right\} / \varnothing\right)\right]\right)$ and $h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B})\left\lceil\right.$ such that $(\operatorname{img} h) \nsubseteq\left(\operatorname{img} \epsilon_{4}^{6}\right)$, in which case, for some $i \in n$, $h\left(a_{i}\right) \notin\left(\operatorname{img} \epsilon_{4}^{6}\right)$, and so $\left.\pi_{0}\left(h\left(a_{i}\right)\right)=0=\left(1-\pi_{0}\left(h\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a_{i}\right)\right)\right)\right]$. Let $(I \mid J) \triangleq\{j \in n \mid$ $\left.h\left(a_{j}\right) \notin(\mathcal{F} \mid \mathcal{J})_{(\mathrm{W})}^{\mathfrak{B}}\right\},(\imath \mid \jmath)=|(I \mid J)|$ and $\overline{\mathbb{k}} \mid \bar{\ell}$ any bijection from $\imath \mid \jmath$ onto $I \mid J$. We prove, by contradiction, that there is some $g \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right)$ such that $g[\operatorname{img}((\overline{\mathbb{k}} \mid \bar{\ell}) \circ \bar{a})]=$ $\{0 \mid 1\}$. For suppose that, for every $g \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right)$, there is either some $i^{\prime} \in \imath$ or some $j^{\prime} \in \jmath$ such that $\left.g\left(a_{(\mathbb{k} \mid \ell)_{i^{\prime} \mid j^{\prime}}}\right)\right)=(1 \mid 0)$, in which case, as, by Lemma 5.1 and Corollary 5.11, $\operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right) \neq \varnothing$, we have $(I \cup J) \neq \varnothing$, and so we are allowed to put $c \triangleq\left(\vee_{+}^{\mathfrak{A}}\left(\left(\overline{\mathbb{k}} \circ \bar{a}\left(\circ \neg^{\mathfrak{A}} \circ \neg^{\mathfrak{A}}\right)\right) *\left(\bar{\ell} \circ \bar{a} \circ \neg^{\mathfrak{A}}\right)\right)\right)$. Then, $\pi_{022}\left(h\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) c\right)\right)=0$, in which case $($ by $(4.6)) \pi_{0}\left(h\left(\neg^{\mathfrak{A}} c\right)\right)=1$, and so $\left.\left.\left(\neg^{\mathfrak{A}} c\left\lceil\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a_{i}\right\rceil\right) \not^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) c\right\rceil \bigvee^{\mathfrak{A}} a_{i}\right\rceil\right)$, for $\left(h \circ \pi_{0}\right) \in \operatorname{hom}\left(\mathfrak{A} \mid \Sigma_{+}, \mathfrak{D}_{2}\right)$. Now, consider any $\mathfrak{C} \in \mathbf{K}^{\prime}, f \in \operatorname{hom}(\mathfrak{A}, \mathfrak{C})$ and the following complementary cases:

- $(\operatorname{img} f) \subseteq\left(\operatorname{img} \epsilon_{3}^{5}\right)$,
in which case, by $(4.21), e \triangleq\left(f \circ\left(\epsilon_{3}^{5}\right)^{-1} \circ \chi_{3}^{3 \backslash 2}\right) \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right)$, while $(\operatorname{img} f) \nsubseteq M S_{2}$, for $\left(M S_{2} \cap\left(\operatorname{img} \epsilon_{3}^{5}\right)\right)=\varnothing \neq(\operatorname{img} f)$, as $A \neq \varnothing$, and so $\left[\mathfrak{C}=\mathfrak{M S}_{6,01}\right.$, whereas], by the assumption to be disproved, $\pi_{112}(f(c))=$ $e(c)=1$. Then, $f\left(b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right)=\langle 0,0,0\rangle \leqslant{ }^{\mathfrak{C}} f\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} c\right)$.
- $(\operatorname{img} f) \nsubseteq\left(\operatorname{img} \epsilon_{3}^{5}\right)$,
in which case, by (4.6) and the right alternative of Claim 5.2, $f\left(b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right) \leqslant^{\mathfrak{C}}$ $f(b)=f\left(\neg^{\mathfrak{A}} b\right) \leqslant{ }^{\mathfrak{C}} f\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} c\right)$.
Thus, anyway, $f\left(b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right) \leqslant{ }^{\mathfrak{C}} f\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} c\right)$, in which case, by (2.8) and Theorem 4.4 [resp., Corollary 4.5], $\left(b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right) \leqslant^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} c\right)$, and so $\mathfrak{A} \not \vDash \mathcal{R}_{\lceil\mathrm{M}\rceil}^{(\mathrm{W})}\left[x_{0} / b, x_{1} / c\left\lceil, x_{2} /\right.\right.$ $\left.\left.a_{i}\right\rceil\right]$. This contradiction to the (weak) 「Morgan-ךregularity of \mathfrak{A} definitely shows that, for each $\mathfrak{D} \in\left(\left(\mathrm{MS}_{\mathrm{V}[01]} \backslash \mathrm{K}\right) \subseteq \mathbf{I S K}^{\prime}\right.$ and every $h^{\prime} \in \operatorname{hom}(\mathfrak{A}, \mathfrak{D})$, there is some $g^{\prime} \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2}\right)$ such that $\left(\operatorname{img} f^{\prime}\right) \subseteq \Re_{(\mathrm{W})}^{\mathcal{P}}$, where $f^{\prime} \triangleq\left(h^{\prime} \odot g^{\prime}\right)$, in which case, by $(2.7), f^{\prime} \in \operatorname{hom}\left(\mathfrak{A}, \Re_{(\mathbb{W})}(\mathfrak{D})\right)$, while, by (2.1), $\left(\operatorname{ker} f^{\prime}\right) \subseteq\left(\operatorname{ker} h^{\prime}\right)$, and so the locality of quasi-varieties, (2.8), (4.2), (4.13), Corollaries 4.7 and 5.11 「as well as the injectivity of $\left.\epsilon_{4}^{6}\right\rceil$ complete the argument.

This, by Lemma 5.1 and Corollary 5.4, immediately yields:

Corollary 5.13. $\mathrm{NIMR}[\mathrm{B}] \mathrm{QS}(\mathrm{M} \mid \mathrm{K}) \mathrm{SL}$ is the pre-/quasi-variety generated by $\left\{\mathfrak{K}_{5: 1[, 01]},(\mathfrak{M} \mid \mathfrak{K})_{(4 \mid 3)[, 01]} \times \mathfrak{B}_{2[, 01]}\right\}$.

This, in it turn, by Corollaries 4.7, 5.4, 5.6, 5.8, 5.11 and Theorem 5.12, immediately yields:
Corollary 5.14. NIMR $[\mathrm{B}] \mathrm{QSMSL} \cup(\mathrm{MR})[\mathrm{B}](\mathrm{QS})\{\mathrm{W}\} \mathrm{K}(\mathrm{S}) \mathrm{L}$ is the sub-quasi-variety of $\operatorname{MR}[\mathrm{B}]$ QSMSL relatively axiomatized by either $\left\{(5.6),\left(\neg x_{2} \approx x_{2}\right) \rightarrow \mathcal{K}\right\}$ or either version of (5.5) and is the pre-/quasi-variety generated by $\left\{\mathfrak{K}_{5: 1[, 01]}, \mathfrak{K}_{3[, 01]}, \mathfrak{D M}_{4[, 01]}\right.$ $\left.\times \mathfrak{B}_{2[, 01]}\right\}$.

Thus, the apparatus of (weak) regularizations of [bounded] (weakly) KleeneStone lattices involved in proving Theorem 5.12 yields a more transparent and immediate insight/proof into/to [21, Proposition 4.7]. And what is more, it is involving $\neg \neg \boldsymbol{\iota}_{n}$ instead of $\wedge_{+}\left\langle\boldsymbol{\mu}\left(x_{i}\right)\right\rangle_{i \in n}$, like therein, that has proved crucial for proving the \rceil-optional version of Theorem 5.12 \{though the former choice would suffice for proving the non-optional one, in its turn, sufficient within the framework of [B]SMSL; cf. the final inclusion in Corollary 5.11\}, in its turn, yielding axiomatizations of the quasi-equational joins of RQSKSL and all sub-quasi-varieties of DML not subsumed by RKL \subseteq RQSKSL (cf. [18] for latter ones), and so eventual finding the lattice of quasi-varieties of quasi-strong MS lattices, being equally due to the series of "embedability" lemmas presented in Subsection 5.4 (aside from the above basic one 5.3 and that 5.23 to be presented before, in the next subsection, because of its extra meaning related to "nearly De Morgan" framework) as well as "generation/axiomatization" corollaries|theorems presented above|below.
5.3. "Virtually" versus "almost". Almost \{" \langle quasi- \rangle strong " $\mid\}$ "Morgan/Kle-ene\{-Stone\}"|"Stone||Boolean" lattices, satisfying the $\}$-non-optional version of (the ()-optional one of) the Σ_{+}^{-}-quasi-identity (4.13), are called (practically) virtually \{" quasi-> strong "|\}"Morgan/Kleene\{-Stone\}"|"Stone||Boolean" lattices, their quasi-variety being denoted by

$$
\begin{aligned}
& (\mathrm{P}) \mathrm{V}\{\langle\mathrm{Q}\rangle \mathrm{S} \mid\}((((\mathrm{D}\rceil \mathrm{M}) / \mathrm{K})\{\mathrm{S}\}) \mid(\mathrm{S} \| \mathrm{B})) \mathrm{L} \supseteq \\
& \quad(\mathrm{~V}\{\langle\mathrm{Q}\rangle \mathrm{S} \mid\}((((\lceil\mathrm{D}\rceil \mathrm{M}) / \mathrm{K})\{\mathrm{S}\}) \mid(\mathrm{S} \| \mathrm{B})) \mathrm{L} \supseteq) \\
& \\
& \quad\{\langle\mathrm{Q}\rangle \mathrm{S} \mid\}((((\mathrm{D}\rceil \mathrm{M}) / \mathrm{K})\{\mathrm{S}\}) \mid(\mathrm{S} \| \mathrm{B})) \mathrm{L} .
\end{aligned}
$$

Note that neither version of

$$
\begin{equation*}
\left\{\neg \neg x_{0} \approx \neg x_{0}\left(,\left(x_{0} \vee \neg \neg x_{0}\right) \approx\left(\neg \neg x_{0} \vee \neg x_{0}\right)\right)\right\} \rightarrow\left(x_{0} \approx \neg x_{0}\right) \tag{5.7}
\end{equation*}
$$

is true in $\mathfrak{K}_{2(: 0)[, 01]}$ under $\left[x_{0} / 0\right]$. On the other hand, by (4.2), we immediately have:

$$
\begin{equation*}
([\mathrm{B}] \mathrm{MSL} \cap \operatorname{Mod}(((5.7))))=([\mathrm{B}] \mathrm{MSL} \cap \operatorname{Mod}((5.7))) . \tag{5.8}
\end{equation*}
$$

Likewise, by (4.1), we have:

$$
\begin{equation*}
([\mathrm{B}] \mathrm{TNIMSL} \cap \operatorname{Mod}((5.7)))=[\mathrm{B}] \mathrm{OMSL} . \tag{5.9}
\end{equation*}
$$

Lemma 5.15. Let $\mathrm{K} \subseteq[\mathrm{B}] \mathrm{MSL}$ and $\mathrm{S} \mid \mathrm{R}$ its relative sub-quasi-variety relatively axiomatized by (the ()-optional version of)"the \{\}-non-optional version of"| ((4.13)| (5.7)). Then, $\mathrm{R}=(\mathrm{NIK} \cup \mathrm{S})$.

Proof. First, the fact that (the optional version of) (5.7) is equal to (a logical consequence of) (5.1) $\left[x_{i} / \neg^{1-i} x_{0}\right]_{i \in 2}$ yields the inclusion NIK \subseteq R. Likewise, consider any $\mathfrak{A} \in S$ and any $a \in \mathfrak{S}_{\neg}^{\mathfrak{A}}$ (such that $\left(a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)=\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)$), in which case $\neg^{\mathfrak{A}} a \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a$, and so both $\neg^{\mathfrak{A}} a \leqslant^{\mathfrak{A}} a$ and, by (4.2), $a \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} a$. Then, $\neg^{\mathfrak{A}} a=a$, in which case $\mathfrak{A} \in \mathrm{R}$, and so $\mathrm{S} \subseteq \mathrm{R}$. Conversely, consider any $\mathfrak{B} \in \mathbb{R}$ and any $b \in B$ such that $\neg^{\mathfrak{B}} b \leqslant^{\mathfrak{B}} \neg^{\mathfrak{B}} \neg^{\mathfrak{B}} b$. Take any $c \in \Im^{\mathfrak{B}} \neq \varnothing$, in which case, by (4.1), (4.5) and (4.6) (as well as (4.2)), $(d \| e) \triangleq\left(\left(c \vee^{\mathfrak{B}} \neg^{\mathfrak{B}} b\right) \wedge^{\mathfrak{B}}\left(\neg^{0} \|^{2}\right)^{\mathfrak{B}} b\right)=$
$\left(d \| \neg^{\mathfrak{B}}(d / e)\left(=\left(d \|\left(\left(\neg^{0 / 2}\right)^{\mathfrak{B}} d \vee^{\mathfrak{B}} \neg^{\mathfrak{B}} d\right)\right)\right.\right.$, and so $\neg^{\mathfrak{B}} b \leqslant{ }^{\mathfrak{B}} e=d \leqslant^{\mathfrak{B}} b$. Thus, $\mathfrak{B} \in \mathrm{S}$, as required.

Given any $\mathfrak{A} \in([\mathrm{QS}] \mathrm{MSL}[\{\backslash \mathrm{OMSL}\}])$ with $\{$ zero a and $\}$ any ideal I of $\mathfrak{A}\left\lceil\Sigma_{+}\right.$ [disjoint with $\left.\mathcal{F}_{(\mathrm{W})}^{\mathfrak{A}}\right],(A \uplus I) \triangleq((\{1\} \times A) \cup(\{0\} \times I))$ forms a subalgebra of $\mathfrak{K}_{2} \times \mathfrak{A}$, in which case [by Corollary 4.7] $\mathfrak{A} \preceq(\mathfrak{A} \uplus I) \triangleq\left(\left(\mathfrak{K}_{2} \times \mathfrak{A}\right) \upharpoonright(A \uplus I)\right)$ is a [virtually quasi-strong] MS-lattice, because, by (2.1) and (2.7), $(A \times\{1\}) \times \Delta_{A}$ is an embedding of \mathfrak{A} into $\mathfrak{A} \uplus I$, as $1 \in \mathfrak{S}^{\mathfrak{K}_{2}}$ [while (4.13) is true in \mathfrak{A}] \{and so is $(\mathfrak{A} \oplus 1) \triangleq(\mathfrak{A} \uplus\{a\}) \in \mathbf{S}(\mathfrak{A} \uplus I)$, since $I \ni a\left[\notin \mathcal{F}^{\mathfrak{A}}\right.$, for, otherwise, for all $b \in A$, by (4.2), (4.3) and the inequality $a \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} b$, we would have $a \leqslant^{\mathfrak{A}} b \leqslant^{\mathfrak{A}}$ $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} a \leqslant^{\mathfrak{A}} a$ implying $b=a$, contrary to the assumption $\left.\left.|A| \neq 1\right]\right\}$, whereas $\mathfrak{K}_{2} \in \mathbf{H}(\mathfrak{A} \uplus I)$, for $\pi_{0}[A \uplus I]=2$, as $I \neq \varnothing$. Then, \mathfrak{A} is said to be normal, if $\left(A \backslash \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}\right)\left[=\left(A \backslash \mathcal{F}^{\mathfrak{A}}\right)\right]$ is an ideal of the lattice $\mathfrak{A} \upharpoonright \Sigma_{+}$[\{with zero $\left.\}\right]$, in which case $[\{(\mathfrak{A} \oplus 1) \in \mathbf{S}\}](\mathfrak{A} \ominus\lrcorner) \triangleq\left(\mathfrak{A} \uplus\left(A \backslash \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}\right)\right) \in[\mathrm{VQS}]$ MSL, the class of all normal members of any $\mathrm{K} \subseteq$ MSL being denoted by $\mathcal{K} \mathrm{K}$, and so this is a relatively abstract subclass of K including $\mathrm{K} \cap\left(\left(\mathrm{MS} \backslash\left\{\mathfrak{M S}_{2}\right\}\right) \cup \Re_{\mathrm{W}}[\mathrm{WKSL}]\right)$, because, for any $\mathfrak{B} \in\left(\mathrm{MS} \backslash\left\{\mathfrak{M S}_{2}\right\}\right), B \backslash \mathcal{F}_{\mathrm{W}}^{\mathfrak{B}}$ is the singleton constituted by the zero of the finite lattice $\mathfrak{B} \upharpoonright \Sigma_{+}$that implies $\left.(\mathfrak{B} \ominus\lrcorner\right)=(\mathfrak{B} \oplus 1)$, while, for any $\mathfrak{C} \in$ WKSL, $\left(\Re_{\mathrm{W}}^{\mathfrak{C}} \backslash \mathcal{F}_{\mathrm{W}}^{\Re_{\mathrm{W}}(\mathfrak{C})}\right)=\left(\mathcal{J}_{\mathrm{W}}^{\mathfrak{C}} \times 1\right)$ that, by (2.1) and (2.7), implies:
(5.10) $\left.\left.\left(\left(\pi_{1} \otimes\left(\pi_{0} \times\left(\pi_{1} \circ \pi_{1}\right)\right)\right) \upharpoonright\left(\Re_{\mathrm{W}}(C) \ominus\right\lrcorner\right)\right) \in \operatorname{hom}_{\mathrm{I}}\left(\Re_{\mathrm{W}}(\mathfrak{C}) \ominus\right\lrcorner, \Re_{\mathrm{W}}(\mathfrak{C}) \times\left(\mathfrak{B}_{2} \oplus 1\right)\right)$.

And what is more, by Corollary 4.7, (5.9) and Lemma 5.15, we immediately have:
Corollary 5.16. $\left(\mathfrak{B}_{2} \oplus 1\right) \in(\mathrm{VBL} \backslash \mathrm{BL})$, in which case VBL, BL, ABL, TNIMSL and OMSL form a pentagon of the lattice of quasi-varieties of almost Boolean lattices, and so this is not distributive.

Likewise, by Corollary 4.7, $\mathfrak{S}_{3} \preceq \mathfrak{M S}_{5: 1} \triangleq\left(\left(\mathfrak{K}_{2} \times \mathfrak{S}_{3}\right) \upharpoonright((2 \times 3) \backslash\{\langle 0,2\rangle\})\right) \in$ (PVSL $\backslash \mathrm{VSL}$), for $\mathfrak{K}_{2} \in \mathrm{ASL} \ni \mathfrak{S}_{3} \preceq\left(\mathfrak{S}_{3} \oplus 1\right) \in \mathbf{S M S}_{5: 1}$, while (4.13) is true in $\mathfrak{S}_{3} \oplus 1$, whereas $\mathfrak{M S}_{5: 1} \not \vDash((4.9))\left[x_{0} /\langle 0,1\rangle\right]$ as well as $\left(M S_{5: 1} \backslash\left(S_{3} \oplus 1\right)\right)=\{\langle 0,1\rangle\}$, but $\mathfrak{M S}_{5: 1} \not \vDash(4.13)\left[x_{0} /\langle 0,1\rangle\right]$.

Theorem 5.17. Let $\mathrm{K} \subseteq\left(\aleph \mathrm{MSL}\left(\cap \mathbf{I S}\left((\mathrm{MS} \cap \mathrm{QSMSL}) \otimes\left\{\mathfrak{B}_{2}^{j} \mid j \in 2\right\}\right)\right)\right.$), (P)VP the relative sub-quasi-variety of $\mathrm{P} \triangleq \mathbf{P V}\left(\mathrm{K} \cup\left\{\mathfrak{K}_{2}\right\}\right)$, relatively axiomatized by the $\}$ -non-optional version of (the ()-optional one of) the Σ_{+}^{-}-quasi-identity (4.13), and $\left.\mathrm{K}^{\prime} \triangleq\left(\left(\left(\mathrm{K}\left(\backslash\left\{\mathfrak{S}_{3}\right\}\right)\right) \ominus\right\lrcorner\right)\left(\cup\left\{\mathfrak{M S}_{5: 1} \mid \mathfrak{S}_{3} \preceq \mathrm{~K}\right\}\right)\right)$. Suppose both K and all its members are finite [while $\mathrm{P} \nsubseteq$ TNIMSL]. \lfloor In particular, $\mathrm{K}=\mathrm{MS}$, where $\mathrm{V} \triangleq\{\langle\mathrm{Q}\rangle \mathrm{S} \mid\}((\mathrm{M}$ $/ \mathrm{K})\{\mathrm{S}\}) \mid(\mathrm{S} \| \mathrm{B})) \mathrm{L}$, in which case $\mathrm{K}^{\prime}=\left(\left(\left(\mathrm{K}\left(\backslash\left\{\mathfrak{S}_{3}\right\}\right)\right) \oplus 1\right)\left(\cup\left\{\mathfrak{M} \mathfrak{S}_{5: 1} \mid \mathfrak{S}_{3} \preceq \mathrm{~K}\right\}\right)\right)$, while $\mathrm{P}=\mathrm{AV}$, and so $(\mathrm{P}) \mathrm{VP}=(\mathrm{P}) \mathrm{VV}]$. Then, $(\mathrm{P}) \mathrm{VP}[\mathrm{UNIP}]$ is the pre- $/ /$ quasivariety generated by $\mathrm{K}^{\prime}\left[\cup\left\{\mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\}\right]$.

Proof. Consider any non-one-element finitely-generated $\mathfrak{A} \in(\mathrm{P}) \mathrm{VP}$ and any $g \in$ $\operatorname{hom}\left(\mathfrak{A}, \mathfrak{K}_{2}\right)$, in which case \mathfrak{A} is finite, for $M S L \ni \mathfrak{A}$, being finitely-generated, in view of Theorem 4.4, is locally-finite, and so is $\operatorname{Co}(\mathfrak{A}) \supseteq \mathfrak{C} \triangleq \operatorname{ker}[\operatorname{hom}(\mathfrak{A}, \mathrm{K})]$, while, by (2.8), (5.9), Corollary 4.7 and Lemma 5.15, $\mathcal{C} \neq \varnothing$, for:

$$
\begin{equation*}
\Delta_{A}=\left(A^{2} \cap\left(\bigcap\left(\operatorname{ker}\left[\operatorname{hom}\left(\mathfrak{A}, \mathfrak{K}_{2}\right)\right] \cup \mathcal{C}\right)\right),\right. \tag{5.11}
\end{equation*}
$$

and so there are some bijections \bar{a} from $\mathbb{k} \triangleq|A| \in(\omega \backslash 1)$ onto A and $\bar{\theta}$ from $n \triangleq|\mathcal{C}| \in(\omega \backslash 1)$ onto \mathcal{C} as well as both some $\overline{\mathfrak{B}} \in \mathrm{K}^{n}$ and some $\bar{h} \in \prod_{i \in n} \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{i}\right)$ such that $\bar{\theta}=(\bar{h} \circ$ ker $)$. Let us prove, by contradiction, that $\mathcal{A} \triangleq\left(\prod_{j \in n}\left(g^{-1}[1] \cap\right.\right.$ $\left.\left.h_{j}^{-1}\left[\mathcal{F}_{\mathrm{W}}^{\mathfrak{B}_{j}}\left(\cap\left\{c \in B_{j} \mid\left(c \vee^{\mathfrak{B}_{j}} \neg^{\mathfrak{B}_{j}} c\right)=\left(\neg^{\mathfrak{B}_{j}} \neg^{\mathfrak{B}_{j}} c \vee^{\mathfrak{B}_{j}} \neg^{\mathfrak{B}_{j}} c\right), h_{j}[\mathfrak{A}] \in \mathbf{I} \mathfrak{S}_{3}\right\}\right)\right]\right)\right)=\varnothing$. For suppose $\mathcal{A} \neq \varnothing$, in which case, by its finiteness, ensuing from that of A and the inclusion $\mathcal{A} \subseteq A^{n}$, there is a bijection $\overline{\boldsymbol{a}}$ from $m \triangleq|\mathcal{A}| \in(\omega \backslash 1)$ onto \mathcal{A}, and so we have $\bar{b} \triangleq\left\langle\vee_{+}^{\mathfrak{A}} \boldsymbol{a}_{k}\right\rangle_{k \in m} \in A^{m}$ such that $(\bar{b} \circ g)=(m \times 1)$. Then, by induction on any
$l \in((m+1) \backslash 1) \ni m$, we get $g\left(\iota_{x_{0}, l}^{\mathfrak{A}}(\bar{b} \upharpoonright l)\right)=0$, in which case $d \triangleq \boldsymbol{\iota}_{x_{0}, m}^{\mathfrak{A}}(\bar{b}) \in g^{-1}[1]$, and so $\neg^{\mathfrak{A}} d \not 丈^{\mathfrak{A}} d$, for $g(d)=0 \ngtr 1=g\left(\neg^{\mathfrak{A}} d\right)$. On the other hand, for all $\imath \in n$ and $\jmath \in m, \pi_{\imath}\left(\boldsymbol{a}_{\jmath}\right) \leqslant^{\mathfrak{A}} b_{\jmath}$, in which case $\mathcal{F}_{\mathrm{W}}^{\mathfrak{B}_{\imath}} \ni h_{\imath}\left(\pi_{\imath}\left(\boldsymbol{a}_{\jmath}\right)\right) \leqslant^{\mathfrak{B}_{\imath}} h_{\imath}\left(b_{\jmath}\right)$, and so, applying (4.3) twice, we get $h_{\imath}\left(b_{\jmath}\right) \in \mathcal{F}_{\mathrm{W}}^{\mathcal{B}_{2}}$. Hence, by the truth of (4.14) in \mathfrak{K}_{2} and (5.11), $b_{\jmath} \in \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}$, in which case, by Claim $5.2, d \in \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}\left(\ni d^{\prime} \triangleq \boldsymbol{\iota}_{\mathbb{k}}(\bar{a})\right)$, and so $\mathfrak{A} \not \vDash(4.13)\left[x_{0} / d\right]$ (as well as, by (5.3), $g^{\prime} \triangleq \boldsymbol{\pi}^{\mathfrak{A}}\left(d^{\prime}, d\right) \in \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}$. Consider any $\imath \in n$ and the following complementary cases, putting $\mathfrak{C} \triangleq h_{\imath}[\mathfrak{A}]$:

- $\mathfrak{C} \preceq \mathfrak{S}_{3}$,
in which case there is an injective $e \in \operatorname{hom}\left(h_{\imath}[\mathfrak{A}], \mathfrak{S}_{3}\right)$, while $f \triangleq\left(h_{\imath} \circ e\right) \in$ $\operatorname{hom}\left(\mathfrak{A}, \mathfrak{S}_{3}\right)$, whereas, by induction on any $\ell \in((\mathbb{k}+1) \backslash 1) \ni \mathbb{k}$, we have $f\left(\boldsymbol{\iota}_{\ell}^{\mathfrak{R}}(\bar{a} \upharpoonright \ell)=2\right.$, and so, in particular, when $\ell=\mathbb{k}$, we get $f\left(d^{\prime}\right)=2$. Consider the following complementary subcases:
$-(\operatorname{img} e)=3$,
in which case, for each $\jmath \in m$, by the injectivity of e, we have $(3 \backslash 1) \ni$ $f\left(\pi_{\imath}\left(\boldsymbol{a}_{\jmath}\right)\right) \neq 1$, and so, since $\pi_{\imath}\left(\boldsymbol{a}_{\jmath}\right) \leqslant^{\mathfrak{h}} b_{\jmath}$, we get $2=f\left(\pi_{\imath}\left(\boldsymbol{a}_{\jmath}\right)\right) \leqslant$ $f\left(b_{j}\right) \leqslant 2$. Then, by induction on any $l \in((m+1) \backslash 1) \ni m$, we get $f\left(\iota_{x_{0}, l}^{2 l}(\bar{b} \upharpoonright l)=2\right.$, for $(\bar{b} \circ f)=(m \times\{2\})$, in which case $f(d)=2$, and so $f\left(g^{\prime}\right)=2$. Therefore, $f\left(g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=f\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$.
$-(\operatorname{img} e) \neq 3$,
in which case $1 \notin(\operatorname{img} e)=(\operatorname{img} f) \ni f\left(g^{\prime}\right)$, for $\left(\neg^{122}\right)^{\mathfrak{S}_{3}} 1=(0<2)$, and so $f\left(g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=f\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$.
Thus, in any case, $f\left(g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=f\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$, and so, by the injectivity of $e, h_{\imath}\left(g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=h_{\imath}\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$.
- $\mathfrak{C} \npreceq \mathfrak{S}_{3}$,
in which case there are some $\mathfrak{D} \in \mathbf{S M S}_{6}$ with $a^{\prime} \triangleq\langle 0,1,0\rangle \notin D$ and some $j \in 2$ such that $\mathfrak{C} \preceq\left(\mathfrak{D} \times \mathfrak{B}_{2}^{j}\right)$, and so $\mathfrak{E} \triangleq\left(\pi_{0} \upharpoonright C\right)[\mathfrak{C}]=f^{\prime}[\mathfrak{A}] \npreceq \mathfrak{S}_{3}$, where $f^{\prime} \triangleq\left(h_{\imath} \circ \pi_{0}\right) \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{M S}_{6}\right)$, for, otherwise, as $\left(\mathfrak{D} \times \mathfrak{B}_{2}^{0}\right) \in \mathbf{I} \mathfrak{D}$, while $\mathfrak{B}_{2} \preceq \mathfrak{S}_{3}$, whereas $\left(\pi_{021} \upharpoonright C\right) \in \operatorname{hom}\left(\mathfrak{C}, \mathfrak{D} \backslash \mathfrak{B}_{2}^{j}\right)$, by (2.1) and (2.7), we would have $\mathfrak{C} \in \mathbf{S}\left(\mathfrak{E} \times \mathfrak{B}_{2}^{j}\right) \preceq \mathfrak{S}_{3}$. Then, $\left(\operatorname{img} f^{\prime}\right)=E \nsubseteq\left(\operatorname{img} \epsilon_{3}^{5}\right)$, for, otherwise, $\left(\epsilon_{3}^{5}\right)^{-1} \upharpoonright E$ would be an embedding of \mathfrak{E} into \mathfrak{S}_{3}, in which case, by the right alternative of Claim 5.2, $f^{\prime}\left(d^{\prime}\right) \in \mathfrak{S}_{\neg}^{\mathfrak{M} \mathfrak{S}_{6}}$, and so, since $f^{\prime}(d) \in \mathcal{F}_{\mathrm{W}}^{\mathfrak{M} \mathfrak{S}_{6}}$, for $d \in \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}$, by (5.3), $f^{\prime}\left(g^{\prime}\right) \in\left(\Im_{\mathcal{S}^{\mathfrak{M}}}{ }^{\prime} \backslash\left\{a^{\prime}\right\}\right)=\Im^{\mathfrak{M} \mathfrak{S}_{6}}$, for $a^{\prime} \notin D \supseteq E=$ $\left(\operatorname{img} f^{\prime}\right) \ni f^{\prime}\left(g^{\prime}\right)$. In that case, $f^{\prime}\left(g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=f^{\prime}\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$, and so, by the truth of $((4.9))$ in $\mathfrak{B}_{2}^{j}, h_{\imath}\left(g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=h_{\imath}\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$.

Thus, anyway, $h_{\imath}\left(g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=h_{\imath}\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$, in which case, by the truth of $((4.9))$ in \mathfrak{K}_{2} and (5.11), ($\left.g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)=\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime} \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} g^{\prime}\right)$, and so $\mathfrak{A} \not \vDash$ $((4.13))\left[x_{0} / g^{\prime}\right]$, for $\neg^{\mathfrak{A}} g^{\prime} \nless \mathfrak{A}^{\mathfrak{A}} g^{\prime}$, because $g\left(g^{\prime}\right)=0 \ngtr 1=g\left(\neg^{\mathfrak{A}} g^{\prime}\right)$, as $g(d)=0$.) This contradiction shows that there is some $i \in n$ such that (providing there is some $\left.e^{\prime \prime} \in \operatorname{hom}_{\mathrm{I}}^{\mathrm{S}}\left(h_{i}[\mathfrak{A}], \mathfrak{S}_{3}\right)\right)$, for all $b^{\prime} \in A$, either $g\left(b^{\prime}\right)=0$ or $h_{i}\left(b^{\prime}\right) \notin \mathcal{F}_{\mathcal{F}}^{\mathfrak{B}_{i}}$ (i.e., $e^{\prime \prime}\left(h_{i}\left(b^{\prime}\right)=0\right.$, or $\left(h_{i}\left(b^{\prime}\right) \vee \mathfrak{B}_{i} \neg^{\mathfrak{B}_{i}} h_{i}\left(b^{\prime}\right) \neq\left(\neg^{\mathfrak{B}_{i}} h_{i}\left(b^{\prime}\right) \vee^{\mathfrak{B}_{i}} \neg^{\mathfrak{B}_{i}} h_{i}\left(b^{\prime}\right)\right)\right.$, i. e. $e^{\prime \prime}\left(h_{i}\left(b^{\prime}\right)=\right.$ 1), while, by $(2.7), h^{\prime} \triangleq\left(g \odot\left(h_{i}\left(\circ e^{\prime \prime}\right)\right) \in \operatorname{hom}\left(\mathfrak{A},\left\{\mathfrak{K}_{2}\right\} \otimes\left(\left(\left\{\mathfrak{C}_{i}\right\}(\cap \varnothing)\right)\left(\cup\left\{\mathfrak{S}_{3}\right\}\right)\right)\right.\right.$, in which case $\left.\left(\operatorname{img} h^{\prime}\right) \subseteq\left(\left(\left(C_{i} \ominus\right\lrcorner\right)(\cap \varnothing)\right)\left(\cup M S_{5: 1}\right)\right)$ (whereas $\left.\mathfrak{S}_{3} \preceq \mathrm{~K}\right)$, and so $h^{\prime} \in \operatorname{hom}\left(\mathfrak{A}, \mathrm{K}^{\prime}\left(\cup\left(\mathfrak{S}_{3} \oplus 1\right)\right)\right)$, as well as, by $(2.1),\left(\operatorname{ker} h^{\prime}\right) \subseteq(\operatorname{ker} g)$. In this way, (2.8), Corollary 4.7, the inclusion(s) $\mathrm{K} \subseteq \mathbf{I S}\left(\mathrm{K}^{\prime}\right)$ (and $\left\{\mathfrak{S}_{3} \oplus 1\right\} \subseteq \mathbf{S}\left\{\mathfrak{M} \mathfrak{S}_{5: 1}\right\}$), the locality of quasi-varieties and the quasi-equationality of finitely-generated pre-varieties [as well as Lemmas 5.3, 5.7, 5.15 and Corollary 5.4] complete the argument.
5.3.1. Enhanced generation. Recall the following immediate observation:

Lemma 5.18. Let $\mathfrak{A} \in \mathrm{A}_{\wedge}$ be a semi-lattice with bound $b \in A$ (i.e., $b=\left(a \wedge^{\mathfrak{A}} b\right)$, for all $a \in A$) and $h: A \rightarrow(\operatorname{img} h)$. Suppose $(\operatorname{ker} h) \in \operatorname{Co}(\mathfrak{A})$. Then, $h[\mathfrak{A}]$ is a semi-lattice with bound $h(b)$.

Given any $(\mathfrak{A} \mid \mathfrak{B}) \in \operatorname{MSL}$ with zero $a \mid b$ of $(\mathfrak{A} \mid \mathfrak{B}) \mid \Sigma_{+}$and any $h \in \operatorname{hom}_{(\mathrm{I})}^{[\mathrm{S}]}(\mathfrak{A}, \mathfrak{B})$ such that [resp., in which case, by Lemma 5.18] $h(a)=b$, [and so] we have:

$$
\begin{equation*}
(h \oplus 1) \triangleq\left(\left(\pi_{0} \upharpoonright(A \oplus 1)\right) \odot\left(\left(\pi_{1} \circ h\right) \upharpoonright(A \oplus 1)\right)\right) \in \operatorname{hom}_{(\mathrm{I})}^{[\mathrm{S}]}(\mathfrak{A} \oplus 1, \mathfrak{B} \oplus 1) . \tag{5.12}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\hbar_{1} \triangleq\{\langle i, \min (2, i)\rangle \mid i \in 4\} \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{K}_{(4: 1[, 01]}, \mathfrak{K}_{3[, 01]}\right), \tag{5.13}
\end{equation*}
$$

in which case, by $(2.1),(2.7)$ and (5.12):

$$
\begin{equation*}
\left(\left(\hbar_{1} \oplus 1\right) \odot\left(\pi_{1} \upharpoonright(4 \oplus 1)\right)\right) \in \operatorname{hom}_{I}\left(\mathfrak{K}_{4: 1} \oplus 1,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{K}_{4: 1}\right), \tag{5.14}
\end{equation*}
$$

and so, by Lemma 4.6, Corollary 4.7, (5.12) and Theorem 5.17, we immediately get the following quite useful enhancement of the latter:

Corollary 5.19. ([NIA $\{\mathrm{QS}\}(\mathrm{M} \mid \mathrm{K})\{\mathrm{S}\} \mathrm{L} \cup]\langle\mathrm{P}\rangle \mathrm{V}\{\mathrm{QS}\}(\mathrm{M} \mid \mathrm{K})\{\mathrm{S}\} \mathrm{L})$ is the pre-/quasivariety generated by $\left\{(\mathfrak{M} \mid \mathfrak{K})_{4 \mid 3} \oplus 1\left\{, \mathfrak{K}_{4: 1}\left\langle, \mathfrak{M S}_{5: 1}\right\rangle\right\}\left[, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right]\right\}$.

Likewise, by (2.1), (2.7), (4.21) and (5.12), we have:

$$
\begin{equation*}
\left(\left(\chi_{3}^{3 \backslash 1} \oplus 1\right) \odot\left(\pi_{1} \upharpoonright(3 \oplus 1)\right)\right) \in \operatorname{hom}_{\mathrm{I}}\left(\mathfrak{S}_{3} \oplus 1,\left(\mathfrak{B}_{2} \oplus 1\right) \times \mathfrak{S}_{3}\right) \tag{5.15}
\end{equation*}
$$

and so, by Lemma 4.6, Corollary 4.7, (5.12) and Theorem 5.17, we also get one more equally useful enhancement of the latter:
Corollary 5.20. $([\operatorname{NIA}(\mathrm{S} \mid \mathrm{B}) \mathrm{L} \cup]\langle\mathrm{P}\rangle \mathrm{V}(\mathrm{S} \mid \mathrm{B}) \mathrm{L})=(\mathbf{P} / \mathbf{Q}) \mathbf{V}\left(\left(\left\{\langle\mathfrak{M}\rangle \mathfrak{S}_{3\langle+2: 1\rangle}\right\} \mid \varnothing\right) \cup\left\{\left(\mathfrak{B}_{2}\right.\right.\right.$ $\left.\left.\oplus 1)^{1\langle-(1 \mid 0)\rangle}\left[, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right]\right\}\right)$.

It is Corollary $5.19 \mid 5.20$ that releases us from proving "embedability lemma" for $\left((\mathfrak{K} \mid \mathfrak{S})_{(4: 1) \mid 3} \oplus 1\right)\left[\times \mathfrak{B}_{2} \mid\right]$ in finding the lattice of quasi-varieties of almost quasi-strong Kleene-Stone lattices.
5.3.2. Regularity versus virtuality. First, by (4.2), we clearly have:
$(\operatorname{WRMSL} \cap \operatorname{Mod}((4.2)))=(\operatorname{RMSL} \cap \operatorname{Mod}((4.2)))$.
However, this can not be extended to neither ((4.2)) nor Morgan regularity, even within the framework of AQSKSL, because of the instances of $\left(\mathfrak{M S}_{5: 1} \mid\left(\mathfrak{K}_{3} \oplus 1\right)\right) \in$ $\left(\left(\mathbf{S}\left(\mathfrak{K}_{2} \times(\mathfrak{S} \mid \mathfrak{K})_{3}\right) \backslash \mid \cap \operatorname{Mod}((4.2))\right) \cap \operatorname{Mod}(((4.2)))\right)$, being weakly Morgan regular almost quasi-strong Kleene-Stone lattices, for both \mathfrak{K}_{2} and $(\mathfrak{S} \mid \mathfrak{K})_{3}$ are so, but not satisfying $\mathcal{R}_{[\mathrm{M}]}$ under $\left[x_{i} /\langle 1-\min (i, 1), 1-(0 \mid \min (i, 1))\rangle\right]_{i \in(2[+1])}$. Nevertheless,

$$
\begin{equation*}
\Re\left(\mathfrak{K}_{2}\right)=\left(\mathfrak{B}_{2} \oplus 1\right), \tag{5.17}
\end{equation*}
$$

in which case, by Theorem 5.12 , we get:

$$
\begin{equation*}
[\mathrm{M}] \mathrm{RAQSK}[\mathrm{M}] \mathrm{SL} \subseteq(\mathrm{P}) \mathrm{VQSK}[\mathrm{M}] \mathrm{SL}, \tag{5.18}
\end{equation*}
$$

while, by Lemmas $5.11,5.15$ and (5.9) (as well as (5.8)), we have:

$$
\begin{equation*}
\mathrm{WR}(\mathrm{P}) \mathrm{VQSMSL} \subseteq \mathrm{NIMSL} \tag{5.19}
\end{equation*}
$$

whereas, by (5.12), we also have:

$$
\begin{equation*}
\left(\epsilon_{2}^{3} \oplus 1\right) \in \operatorname{hom}_{\mathrm{I}}\left(\mathfrak{B}_{2} \oplus 1, \mathfrak{S} \mid \mathfrak{K}_{3} \oplus 1\right) \subseteq\left(\operatorname{hom}_{\mathrm{I}}\left(\mathfrak{B}_{2} \oplus 1, \mathfrak{M}_{5: 1} \mid\left(\mathfrak{K}_{3} \oplus 1\right)\right),\right. \tag{5.20}
\end{equation*}
$$

in which case, by (2.1) and (2.7), we get:

$$
\begin{equation*}
\left(\left(\epsilon_{2}^{3} \oplus 1\right) \odot\left(\pi_{1} \upharpoonright\left(B_{2} \oplus 1\right)\right) \in \operatorname{hom}_{\mathrm{I}}\left(\mathfrak{B}_{2} \oplus 1,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right),\right. \tag{5.21}
\end{equation*}
$$

and so, as $\{\langle i, i+(2 \cdot \min (i, 1))\rangle \mid i \in 3\}$ is an embedding of \mathfrak{S}_{3} into $\mathrm{K}_{5: 1}$, by (5.10), (5.15), Theorems 5.12, 5.17, Corollaries 4.7, 5.4 and Lemma 5.3, eventually get:

Corollary 5.21. W $[\langle\mathrm{M} \mid\rangle] \mathrm{R}(\mathrm{P}) \mathrm{V}(([\{\mathrm{Q}\} \mathrm{S}](\mathrm{K}[\langle\| \mathrm{M}\rangle])[\mathrm{S}]) \mid(\mathrm{S} / \mathrm{B})) \mathrm{L}=(\mathbf{P} \imath \mathbf{Q}) \mathbf{V}\left(\left\{\mathfrak{B}_{2} \oplus\right.\right.$ $\left.1\} \cup\left(\left(\varnothing\left[\cup\left\{(\mathfrak{M}) \mathfrak{S}_{3(+2: 1)}\right\}\right]\right) \mid\left(\left\{(\mathfrak{M}) \mathfrak{S}_{3(+2: 1)}\right\} / \varnothing\right)\right) \cup\left(\left\{\mathfrak{K}_{4[\{+1: 1\}]}^{[\langle 0\{+1\}\rangle]}\left[\left\langle,(\mathfrak{K} \| \mathfrak{M})_{3 \| 4} \oplus 1\right\rangle\right]\right\} \mid \varnothing\right)\right)$. In particular, $\{\mathrm{NI}\} \mathrm{WR}[\mathrm{M}](\mathrm{P}) \mathrm{V}\langle\mathrm{Q}\rangle \mathrm{SKSL}=(\mathbf{P} \mid \mathbf{Q}) \mathbf{V}\left(\left(\left\{(\mathfrak{M}) \mathfrak{S}_{3(+2: 1)}\right\}\left\langle\cap\left\{\mathfrak{M} \mathfrak{S}_{5: 1}\right\}\right\rangle\right)\langle\cup\right.$ $\left.\left.\left.\left\{\mathfrak{K}_{5: 1}\right\}\right\rangle \cup\left(\left(\left\{\mathfrak{K}_{(4[-1]}\right\}\left\langle\cap\left\{\mathfrak{K}_{3}\right\}\right\rangle\right)[\oplus 1]\right)\left[\left\{\otimes\left\{\mathfrak{B}_{2}\right\}\right\}\right]\right) \cup\left(\left\{\mathfrak{B}_{2} \oplus 1\right\}\cap \varnothing\right)\right)$.
5.3.2.1. Quasi-strong regularity. MS lattices satisfying the Σ_{+}^{-}-quasi-identity $\mathcal{R}_{[\mathrm{N}]}^{\mathrm{QS}}$ $\triangleq\left(\left(\pi_{0}(\mathcal{R})\left[\cup\left\{((4.9))\left[x_{0} /\left(x_{0} \wedge x_{1}\right)\right]\right\}\right]\right) \rightarrow\left(\left(\neg x_{1} \wedge \neg \neg x_{1}\right) \lesssim x_{1}\right)\right)$ are called [nearly] quasi-strongly regular, the class of such members of any $\mathrm{K} \subseteq$ MSL being denoted by [N$]$ QSRK[\supseteq QSRK], in which case:
NQSRNDML = QSRNDML,
and so this term is justified by the following analogue of Corollary 5.11, immediately ensuing from the fact that, due to the idempotence identity for \vee, we have:

$$
\begin{equation*}
\left(\operatorname{MSL} \cap \operatorname{Mod}\left(\mathcal{R}_{\mathrm{M}}\left[x_{2} / x_{1}\right]\right)\right)=\left(\operatorname{MSL} \cap \operatorname{Mod}\left(\mathcal{R}^{\mathrm{QS}}\right)\right) \tag{5.23}
\end{equation*}
$$

[and the truth of the Σ_{+}^{-}-quasi-identity:

$$
\begin{equation*}
\left\{\neg x_{1} \approx x_{1}, x_{0} \lesssim x_{1}\right\} \rightarrow((4.9)) \tag{5.24}
\end{equation*}
$$

in MS lattices, in its turn, being due to that of (4.2) and (4.3)]:
Lemma 5.22. $(M R M S L \cup Q S M S L) \subseteq[N] Q S R M S L \subseteq(N I M S L \cup Q S M S L)$.
Likewise, by (4.1), (4.2), (4.5), (4.6) and (4.18), we immediately have:
Lemma 5.23. Let $\mathfrak{A} \in \mathrm{MSL}, a \in A, c \triangleq\left(a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)$ and $d \triangleq\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)$. (Suppose $c \neq d$.) Then, $(c \neq) b \triangleq \neg^{\mathfrak{A}} c=\neg^{\mathfrak{A}} d \leqslant^{\mathfrak{A}} c \leqslant^{\mathfrak{A}} d=\neg^{\mathfrak{A}} b(\neq c)$ (in which case $\{\langle 0, b\rangle,\langle 1, c\rangle,\langle 2, d\rangle\}$ is an embedding of \mathfrak{S}_{3} into $\left.\mathfrak{A}\right)$, and so \mathfrak{S}_{3} is embeddable into any member of $(\mathrm{MSL} \backslash \mathrm{NDML}) \supseteq([\mathrm{A}] \mathrm{QSMSL} \backslash[\mathrm{A}] \mathrm{DML})$.

Theorem 5.24. Let $\mathrm{K} \subseteq(\aleph)$ QSMSL and $\mathrm{P}=\mathbf{P V}\left(\mathrm{K} \cup\left\{\mathfrak{K}_{2}\right\}\right)$. Suppose both K and all members of it are finite, while $\mathfrak{S}_{3} \preceq|\npreceq \mathrm{~K}|$ "whereas $\mathrm{K} \nsubseteq \mathrm{OMSL}$ ". Then, $\mathrm{Q} \triangleq[\mathrm{N}] \mathrm{QSRP}$ is the pre-/quasi-variety generated by $\mathrm{K}^{\prime} \triangleq\left(\mathrm{K} \cup\left\{\left(\left(\mathfrak{K}_{2} \times \mathfrak{S}_{3}\right) \upharpoonright\left(\left(S_{3} \oplus\right.\right.\right.\right.\right.$ 1) $\left.\left.\left.\left.\left[\cup M S_{5: 1}\right]\right)\right) \mid\left(\mathfrak{B}_{2} \oplus 1\right)\right\}\right) \subseteq(\aleph)[P] \vee Q S M S L$. In particular, $\mathrm{WR}[\mathrm{P}] \vee\{\mathrm{Q}\} \mathrm{SKSL}=$ [N$] \mathrm{QSRWR}[\mathrm{P}] \mathrm{V}\{\mathrm{Q}\} S K S L$.

Proof. Consider any finitely-generated $\mathfrak{A} \in(Q \backslash Q S M S L)$, in which case, by Lemma 5.22 and the local finiteness of MSL, for this is finitely-generated, in view of Theorem 4.4, \mathfrak{A} is both finite, non-one-element and non-idempotent, and so "as $\mathfrak{B}_{2} \preceq \mathfrak{S}_{3}$ "|, by Lemma $5.1, \mathcal{H} \triangleq \operatorname{hom}\left(\mathfrak{A},(\mathfrak{S} \mid \mathfrak{B})_{3 \mid 2}\right)$ is both non-empty and finite. Then, there are some bijections \bar{a} from $n \triangleq|A| \in(\omega \backslash 1)$ onto A and \bar{h} from $m \triangleq|\mathcal{H}| \in(\omega \backslash 1)$. Let $b \triangleq \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} \iota_{n}^{\mathfrak{A}}(\bar{a})$, in which case, by (4.6) and the left alternative of Claim 5.2, $\neg^{\mathfrak{A}} b \leqslant^{\mathfrak{A}} b$. Consider any $g \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{K}_{2}\right)$. By contradiction, we prove that $\mathcal{A} \triangleq\left(\prod_{i \in n}\left(g^{-1}[1] \cap h_{i}^{-1}[(3 \mid 2) \backslash((1[+1]) \mid 1)]\right)\right)=\varnothing$. For suppose there is some $\bar{c} \in \mathcal{A}$. Put $d \triangleq\left(\vee_{+}^{\mathfrak{A}} \bar{c}\right)$, in which case $g(d)=0$, and so $\left(\neg^{\mathfrak{A}} d \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right) \nless d$, for $g\left(\neg^{\mathfrak{A}} d \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right)=1 \nless 0$. Now, consider any $f \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{M} \mathfrak{S}_{6}\right)$ and the following complementary cases:

- $(\operatorname{img} f) \subseteq\left(\operatorname{img} \epsilon_{3}^{5}\right)$,
in which case |"by $(4.21) " e \triangleq\left(f \circ\left(\epsilon_{3}^{5}\right)^{-1} \circ\left(\Delta_{3} \mid \chi_{3}^{3 \backslash 1}\right)\right) \in \operatorname{hom}\left(\mathfrak{A},(\mathfrak{S} \mid \mathfrak{B})_{3 \mid 2}\right)$, and so $e=h_{j}$, for some $j \in n$. Then, as $c_{j} \leqslant^{\mathfrak{A}} d,((1[+1]) \mid 1) \leqslant e\left(c_{j}\right) \leqslant e(d)$, in which case $e\left(\neg^{\mathfrak{A}} d\right)=0$, and so $f\left(\neg^{\mathfrak{A}} d \wedge^{\mathfrak{A}} b\right)=\langle 0,0,0\rangle \leqslant{ }^{\mathfrak{M} \mathfrak{S}_{6}} f\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}}\right.$ d). [And what is more, by induction on any $k \in((n+1) \backslash 1) \ni n$, we have $f\left(\iota_{k}^{\mathfrak{A}}(\bar{a} \upharpoonright k)\right)=\langle 1,1,1\rangle$, in which case $f(b)=\langle 1,1,1\rangle=f(d)$, and so $\left.f\left(\left(b \wedge^{\mathfrak{A}} d\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right)\right)=\langle 1,1,1\rangle=f\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right)\right).\right] \mid$
- $(\operatorname{img} f) \nsubseteq\left(\operatorname{img} \epsilon_{3}^{5}\right)$,
in which case, by (4.6) and the right alternative of Claim 5.2, $f\left(\neg^{\mathfrak{A}} b\right)=f(b)$, and so $f\left(\neg^{\mathfrak{A}} d \wedge^{\mathfrak{A}} b\right) \leqslant^{\mathfrak{M} \mathfrak{S}_{6}} f(b)=f\left(\neg^{\mathfrak{A}} b\right) \leqslant^{\mathfrak{M} \mathfrak{S}_{6}} f\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} d\right)$ [while, by (5.24), $f\left(\left(b \wedge^{\mathfrak{A}} d\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right)\right)=f\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right)\right)$.]

Thus, anyway, by (2.8) and Theorem $4.4 \mid[$ as well as Lemma 5.23 and the truth of $((4.9))$ in \mathfrak{K}_{2}], we conclude that [both $\left(\left(b \wedge^{\mathfrak{A}} d\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right)\right)=\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right) \vee^{\mathfrak{A}}\right.$ $\left.\neg^{\mathfrak{A}}\left(b \wedge^{\mathfrak{A}} d\right)\right)$ and $\left(\neg^{\mathfrak{A}} d \wedge^{\mathfrak{A}} b\right) \leqslant^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} d\right)$, in which case $\mathfrak{A} \not \vDash \mathcal{R}_{[\mathrm{N}]}^{\mathrm{QS}}\left[x_{0} / b, x_{1} / d\right]$, and so this contradiction to the [nearly] quasi-strong regularity of \mathfrak{A} shows that $\mathcal{A}=\varnothing$. In this way, there is some $l \in n$ such that $h_{l}\left[g^{-1}[1]\right] \subseteq((1[+1]) \mid 1)$, in which case, by $(2.7), \hbar \triangleq\left(g \odot h_{l}\right) \in \operatorname{hom}\left(\mathfrak{A}, \mathrm{K}^{\prime}\right)$, while, by (2.1), $(\operatorname{ker} \hbar) \subseteq(\operatorname{ker} g)$, and so (2.8), the locality of quasi-varieties, the quasi-equationality of finitely-generated pre-varieties, Corollary 5.21, Lemma 5.22 and "the [nearly] quasi-strong regularity of $\left(\mathfrak{K}_{2} \times \mathfrak{S}_{3}\right) \upharpoonright\left(\left(S_{3} \oplus 1\right)\left[\cup M S_{5: 1}\right]\right)$ to be checked immediately"|"Lemma 5.3 as well as (5.17)" complete the argument.

Theorem 5.25. $\mathrm{Q} \triangleq$ NQSRVQSMSL = QSRVQSMSL. In particular, ($[\mathrm{NI}\rceil(\mathrm{N})$ QSR $[\mathrm{P}] \mathrm{VV}\lfloor\cup(\mathrm{NIU}\lceil\cap \varnothing\rceil)\rfloor)=(\mathbf{P} \backslash \mathbf{Q}) \mathbf{V}\left(\left\{\left(\left(\lceil I\rceil \mathrm{MS}_{\mathrm{V}}\left\lceil\otimes\left\{\mathfrak{B}_{2}\right\}\right\rceil\right)\left\lceil\cup \mathrm{NIMS}_{\mathrm{V}}\right\rceil\right) \cup\left(\left(\left\{\mathfrak{B}_{2} \oplus 1\right\}[(\cap\right.\right.\right.\right.$ $\left.\left.((\operatorname{MSL}\{\cap \varnothing\} \mid(\varnothing \| \mathrm{MSL})))])\left[\left(\cup\left(\left(\varnothing\left\{\cup\left\{\mathfrak{M S}_{5: 1}\right\}\right\}\right) \mid\left(\left\{\mathfrak{M S}_{5: 1}\right\} \| \varnothing\right)\right)\right)\right]\right)\right)\left[\lceil\varnothing \cap\rceil\left(\left(\mathrm{IMS}_{\mathrm{U}} \otimes \mathfrak{B}_{2}\right.\right.\right.$ $\left.\left.\left.) \cup \mathrm{NIMS}_{\mathrm{U}}\right)\right\rfloor\right)$, where $\mathrm{V} \triangleq((\{\langle\mathrm{Q}\rangle \mathrm{S}\}(\mathrm{M} / \mathrm{K})\{\mathrm{S}\}) \mid(\mathrm{S} \| \mathrm{B}))\lfloor$ and $\mathrm{U} \supseteq \mathrm{AV}$ is a sub-variety of MSL」.

Proof. The inclusion from right to left is trivial, for $\mathcal{R}_{N}^{\mathrm{QS}}$ is a logical consequence of $\mathcal{R}^{Q S}$. Conversely, consider any finitely-generated $\mathfrak{A} \in(\mathrm{Q} \backslash \mathrm{QSMSL}) \subseteq \mathrm{AQSMSL}$ and any $a, b \in A$ such that $a \in \mathcal{F}^{\mathfrak{A}}$ but $\left(\neg^{\mathfrak{A}} b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \nless \not^{\mathfrak{A}} b$, in which case, by (2.8) and Corollary 4.7, there are some $\mathfrak{B} \in\left(\mathrm{QSMSL} \cup\left\{\mathfrak{K}_{2}\right\}\right)$ and some $g \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B})$ such that $\left(\neg^{\mathfrak{B}} g(b) \wedge^{\mathfrak{B}} \neg^{\mathfrak{B}} \neg^{\mathfrak{B}} g(b)\right) \not \star^{\mathfrak{B}} g(b)$, and so $\mathfrak{B}=\mathfrak{K}_{2}$ as well as $g(b)=0$. Likewise, by Lemmas 5.1 and 5.22 , there is some $e \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2}\right) \neq \varnothing$. Let $\mathrm{K} \triangleq\left(\left(\mathrm{QSMSL} \cap \mathbf{S}_{>1} \mathfrak{M S}_{6}\right)\right)$, in which case $\mathcal{H} \triangleq \operatorname{hom}(\mathfrak{A}, \mathrm{K}) \ni h \triangleq\left(e \circ \epsilon_{2}^{3} \circ \epsilon_{3}^{5}\right)$ is non-empty as well as finite, for both K and all its members are so, in view of the finiteness of $M S_{6}=2^{3}$, and so there is a bijection \bar{h} from $n \triangleq|\mathcal{H}| \in(\omega \backslash 1)$ onto \mathcal{H} such that $h_{0}=h$. By contradiction, we prove that $\mathcal{A} \triangleq\left(\prod_{j \in n}\left(\left(g^{-1}[1] \cap\right.\right.\right.$ $\left.\left.\left.h_{j}^{-1}\left[\mathcal{F}_{\mathrm{W}}^{\mathfrak{M} \mathfrak{S}_{6}}\right]\right) \cup h_{j}^{-1}\left[\mathfrak{S}_{\neg}^{\mathfrak{M} \mathfrak{S}_{6}}\right]\right)\right)=\varnothing$. For suppose there is some $\bar{c} \in \mathcal{A} \subseteq A^{n}$. Let $d \triangleq \boldsymbol{\iota}_{x_{0}, n}^{\mathfrak{A}}(\bar{c})$, in which case, as $\Im_{\neg}^{\mathfrak{M} \mathfrak{S}_{6}}=\left(2^{3} \backslash\left(\operatorname{img} \epsilon_{3}^{5}\right)\right)$ is disjoint with (img $\left.\epsilon_{3}^{5}\right) \supseteq$ (img $\left.h_{[0]}\right), g\left(c_{0}\right)=0$, and so, by induction on any $k \in((n+1) \backslash 1) \ni n$, we see that $g\left(\iota_{x_{0}, k}^{\mathfrak{A}}(\bar{c} \upharpoonright k)\right)=0$. In particular, when taking $k=n$, we conclude that $g(d)=0$, in which case $d \notin \mathcal{F}^{\mathfrak{A}}$, for $g\left(\neg^{\mathfrak{A}} b\right)=1 \nless 0$, and so, since $\mathfrak{A} \models(4.13)\left[x_{0} / d\right], d \notin \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}$. On the other hand, for every $l \in n, h_{l}\left(c_{l}\right) \in\left(\mathcal{F}_{\mathrm{W}}^{\mathfrak{M} \mathfrak{S}_{6}} \cup \mathfrak{S}_{\neg}^{\mathfrak{M} \mathfrak{S}_{6}}\right)=\mathcal{F}_{\mathrm{W}}{ }^{\mathfrak{M} \mathfrak{S}_{6}}$, in which case, by the left alternative of Claim 5.2, $h_{l}(d) \in \mathcal{F}_{\mathrm{W}}^{\mathfrak{M} \mathscr{S}_{6}}$, and so, by the total negative idempotence of $\mathfrak{K}_{2},(2.8)$ and Corollary $4.7, d \in \mathcal{F}_{\mathrm{W}}^{\mathfrak{A}}$. This contradiction shows that $\mathcal{A}=\varnothing$, in which case there is some $m \in n$ such that $h_{m}\left[g^{-1}[1] \mid A\right]$ is disjoint with $\mathcal{F}_{\mathrm{W}}^{\mathfrak{M} \mathfrak{S}_{6}} \mid \mathfrak{S}_{\neg}^{\mathfrak{M} \mathfrak{S}_{6}}$, i.e., is subsumed by $\{\langle 0,0,0\rangle\} \mid\left(\mathrm{img} \epsilon_{3}^{5}\right)$, and so, by (4.21), $f \triangleq\left(h_{m} \circ\left(\epsilon_{3}^{5}\right)^{-1} \circ \chi_{3}^{3 \backslash 1}\right) \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{B}_{2}\right)$, while $f\left[g^{-1}[1]\right] \subseteq 1$. Thus, $f(a \| b)=(1 \| 0)$, in which case $f\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)=1 \nless 0=f\left(b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)$, and so $\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \not \Varangle^{\mathfrak{A}}\left(b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)$. Then, Corollaries 4.7, 5.4, (5.15), Lemmas 5.7, 5.22, Theorem 5.24 and the locality of quasi-varieties complete the argument.

5.4. Embaddibility lemmas.

Lemma 5.26. $\mathfrak{K}_{3\{[\langle+1: 1\rangle]\}} \times \mathfrak{B}_{2}$ is embedable into any $\mathfrak{A} \in((\operatorname{NI}(\mathrm{A})\{[\mathrm{Q}] \mathrm{S}\} \mathrm{K}\langle\mathrm{M}\rangle\{\mathrm{S}\} \mathrm{L}$ $(\cup T N I M S L)\langle\cup(A) D M L\rangle) \backslash(W)\langle M\rangle R M S L)$.
Proof. Then, there are some $a, b\langle, c\rangle \in A$ such that $\neg^{\mathfrak{A}} a \leqslant^{\mathfrak{A}} a,\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \leqslant^{\mathfrak{A}}$ $\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} b\right)$ but $\left(\neg^{\mathfrak{A}} b\left\langle\wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right\rangle\right) \not \star^{\mathfrak{A}}\left(\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\right) b\left\langle\vee^{\mathfrak{A}} c\right\rangle\right)$, in which case, by (4.2), (4.5)
and (4.6), we have $((d \mid e)\{[\langle\| f\rangle]\}) \triangleq\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}(a \mid b)\left\{\left[\left\langle\|\left(c \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} c \vee^{\mathfrak{A}} d\right\rangle\right]\right\}\right)=\left\{\left[\left\langle\| \geqslant^{\mathfrak{A}}\right.\right.\right.\right.$ $\rangle]\}\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}(d \mid e)\left\{\left[\left\langle\| \mid\left(\neg^{\mathfrak{A}} f / d\right)\right\rangle\right]\right\}\right)\left(\geqslant{ }^{\mathfrak{A}} \neg^{\mathfrak{A}} d \mid \|\right)$, while, applying (4.3) twice, by (4.1) and (4.5), we get $\left(d \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right) \leqslant^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} d \vee^{\mathfrak{A}} e\right)$, whereas, by (2.8) and Corollary 5.4 (and 5.5) <as well as 5.8\rangle, there are some $\mathfrak{C} \in\left\{\mathfrak{K}_{3\{[+1: 1]\}} \times \mathfrak{B}_{2}\left\{, \mathfrak{S}_{3}\right\}\left\langle, \mathfrak{D M}_{4}\right\rangle\left(, \mathfrak{K}_{2}\right)\right\}$ and some $h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{C})$ such that $\left(\neg^{\mathfrak{C}} h(b)\left\langle\wedge^{\mathfrak{C}} \neg^{\mathfrak{C}} \neg^{\mathfrak{C}} h(c)\right\rangle\right) \not \mathbb{C}^{\mathfrak{C}}\left(\left(\neg^{\mathfrak{C}} \neg^{\mathfrak{C}}\right) h(b)\left\langle\vee^{\mathfrak{C}} h(c)\right\rangle\right)$, and so $\mathfrak{C} \triangleq\left(\mathfrak{K}_{3\{[\langle+1: 1\rangle]\}} \times \mathfrak{B}_{2}\right)$ and $h((a \| d) \mid(b \| e)\{[\langle\mid f\rangle]\})=\langle 1 \mid 0\{[\langle\mid 2\rangle]\}, 1\rangle$, for $\neg^{\mathfrak{C}} h(a) \leqslant{ }^{\mathfrak{C}}$ $h(a)$ and $\left(h(a) \wedge^{\mathfrak{C}} \neg^{\mathfrak{C}} h(b)\right) \leqslant^{\mathfrak{C}}\left(\neg^{\mathfrak{C}} h(a) \vee^{\mathfrak{C}} h(b)\right)$. In that case, using (4.1), (4.2), (4.5) and (4.6), it is routine checking that the mapping $g:((3\{[\langle+1\rangle]\}) \times 2) \rightarrow A$, given by:

$$
\begin{aligned}
g(\langle 0 \mid 1,1\rangle) & \triangleq\left(\left(d \wedge^{\mathfrak{A}}\left(e \vee^{\mathfrak{A}}\left(e \mid \neg^{\mathfrak{A}} d\right)\right)\right)\left\{\left[\left\langle\vee^{\mathfrak{A}} \neg^{\mathfrak{A}} f\right\rangle\right]\right\}\right), \\
g(\langle(2\{[\langle+1\rangle]\}) \mid 1,0\rangle) & \triangleq \neg^{\mathfrak{A}} g(\langle 0 \mid 1,1\rangle), \\
g(\langle 0|(2\{[\langle+1\rangle]\}), 0|1\rangle) & \triangleq\left(g(\langle 0,1\rangle)(\wedge \mid \vee)^{\mathfrak{A}} g(\langle 2\{[+1]\}, 0\rangle)\right), \\
\{[\langle g(\langle 2,1\rangle) & \left.\left.\left.\triangleq\left(\left(\left(d \wedge^{\mathfrak{A}} e\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(d \wedge^{\mathfrak{A}} e\right)\right) \wedge^{\mathfrak{A}} f\right),\right\rangle\right]\right\}
\end{aligned}
$$

is a homomorphism from $\mathfrak{K}_{3\{[\langle+1: 1\rangle]\}} \times \mathfrak{B}_{2}$ to \mathfrak{A} such that $(g \circ h)=\Delta_{(3\{[\langle+1\rangle]\}) \times 2}$, and so it is injective, as required.
Lemma 5.27. \mathfrak{K}_{4} is embeddable into any $\mathfrak{A} \in($ NIQSMSL $\backslash \mathrm{ASL}) \supseteq(R Q S K S L \backslash S L)$ $\supseteq(\mathrm{RKL} \backslash \mathrm{BL})$.
Proof. Then, by (4.2), there are some $a, b \in A$ such that $c \triangleq\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right) \neq$ $d \triangleq\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} c\right) \geqslant^{\mathfrak{A}} c$, in which case, by (4.1), (4.3), (4.5) and (4.6), we have both $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} d=d$ and $\neg^{\mathfrak{A}} d \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} c \leqslant^{\mathfrak{A}} c=\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c \neq \neg^{\mathfrak{A}} c$, for \mathfrak{A} is neither idempotent nor one-element, and so $\neg^{\mathfrak{A}} c \neq \neg^{\mathfrak{A}} d$. In this way, $\left\{\left\langle 0, \neg^{\mathfrak{A}} d\right\rangle,\left\langle 1, \neg^{\mathfrak{A}} c\right\rangle,\langle 2, c\rangle,\langle 3, d\rangle\right\}$ is an embedding of \mathfrak{K}_{4} into \mathfrak{A}. Finally, Corollary 5.11 completes the argument.
Lemma 5.28. $\mathfrak{D M}_{4}$ is embeddable into any $\mathfrak{A} \in(S M S L \backslash(N I S M S L \cup W K S L)) \supseteq$ $(A Q S M S L \backslash(N I A Q S M S L \cup A Q S K S L))$.

Proof. In that case, by (4.2) and Corollary 5.6, there are some $a, b \in A$ such that $\mathfrak{A} \not \vDash\{(5.5)\}\left[x_{0} / \neg^{\mathfrak{A}} a, x_{1} / b\right]$, and so (5.5) is not true in the subalgebra \mathfrak{B} of \mathfrak{A} generated by $\left\{\neg^{\mathfrak{A}} a, \neg^{\mathfrak{A}} b\right\}$ under $\left[x_{0} / \neg^{\mathfrak{A}} a, x_{1} / \neg^{\mathfrak{A}} b\right]$. On the other hand, by (4.1), (4.5), (4.6) and induction on construction of any $\varphi \in \mathrm{Tm}_{\Sigma_{+}^{-}}^{2}$, we have $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} \varphi^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} a, \neg^{\mathfrak{A}} b\right)=\varphi^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} a, \neg^{\mathfrak{A}} b\right)$, in which case \mathfrak{B} is a De Morgan lattice, and so $\mathfrak{D M}_{4}$, being embedable into \mathfrak{B}, in view of [18, Case 8 of Proof of Theorem 4.8], is so into \mathfrak{A}, as required, because, by Corollary 4.7, AQWKSL = AQSKSL.

Lemma 5.29. $\mathfrak{D M}_{4} \times \mathfrak{B}_{2}$ is embeddable into an arbitrary $\mathfrak{A} \in($ NIMSL \backslash WKSL $) \supseteq$ (NIAQSMSL \AQSKSL).
Proof. Then, there are some $a, b \in A$ such that, by (4.2), $c \triangleq \neg^{\mathfrak{A}} \neg^{\mathfrak{A}}\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right) \not^{\mathfrak{A}}$ $d \triangleq\left(\neg^{\mathfrak{A}} b \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right.$), in which case, by (4.1), (4.5) and (4.6), we have both $\neg^{\mathfrak{A}}(c \mid d)(\geqslant \mid \leqslant)^{\mathfrak{A}}(c \mid d)=\neg^{\mathfrak{A}} \neg^{\mathfrak{A}}(c \mid d)$, and so, by induction on construction of any $\varphi \in$ $\operatorname{Tm}_{\Sigma_{+}^{-}}^{2}$, we get $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} \varphi^{\mathfrak{A}}(c, d)=\varphi^{\mathfrak{A}}(c, d)$. Thus, the subalgebra \mathfrak{B} of \mathfrak{A} generated by $\{c, d\}$ is a non-idempotent De Morgan lattice such that $\mathfrak{B} \notin \mathcal{K}\left[x_{0} / c, x_{1} / d\right]$, in which case $\mathfrak{D M}_{4} \times \mathfrak{B}_{2}$ being embeddable into \mathfrak{B}, in view of the proof of [18, Lemma 4.10], is so into \mathfrak{A}, as required, because, by Corollary 4.7, AQWKSL $=$ AQSKSL.

Lemma 5.30. Let $\mathfrak{A} \in\left([\mathrm{PS}] \mathrm{MSL} \backslash(\mathrm{NIMSL} \cup \mathrm{NDML})\right.$). Then, $\left\{\mathfrak{M S}_{(4[+1]): i} \mid i \in\right.$ $(2[-1])\})) \cap \mathbf{I S A}) \neq \varnothing$. In particular, $\mathfrak{K}_{4:(0 \mid 1)}$ is embeddable into any member of $((P \mid(\{A\} Q)) S M S L \backslash(N I M S L \cup(N \mid\{N \| A\}) D M L))$.
Proof. Then, by (4.1), (4.5) and (4.6), there are some $a, e \in A$ such that $\neg^{\mathfrak{A}} e=e$ and $c \neq d \neq b$, where $b, c, d \in A$ are as in Lemma 5.23 , in which case $b \leqslant^{\mathfrak{A}}$ $(f \mid g) \triangleq\left(\left(e \wedge^{\mathfrak{A}}(c \mid d)\right) \vee^{\mathfrak{A}} b\right)=\left(g \wedge^{\mathfrak{A}}(c \mid d)\right)$, and so, by (4.1) and (4.5), we have
$b \neq f \leqslant^{\mathfrak{A}} g=\neg^{\mathfrak{A}}(f \mid g) \notin\{c, d\}$, for, otherwise, we would get $b=g=d$. Consider the following complementary cases:

- $g \leqslant^{\mathfrak{A}} c$, in which case $\{\langle 0, b\rangle,\langle 1, g\rangle,\langle 2, c\rangle,\langle 3, d\rangle\}$ is an embedding of $\mathfrak{K}_{4: 1}$ into \mathfrak{A}, and so the latter is not pseudo-strong, for the former is not so, in view of Lemma 4.6.
- $g \nless k^{\mathfrak{A}} c$,
in which case, by (4.3), we have $c \not^{\mathfrak{A}} g$, and so $\left\{f, g, c, g \vee^{\mathfrak{A}} c\right\}$ is a non-degenerated diamond of $\mathfrak{A} \mid \Sigma_{+}$. Then, $\left[\operatorname{as}\left(g \vee^{\mathfrak{A}} c\right)=d\right.$, for $\mathfrak{A} \models$ (4.12) $\left.\left[x_{0} / c, x_{1} / e\right]\right]$ by (4.1) and (4.5),

$$
\{\langle 0,0,0, b\rangle,\langle 0,1,0, f\rangle,[\langle 0,1,1, c\rangle,]\langle 1,1,0, g\rangle,\langle 1,1,1, d\rangle\}
$$

is an embedding of $\mathfrak{M} \mathfrak{S}_{(4[+1]): 0}$ into \mathfrak{A}.
In this way, (4.18) and Lemma 4.6 complete the argument.
Lemma 5.31. $\mathfrak{K}_{5: 1}$ is embeddable into an arbitrary $\mathfrak{A} \in((\operatorname{NI}(A)$ QSMSL $\cup(W) M R$ (A)QSMSL) \PSMSL).

Proof. Take any $a, e \in A$ such that $\mathfrak{A} \not \vDash(4.12)\left[x_{0} / a, x_{1} / e\right]$, in which case $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \not \not 又 ⿱^{\mathfrak{A}}$ $\left(a \vee^{\mathfrak{A}} f\right)$, where $\left.f \triangleq\left(\neg^{\mathfrak{A}} e \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right)\right) \geqslant{ }^{\mathfrak{A}} \neg^{\mathfrak{A}} f$, in view of (4.5), and so $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \neq$ a. On the other hand, by Lemmas 4.6, 5.7, Corollary 5.4 and Theorem 5.12, $\mathrm{NI}(\mathrm{A}) \mathrm{QSMSL} \cup(\mathrm{W}) \mathrm{MR}(\mathrm{A})$ QSMSL is the pre-variety generated by $\mathrm{K} \triangleq\left\{\mathfrak{K}_{4: 1} \times\right.$ $\left.\mathfrak{B}_{2}, \mathfrak{D M}_{4}\left(, \mathfrak{K}_{2}\right)\right\}$, in which case, by (2.8), there are some $\mathfrak{C} \in \mathrm{K}$ and $h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{C})$ such that $h\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right) \not \mathbb{C}^{\mathfrak{C}} h\left(a \vee^{\mathfrak{A}} f\right)$, and so $\mathfrak{C}=\left(\mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right)$, while $\pi_{1}(h(f))=1$, whereas $\pi_{0}(h((a \mid e))=(2 \mid 1)$. Let $b, c, d \in A$ be as in Lemma 5.23 and $g \triangleq$ $\left\{\left\langle 0,0, b \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} f\right\rangle,\left\langle 1,0, \neg^{\mathfrak{A}} f\right\rangle,\langle 1,1, f\rangle,\left\langle 2,1, c \vee^{\mathfrak{A}} f\right\rangle,\left\langle 3,1, d \vee^{\mathfrak{A}} f\right\rangle\right\}: \Re^{\mathfrak{K}_{4: 1}} \rightarrow A$, in which case, for all $\bar{\imath}, \bar{\jmath} \in \Re^{\mathfrak{K}_{4: 1}},\left(\bar{\imath} \leqslant^{\mathfrak{D}_{4} \times \mathfrak{D}_{2}} \bar{\jmath}\right) \Rightarrow\left(g(\bar{\imath}) \leqslant^{\mathfrak{A}} g(\bar{\jmath})\right)$ as well as $h(g(\bar{\imath}))=\bar{\imath}$, and so, since $\Re\left(\mathfrak{K}_{4: 1}\right) \mid \Sigma_{+}$is a chain lattice, by (4.1), (4.5) and (4.6), g is an embedding of $\Re\left(\mathfrak{K}_{4: 1}\right) \in \mathbf{I}\left(\mathfrak{K}_{5: 1}\right)$ into \mathfrak{A}, as required.
Lemma 5.32. \mathfrak{K}_{2} is embeddable into any $\mathfrak{A} \in \mathrm{MSL}$ not satisfying (5.7).
Proof. Take any $a \in\left(\Im_{\neg}^{\mathfrak{A}} \backslash \mathfrak{S}^{\mathfrak{A}}\right) \neq \varnothing$, in which case, by (4.2), $a \leqslant^{\mathfrak{A}} \neg^{\mathfrak{A}} a$, and so $\left\{\left\langle i,\left(\neg^{i}\right)^{\mathfrak{A}} a\right\rangle \mid i \in 2\right\}$ is an embedding of \mathfrak{K}_{2} into \mathfrak{A}, as required.

This, by (5.9), immediately yields:
Corollary 5.33. \mathfrak{K}_{2} is embeddable into any $\mathfrak{A} \in($ TNIMSL \backslash OMSL).
This, in its turn, by Corollary 4.7, immediately yields:
Corollary 5.34. TNIMSL has no proper non-trivial sub-[pre-/quasi-]variety.
Lemma 5.35. $\mathfrak{K}_{2} \times \mathfrak{B}_{2}$ is embeddable into any $\mathfrak{A} \in(\operatorname{NIMSL} \backslash \operatorname{Mod}(((4.13)))) \supseteq$ $(\operatorname{NINDML} \backslash \operatorname{Mod}((4.13))) \supseteq($ NIADML $\backslash \mathrm{VDML})$.
Proof. Then, there is some $a \in A$ such that $\left(a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)=\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a$ but $\neg^{\mathfrak{A}} a \not \Varangle^{\mathfrak{A}} a$, in which case $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \notin\left\{a, \neg^{\mathfrak{A}} a\right\}$, and so $a \not \not^{\mathfrak{A}} \neg^{\mathfrak{A}} a$, Thus, by (4.1) and (4.6), $\left\{\langle 0,1, a\rangle,\left\langle 1,0, \neg^{\mathfrak{A}} a\right\rangle,\left\langle 0,0, a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\rangle,\left\langle 1,1, \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\rangle\right\}$ is an embedding of $\mathfrak{K}_{2} \times \mathfrak{B}_{2}$ into \mathfrak{A}, as required, in view of Corollary 4.7, due to which ADML \subseteq NDML.

Lemma 5.36. $\mathfrak{B}_{2} \oplus 1$ (resp., $\mathfrak{K}_{3} \oplus 1$) is embedable into any $\mathfrak{A} \in(((I) M S L \backslash Q S M S L) \cap$ $\operatorname{Mod}((5.7)))$.
Proof. Then, we have some $a(, b) \in A$ such that $\left(\neg^{\mathfrak{A}} b=b\right.$ but $) c \triangleq\left(a \wedge^{\mathfrak{A}}\right.$ $\left.\neg^{\mathfrak{A}} a\right) \neq d \triangleq\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right)$, in which case, by (4.1), (4.2) and (4.6), $c \leqslant d=$ $\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} c \leqslant^{\mathfrak{A}}\left(e \triangleq\left(\left(b \vee^{\mathfrak{A}} d\right) \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right)=\neg^{\mathfrak{A}} e\right) \leqslant^{\mathfrak{A}} f \triangleq \neg^{\mathfrak{A}} c=\neg^{\mathfrak{A}} d$, and so $c \neq f$, for $c \neq d$. Hence, as $\mathfrak{A} \models(5.7)\left[x_{0} / c\right], d \neq f$ (in which case $e \notin\{d, f\}$), and so
$\{\langle 0,0, c\rangle,\langle 1,0, d\rangle,(\langle 1,1, e\rangle),\langle 1,1(+1), f\rangle\}$ is an embedding of $\mathfrak{B}_{2} \oplus 1$ (resp., $\mathfrak{K}_{3} \oplus 1$) into \mathfrak{A}, as required.

On the other hand, both \mathfrak{K}_{2} and $\mathfrak{B}_{2} \oplus 1$, being finite, are expandable to bounded MS lattices, in which case neither of these is an MS algebra, and so, by Lemmas 5.32 and 5.36 , we eventually conclude that QSMSL is the infinitary universal unbounded approximation of MSA in the following sense:

Corollary 5.37. QSMSL is the greatest infinitary universal (viz., abstract hereditary) subclass of MSL disjoint with (BMSL $\backslash \mathrm{MSA}) \mid \Sigma_{+}^{-}$.

Nevertheless, the stipulation "infinitary universal"/ "abstract hereditary" can be neither omitted nor replaced by the one "image-closed [ultra-]multiplicative", simply because, due to the truth of (4.7) in bounded MS lattices, MSA $\mid \Sigma_{+}^{-}$is the subclass of MSL, relatively axiomatized by the single first-order positive Σ_{+}^{-} equational $\exists \forall$-sentence $\exists x_{0} \forall x_{1}\left(\left(x_{1} \lesssim x_{0}\right) \&\left(\neg x_{0} \lesssim x_{1}\right)\right)$, in which case it is imageclosed (in particular, abstract) and [ultra-]multiplicative but is not hereditary, for $\left(\mathrm{MSA} \mid \Sigma_{+}^{-}\right) \not \supset \mathfrak{M S}_{2} \preceq \mathfrak{M S}_{6} \in\left(\mathrm{MSA} \mid \Sigma_{+}^{-}\right)$, and so, by Lemma 2.9, is not submultiplicative.

Lemma 5.38. $\mathfrak{M S}_{5: 1}$ is embedable into an arbitrary $\mathfrak{A} \in((\operatorname{MSL} \cap \operatorname{Mod}(((4.13)))) \backslash$ $\operatorname{Mod}((4.13))) \supseteq(N Q S R P V Q S K S L \backslash[N] Q S R V Q S K S L)$.

Proof. Then, there is some $a \in\left(\mathcal{F}_{W}^{\mathfrak{A}} \backslash \mathcal{F}^{\mathfrak{A}}\right)$ such that $\left(a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right) \neq \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a$, in which case, by (4.2) and (4.3), $a \nless^{\mathfrak{A}} \neg^{\mathfrak{A}} a$, and so, by (4.1), (4.2), (4.5) and (4.6), $\left\{\left\langle 0,0, a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\rangle,\langle 0,1, a\rangle,\left\langle 1,0, \neg^{\mathfrak{A}} a\right\rangle,\left\langle 1,1, a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\rangle,\left\langle 1,2, \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\rangle\right\}$ is an embedding of $\mathfrak{M S}_{5: 1}$ into \mathfrak{A}, as required, in view of Theorems 5.24 and 5.25.

Lemma 5.39. $\mathfrak{B} \triangleq\left(\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right)$ is embeddable into any $\mathfrak{A} \in($ NIPVQSKSL \backslash NQSRMSL) $\supseteq($ NIVQSKSL $\backslash[\mathrm{N}]$ QSRVQSMSL).

Proof. Then, there are some $a, b \in A$ such that $\neg^{\mathfrak{A}} a \leqslant^{\mathfrak{A}} a,\left(a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \leqslant^{\mathfrak{A}}\left(\neg^{\mathfrak{A}} a \vee^{\mathfrak{A}} b\right)$ and $\left(c \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right)=\left(f \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right)$, where $c \triangleq\left(a \wedge^{\mathfrak{A}} b\right)$ and $(d|e| f) \triangleq \neg^{\mathfrak{A}} \neg^{\mathfrak{A}}(a|b| c)$,
 $\mathfrak{C} \in\left(\left(\left\{\mathfrak{K}_{4: 1}, \mathfrak{K}_{3} \oplus 1\right\} \otimes\left\{\mathfrak{B}_{2}\right\}\right) \cup\left\{\mathfrak{M S}_{5: 1}\right\}\right)$ and some $h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{C})$ such that $\left(\neg^{\mathfrak{C}} h(b) \wedge^{\mathfrak{A}} h(e)\right) \not \mathbb{C}^{\mathfrak{C}} h(b)$, and so, since $\neg^{\mathfrak{C}} h(a) \leqslant^{\mathfrak{C}} h(a),\left(h(a) \wedge^{\mathfrak{C}} \neg^{\mathfrak{C}} h(b)\right) \leqslant{ }^{\mathfrak{C}}$ $\left(\neg^{\mathfrak{C}} h(a) \vee^{\mathfrak{C}} h(b)\right)$ and $\left(h(c) \vee^{\mathfrak{C}} \neg^{\mathfrak{C}} h(c)\right)=\left(h(f) \vee^{\mathfrak{C}} \neg^{\mathfrak{C}} h(c)\right)$, by the quasi-strength of $\mathfrak{K}_{4: 1}$ and the nearly quasi-strong regularity of $\mathfrak{M S}_{5: 1}$ (cf. Theorem 5.24), $\mathfrak{C}=\mathfrak{B}$, while, by the truth of (4.13) in $\mathfrak{B}, h((a \mid d)\|(b \mid e)\|(c \mid f))=\langle 1\|(0 \mid 1)|(0 \mid 1), 1\|0\| 0,1\rangle$, because $\neg^{\mathfrak{B}} h(b) \not \star^{\mathfrak{B}} h(e)$, for $\neg^{\mathfrak{B}} h(b) \notin h(b)$. In that case, using (4.1), (4.2), (4.3), (4.5) and (4.6), it is routine checking that the mapping $g: B \rightarrow A$, given by:

$$
\begin{aligned}
g(0,0,0) & \triangleq\left(c \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} c\right) \\
g(0,0,1) & \triangleq c, \\
g(1,0,0) & \triangleq\left(f \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} f\right) \\
g(1,0,1) & \triangleq f, \\
g(1,2,1) & \triangleq\left(f \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} f\right) \\
g(1,2,0) & \triangleq \neg^{\mathfrak{A}} f, \\
g(1,1,1) & \triangleq\left(\left(e \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right) \wedge^{\mathfrak{A}} d\right) \\
g(1,1,0) & \triangleq\left(\left(d \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} e\right) \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} d\right)
\end{aligned}
$$

is a homomorphism from \mathfrak{B} to \mathfrak{A} such that $(g \circ h)=\Delta_{B}$, and so is injective, as required, in view of Theorem 5.25.
5.5. Relative subdirect irreducibility of non-trivial subalgebras of generating algebras. First, by Footnote 1, (4.21), (4.22), (5.13), Lemma 2.14 and the simplicity of $\left.(\mathfrak{B} \mid \mathfrak{K})_{(2 \mid 3)[01]}\right)$ (cf., e.g., Remark 4.3), we immediately have:
Lemma 5.40. Congruences of $\mathfrak{A} \triangleq(\mathfrak{S} \mid \mathfrak{K})_{3 \mid(4:(0 \| 1))[01]}$ form the three-element chain $\Delta_{3 \mid 4} \subsetneq(\operatorname{ker} h) \subsetneq(3 \mid 4)^{2}$, where $h \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{A},(\mathfrak{B} \mid \mathfrak{K})_{(2 \mid 3)[01]}\right) \neq \varnothing$.
Lemma 5.41. Let $\mathfrak{A} \in(\mathrm{MSL} \backslash \mathrm{OMSL}), \mathfrak{B} \in\left\{\mathfrak{B}_{2}, \mathfrak{S}_{3}\right\}$ and $h \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B})$. Then, $\mathfrak{B}_{2} \preceq h[\mathfrak{A}] \preceq \mathfrak{A}$.
Proof. In that case, $h[\mathfrak{A}] \in \mathbf{S} \mathfrak{B} \subseteq\left(\left\{\mathfrak{S}_{3}\right\} \cup \mathbf{I}\left(\mathfrak{B}_{2}\right)\right)$, and so [unless $|A|>2$], by (4.21), Corollary 5.1, Lemmas 4.6, 5.3, 5.15 and (5.9), $\mathfrak{B}_{2} \preceq h[\mathfrak{A}]\left[\in \mathbf{I} \mathfrak{B}_{2} \subseteq\right.$ ISß $]$. [Otherwise, by Lemma 4.6, H\{ $\ni h[\mathfrak{A}]=\mathfrak{S}_{3} \notin$ NDML, in which case $\mathfrak{A} \notin$ NDML, and so Lemma 5.23 completes the argument.]

Let $\mathfrak{K}_{1} \triangleq\left(\mathfrak{K}_{2} \upharpoonright\{1\}\right) \in$ OMSL.
Theorem 5.42. Let $\mathfrak{C} \in\left(\left\{\mathfrak{B}_{2}\right\}\left[\cup\left(\left\{\mathfrak{S}_{3}\right\}(\cap \varnothing)\right)\right]\left\{\cup\left(\left\{\mathfrak{K}_{3}\right\}[\cap \varnothing]\right)\right\}\right)$, $\mathrm{P} \subseteq$ MSL a pre-variety, $\mathfrak{F} \in\left(\mathrm{P} \cap\left(\mathbf{S}_{>1}\left(\left(\left[\left(\left(\left\{\mathfrak{K}_{2}\right\}(\cap \varnothing)\right)\left(\cup\left\{\mathfrak{K}_{3} \oplus 1\right\}\right)\right) \cup\right]\left(\mathbf{I M S} \cap A Q S M S L\left\{\cap\left\{\mathfrak{K}_{2}\right\}\right\}[\cap \varnothing]\right)\right)\right)[\backslash\right.\right.$ $\left.\left.\left.\mathbf{I S}\left\{\mathfrak{K}_{2} \times \mathfrak{B}_{2}\left(, \mathfrak{K}_{3} \times \mathfrak{B}_{2}, \mathfrak{K}_{3} \oplus 1\right)\right\}\right]\right)\right)$ and [both] $\mathfrak{K} \triangleq\left(\pi_{0}^{2} \upharpoonright F\right)[\mathfrak{F}]\left[, g \triangleq\left(\chi_{3}^{3 \backslash 1} \upharpoonright C\right)\right.$ and $\mathfrak{G} \triangleq$ $\left(\left(\pi_{0}^{2(+1)} \upharpoonright F\right) \odot\left(\left(\pi_{1(+1)}^{2(+1)} \upharpoonright F\right) \circ g\right)\right)[\mathfrak{F}]$ (as well as $\left.\mathfrak{H} \triangleq\left(\left(\pi_{0}^{3} \upharpoonright F\right) \odot\left(\pi_{1}^{3} \upharpoonright F\right)\right)[\mathfrak{F}]\right) ;$ cf. (2.7)]. $\{$ Suppose $\mathfrak{F} \in \operatorname{Mod}((4.13))\}$. Then, $\left(\mathfrak{F} \in \operatorname{SI}_{\mathrm{P}}(\mathrm{P})\right) \Leftarrow \mid \Rightarrow(((((\{\mathfrak{K}\}[\cap \varnothing])[\cup\{\mathfrak{G}(, \mathfrak{H})\}$]) $\cap \mathrm{P}) \neq \varnothing) \Rightarrow(\mathfrak{F} \preceq((\{\mathfrak{K}\}[\cap \varnothing]) \cup\{\mathfrak{C}\})))$.

Proof. In that case, by (4.21), Corollary 5.4, Lemma 5.15 and (5.9), \mathfrak{F}, being non-one-element, is not totally negatively idempotent, and so, by Lemma $5.3, \mathfrak{B}_{2}$, being embedable into \mathfrak{F}, belongs to P [while, in the ()-non-optional case, $\mathfrak{F} \notin$ TNIMSL \supseteq $\left.\mathbf{I S} \mathfrak{K}_{2} \supseteq \mathbf{I S} \mathfrak{K}\right]$.

We start from proving the right part. For suppose $(((\{\mathfrak{K}\}[\cap \varnothing])[\cup\{\mathfrak{G}(, \mathfrak{H})\}]) \cap \mathrm{P}) \neq$ \varnothing but $\mathfrak{F} \npreceq((\{\mathfrak{K}\}[\cap \varnothing]) \cup\{\mathfrak{C}\})$, in which case $\mathfrak{F} \npreceq\{\mathfrak{K}, \mathfrak{C}\}\left[\left(\right.\right.$ for $\left.\left.\mathfrak{K} \in \mathbf{S}\left(\mathfrak{K}_{3} \oplus 1\right)\right)\right]$, and so, since $(e / f) \triangleq\left(\pi_{0 / 1}^{2} \backslash F\right) \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{F}, \mathfrak{K} / \mathfrak{C})$ is then not injective, for, otherwise, it would be an embedding of \mathfrak{F} into $\mathfrak{K} / \mathfrak{C},(\theta / \vartheta) \triangleq \operatorname{ker}(e / f) \neq \Delta_{F}=(\theta \cap \vartheta)$, while, by (2.5) and Lemma 5.41, $\vartheta \in \operatorname{Cop}(\mathfrak{F})\left\{\right.$ unless both $\mathfrak{C}=\mathfrak{K}_{3}$ and $\left.1 \in \pi_{1}^{2}[F]\right\}$. \{Otherwise, $\mathfrak{F} \in \mathbf{S}\left(\mathfrak{K}_{2} \times \mathfrak{K}_{3}\right\}$, in which case $\mathfrak{K} \in \mathbf{S} \mathfrak{K}_{2}=\left\{\mathfrak{K}_{1}, \mathfrak{K}_{2}\right\}$, and so there are some $a, b \in F$ such that $\pi_{021}^{2}(a \imath b)=1$. Then, by (5.2) and (5.3), $c \triangleq \neg^{\mathfrak{F}} \boldsymbol{\pi}^{\mathfrak{F}}\left(\boldsymbol{\mu}^{\mathfrak{F}}(a), \boldsymbol{\mu}^{\mathfrak{F}}(b)\right) \in \Im^{\mathfrak{F}}$, in which case, as \mathfrak{F}, being non-one-element, is idempotent but not totally negatively idempotent, by Lemma $5.3, \mathfrak{C} \in \mathbf{I S} \mathfrak{F} \subseteq \mathrm{P}$, and so, by (2.5), $\vartheta \in \operatorname{Cop}(\mathfrak{F})$.$\} Thus,$ anyway, $\vartheta \in \operatorname{Cop}(\mathfrak{F})$. In particular, $\mathfrak{F} \notin \operatorname{SI}_{P}(P)$, whenever $\mathfrak{K} \in P$, because, in that case, by (2.5), $\theta \in \operatorname{Cop}(\mathfrak{F})$.
[Conversely, assume $\mathfrak{K} \notin \mathrm{P}$, in which case $(\{\mathfrak{G}(, \mathfrak{H})\} \cap \mathrm{P}) \neq \varnothing$, and so $\mathfrak{G} \in \mathrm{P}$ (for $\mathfrak{H}=\mathfrak{K} \notin \mathrm{P})$. (And what is more, $\mathfrak{F} \in \mathbf{S}\left(\left(\mathfrak{K}_{2} \times \mathfrak{K}_{3}\right) \times \mathfrak{B}_{2}\right) \ni \mathfrak{I} \triangleq\left(\left(\mathfrak{K}_{1} \times \mathfrak{K}_{3}\right) \times\right.$ $\left.\mathfrak{B}_{2}\right) \in \mathbf{I}\left(\mathfrak{K}_{3} \times \mathfrak{B}_{2}\right)$, for $\mathfrak{K}_{1} \in \mathbf{S} \mathfrak{K}_{2}$ is one-element, in which case $\mathfrak{J} \triangleq(\mathfrak{F} \upharpoonright(F \cap I)) \in$ $(\mathbf{S}(\mathfrak{F}) \cap \mathbf{S}(\mathfrak{I})) \subseteq\left(\mathbf{P} \cap \mathbf{I S}\left(\mathfrak{K}_{3} \times \mathfrak{B}_{2}\right)\right)$, and so, since, by $(2.7), f^{\prime} \triangleq(((F \times\{1\}) \odot$ $\left.\left.\left(\pi_{1}^{3} \upharpoonright F\right)\right) \odot\left(\pi_{2}^{3} \upharpoonright F\right)\right) \in \operatorname{hom}(\mathfrak{F}, \mathfrak{J})$ is then non-injective, by (2.5), we conclude that $\left.\Delta_{F} \neq \vartheta^{\prime} \triangleq\left(\operatorname{ker} f^{\prime}\right) \in \operatorname{Cop}(\mathfrak{F}).\right)$ Then, by $(4.21), \mathbf{S}\left(\mathfrak{K}_{2} \times \mathfrak{B}_{2}\right) \ni \mathfrak{G}$ is disjoint with $\mathbf{I} \mathfrak{F}$, in which case $e^{\prime} \triangleq\left(\left(\pi_{0}^{2(+1)} \mid F\right) \odot\left(\left(\pi_{1(+1)}^{2(+1)} \upharpoonright F\right) \circ g\right)\right) \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{F}, \mathfrak{G})$ is not injective, and so, by $(2.5), \Delta_{F} \neq \theta^{\prime} \triangleq\left(\operatorname{ker} e^{\prime}\right) \in \operatorname{Cop}(\mathfrak{F})$. Hence, $\mathfrak{F} \notin \operatorname{SI}_{\mathrm{P}}(\mathrm{P})$, because, by (2.1), $\left.\Delta_{F} \subseteq\left(\theta^{\prime} \cap \vartheta\left({ }^{\prime}\right)\right) \subseteq\left(\bigcap_{i \in(2(+1))} \operatorname{ker}\left(\pi_{i}^{2(+1)} \upharpoonright F\right)\right)=\Delta_{E}.\right]$

Next, if $\mathfrak{F} \preceq((\{\mathfrak{K}\}[\cap \varnothing]) \cup\{\mathfrak{C}\})$, then, by Theorem 4.4, $\left.\mathfrak{F} \in\left(P \cap \mathbf{I S}_{>1} \mathrm{MS}\right\}\right) \subseteq$ $\left(\mathbf{I}(\mathrm{MS} \cap \mathrm{P})=\mathrm{SI}(\mathrm{P}) \subseteq \mathrm{SI}_{\mathrm{P}}(\mathrm{P})\right.$.

Now, assume $\mathfrak{F} \npreceq((\{\mathfrak{K}\}[\cap \varnothing]) \cup\{\mathfrak{C}\})$ but $(((\{\mathfrak{K}\}[\cap \varnothing])[\cup\{\mathfrak{G}(, \mathfrak{H})\}]) \cap \mathrm{P})=\varnothing$. Put $\mathfrak{A} \triangleq\left(\pi_{0}^{2[(+1)]} \uparrow F\right)[\mathfrak{F}]$, both $\mathfrak{B} \triangleq\left(\mathfrak{K}_{3}\left\|\mathfrak{B}_{2}\right\| \mathfrak{K}_{1}\right) \in \mathrm{KL}$ and $h \triangleq\left(\left(\left(\chi_{A}^{A \backslash \mathfrak{g}^{\mathfrak{A}}} \odot \chi_{A}^{\mathfrak{F}^{\mathfrak{A}}}\right) \circ\right.\right.$ $\left.\left.\left(\epsilon_{3: 0}^{4}\right)^{-1}\right)\left\|\chi_{A}^{\mathfrak{F}^{\mathfrak{A}}}\right\|(A \times\{1\})\right) \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B})$, whenever $\mathfrak{A} \in\left(\mathbf{I}\left\{\mathfrak{K}_{4: 1}\right\}\left\|\mathbf{I}\left\{\mathfrak{S}_{3}\right\}\right\|(\mathrm{MSL} \backslash\right.$
$\left.\mathbf{I}\left\{\mathfrak{K}_{4: 1}, \mathfrak{S}_{3}\right\}\right)$) [as well as [(both $\mathfrak{E} \triangleq \mathfrak{K}_{3}$ and) $\left.\mathfrak{D} \triangleq \mathfrak{B}_{2}\right]$, in which case, by (2.7), (2.5), (4.21), (5.13), Lemmas 4.6 and 5.40, both $\operatorname{Co}(\mathfrak{A})=\left\{\Delta_{A}, A^{2}\right.$, ker $\left.h\right\}$ and $\operatorname{Co}(\mathfrak{C})=\left\{\Delta_{C}, C^{2}[, \operatorname{ker} g]\right\}\left[\right.$ while $g \in \operatorname{hom}_{(\mathrm{I})}(\mathfrak{C}, \mathfrak{D})\left(\right.$ whereas $\left.\left.\operatorname{Co}(\mathfrak{E})=\left\{\Delta_{E}, E^{2}\right\}\right)\right]$. And what is more, $\mathfrak{A} \notin \mathrm{P}$ [because, otherwise, by (4.21), $\mathfrak{G} \in \mathbf{S}\left(\mathfrak{A} \times \mathfrak{B}_{2}\right)$ would be in P , for \mathfrak{B}_{2} is so]. Finally, we prove that $\mathfrak{F} \npreceq \mathfrak{L} \triangleq((\mathfrak{B}[(\times \mathfrak{E})]) \times \mathfrak{C})$, by contradiction. For suppose $\mathfrak{F} \preceq \mathfrak{L}$, in which case \mathfrak{F} is in SKSL $\not \supset \mathfrak{K}_{4: 1}$, for \mathfrak{L} is so, and so is $\mathfrak{A} \in \mathbf{H}_{\mathfrak{F}}$. Hence, $\mathfrak{A} \notin \mathbf{I} \mathfrak{K}_{4: 1}$. Then, in the []-optional case, \mathfrak{A}, being a subalgebra of the two-element algebra \mathfrak{K}_{2}, is not isomorphic to the three-element one \mathfrak{S}_{3}, for $3 \nless 2$, and so $\mathfrak{B}=\mathfrak{K}_{1}$. Otherwise, $\mathfrak{C} \in K L$, in which case $\mathfrak{L} \in K L$, and so $\mathfrak{B}=\mathfrak{K}_{1}$, for $\mathfrak{A} \in \mathbf{H S} \mathfrak{L} \subseteq \mathrm{KL} \not \nexists \mathfrak{S}_{3}$ is not isomorphic to \mathfrak{S}_{3}. Thus, $\mathfrak{B}=\mathfrak{K}_{1}$, anyway, in which case, by $(2.7),\left(\pi_{0}^{2[(+1)]}\left[\left(\times \pi_{1}^{2[(+1)]}\right)\right]\right) \times\left(\pi_{1[(+1)]}^{2[(+1)]}\right.$ is an isomorphism from \mathfrak{L} onto $\mathfrak{M} \triangleq\left(\left[\left(\mathfrak{K}_{3} \times\right)\right] \mathfrak{C}\right)$, contrary to the assumption that $\mathfrak{F} \npreceq \mathfrak{M}\left[\left(\right.\right.$ for $\left.\left.\mathfrak{C}=\mathfrak{B}_{2}\right)\right]$, and so this contradiction shows that $\mathfrak{F} \npreceq \mathfrak{L}$. Then, by Corollary 3.12 and Remark 4.2, $\mathfrak{F} \in \mathrm{SI}_{\mathrm{P}}(\mathrm{P})$, as required.

This, by (2.10) and Footnote 1, does provide a comprehensive hierarchical characterization of relative subdirectly-irreducibles of quasi-varieties studied in the next subsection, for these are generated by subsets of $\mathrm{QMS} \triangleq\left(\mathrm{AQMS} \cup\left(\mathrm{AQMS} \otimes\left\{\mathfrak{B}_{2}\right\}\right) \cup\right.$ $\left.\left\{\mathfrak{B}_{2}, \mathfrak{S}_{3}, \mathfrak{B}_{2} \oplus 1, \mathfrak{M S}_{5: 1}\right\}\right)$, where $\mathrm{AQMS} \triangleq\left(((\mathrm{MS} \cap \mathrm{DML}) \backslash \mathrm{BL}) \cup\left\{\mathfrak{K}_{2}, \mathfrak{K}_{4: 1}, \mathfrak{K}_{3} \oplus 1\right\}\right)$. To make it clearer, we present several almost immediate consequences of Theorem 5.42, immediately yielding the following two ones, in view of mutually embedable finite algebras' being isomorphic and Lemma $5.41 / 5.29$ as well as absence of proper /isomorphic subalgebras of \mathfrak{B}_{2} /"finite algebras and the inequalities $8>4>2$ ":

Corollary 5.43. Let $\mathrm{P} \subseteq$ MSL be a pre-variety, $\mathfrak{F} \in \mathbf{S}_{>1}\left((\mathfrak{S} \mid \mathfrak{B})_{3 \mid 2} \times \mathfrak{B}_{2}\right)$ and $\mathfrak{K} \triangleq\left(\pi_{0}^{2} \upharpoonright F\right)[\mathfrak{F}] \preceq \| \succeq \mid=((\mathfrak{S} \| \mathfrak{B}) \mid \mathfrak{B})_{(3 \| 2) \mid 2}$. Then, $\left(\mathfrak{F} \in \operatorname{SIP}_{P}(\mathrm{P})\right) \Leftrightarrow(\mathfrak{F} \in \mathbf{I}[\mathbf{S}] \mathfrak{K})$.

Corollary 5.44. Let $\mathrm{P} \subseteq$ MSL be a pre-variety, $\mathfrak{F} \in\left(\mathbf{S}_{>1}\left(\mathfrak{D M}_{4} \times \mathfrak{B}_{2}\right) \backslash \mathbf{I S}\left(\mathfrak{K}_{3} \times\right.\right.$ $\left.\left.\mathfrak{B}_{2}\right)\right)=\left\{\mathfrak{D M}_{4} \times \mathfrak{B}_{2}\right\}$. Then, $\left(\mathfrak{F} \in \operatorname{SIP}_{p}(\mathrm{P})\right) \Leftrightarrow\left(\mathfrak{D M}_{4} \notin \mathrm{P}\right)$.
Corollary 5.45. Let $\mathrm{P} \subseteq$ MSL be a pre-variety, $\mathfrak{C} \triangleq(\mathfrak{K} \mid \mathfrak{B})_{3 \mid 2}$, $\mathfrak{L} \in(\{\mathfrak{C} \oplus 1\} \cup$ $\left(\varnothing \mid\left\{\mathfrak{K}_{2} \times \mathfrak{C}\right)\right)$ and $\mathfrak{F} \in \mathbf{S}_{>1} \mathfrak{L}$. Then, $(\mathfrak{F} \in \operatorname{SI}(\mathrm{P})) \Leftrightarrow\left(\left(\mathfrak{K}_{2} \in \mathrm{P}\right) \Rightarrow(\mathfrak{F} \preceq \mathfrak{C})\right)$. In particular, $\left(\mathfrak{L} \in \operatorname{SI}_{\mathrm{P}}(\mathrm{P})\right) \Leftrightarrow\left(\mathfrak{K}_{2} \notin \mathrm{P} \ni \mathfrak{L}\right)$.
Proof. First, since $\mathfrak{K} \triangleq\left(\pi_{0} \upharpoonright F\right)[\mathfrak{F}] \in \mathbf{S} \mathfrak{K}_{2} \subseteq$ TNIMSL, by Corollary 5.4, Lemma 5.15 and (5.9), $\mathfrak{F} \notin$ TNIMSL $\supseteq \mathbf{I S} \mathfrak{K}$, for $|F|>1$, is not embedable into \mathfrak{K}. Next, if $0 \in K$, then $\mathfrak{K}=\mathfrak{K}_{2}$. Otherwise, $\mathfrak{K}=\mathfrak{K}_{1} \in \mathrm{OMSL} \subseteq \mathrm{P}$, in which case $\pi_{1} \upharpoonright F$ is an embedding of \mathfrak{F} into \mathfrak{C}, and so Theorem 5.42 and the fact that $|C| \leqslant 3<4=|L|$ complete the argument.

Corollary 5.46. Let $\mathrm{P} \subseteq \mathrm{MSL}$ be a pre-variety, $(\mathfrak{C} \mid \mathfrak{L}) \triangleq(\mathfrak{B} \mid \mathfrak{K})_{2 \mid(3[+1: 1])}$, $\mathfrak{M} \triangleq$ $(\mathfrak{L} \times \mathfrak{C}), \mathrm{K} \triangleq\left\{\mathfrak{C}\left[, \mathfrak{K}_{3}, \mathfrak{S}_{3}\right]\right\}, \mathfrak{F} \in\left(\left(\mathrm{P} \cap \mathbf{S}_{>1} \mathfrak{M}\right) \backslash \mathbf{I S}(\mathrm{K} \otimes\{\mathfrak{C}\})\right)$ and $\mathfrak{K} \triangleq\left(\pi_{0}^{2} \upharpoonright F\right)[\mathfrak{F}]$. Then, $\left(\mathfrak{F} \in \operatorname{SI}_{\mathrm{P}}(\mathrm{P})\right) \Leftrightarrow((\mathfrak{F} \notin \mathbf{I}(\{\mathfrak{C}\}[\cap \varnothing])) \Rightarrow((\mathfrak{L} \notin \mathrm{P}) \&(\mathfrak{F} \in\{\mathfrak{M}, \Re(\mathfrak{L})\})))$.

Proof. The "if" part is by Theorem 5.42, the simplicity of two-element algebras, the inclusions $\operatorname{Si}(\mathrm{P}) \subseteq \mathrm{SI}(\mathrm{P}) \subseteq \mathrm{SI}_{\mathrm{P}}(\mathrm{P})$ and the fact that $(\mathfrak{F} \in\{\mathfrak{M}, \Re(\mathfrak{L})\}) \Rightarrow(\mathfrak{K}=\mathfrak{L})$. Conversely, assume $\mathfrak{F} \in \operatorname{SIp}_{P}(P)$, in which case $\mathfrak{K} \in\left(\{\mathfrak{L}\} \cup\left(\left\{\mathfrak{K}_{1}\right\}[n \varnothing]\right)\right)$, and so $\mathfrak{F}=\left(\mathfrak{K}_{1} \times \mathfrak{C}\right) \in \mathfrak{I} \mathfrak{C}$, unless $\mathfrak{K}=\mathfrak{L}$. Otherwise, $\mathfrak{F} \in\{\mathfrak{M}, \mathfrak{R}(\mathfrak{L})\}$, in which case $\mathfrak{F} \npreceq\{\mathfrak{K}, \mathfrak{C}\}$, for $|F| \geqslant(4[+1])>((3[+1]) \| 2)=|K \| C|$, and so, by Theorem 5.42, $\mathfrak{L} \notin \mathrm{P}$.

Corollary 5.47. Let $\mathrm{P} \subseteq$ MSL be a pre-variety, $\mathfrak{C} \triangleq \mathfrak{B}_{2}, \mathfrak{I} \triangleq\left(\mathfrak{K}_{3} \oplus 1\right)$, $\mathfrak{J} \triangleq\left(\mathfrak{K}_{3} \times \mathfrak{C}\right)$, $\mathfrak{L} \triangleq\left(\mathfrak{K}_{2} \times \mathfrak{C}\right), \mathfrak{M} \triangleq(\mathfrak{I} \times \mathfrak{C}), \mathfrak{N} \triangleq(\mathfrak{C} \oplus 1), \mathrm{K} \triangleq\{\mathfrak{J}, \mathfrak{N}\}, \mathfrak{F} \in\left(\mathrm{P} \cap\left(\mathbf{S}_{>1}(\mathfrak{M}) \backslash \mathbf{I S K}\right)\right.$, $\mathfrak{G} \triangleq\left(\left(\pi_{0}^{3} \upharpoonright F\right) \odot\left(\pi_{2}^{3} \upharpoonright F\right)\right)[\mathfrak{F}]$ and $\mathfrak{H} \triangleq\left(\left(\pi_{0}^{3} \upharpoonright F\right) \odot\left(\pi_{1}^{3} \upharpoonright F\right)\right)[\mathfrak{F}]=\left(\pi_{0}^{2} \upharpoonright F\right)[\mathfrak{F}] \quad(c f . \quad$ (2.7) $)$. Then, $\left(\mathfrak{F} \in \operatorname{SIP}_{P}(\mathrm{P})\right) \Leftrightarrow((\mathfrak{F}=\mathfrak{M}) \&((\{\mathfrak{L}, \mathfrak{I}\} \cap \mathrm{P})=\varnothing))$.

Proof. First, if 0 was not in $\pi_{0}^{3}[F]$, then, by (2.1) and (2.7), $\left(\pi_{1}^{3} \upharpoonright F\right) \times\left(\pi_{2}^{3} \upharpoonright F\right)$ would be an embedding of \mathfrak{F} into \mathfrak{J}. Therefore, $0 \in \pi_{0}^{3}[F]$, in which case $\left(\pi_{0}^{3} \upharpoonright F\right) \in$ $\operatorname{hom}^{\mathrm{S}}\left(\mathfrak{F}, \mathfrak{K}_{2}\right)$, for $\neg^{\mathfrak{K}_{2}} 0=1$, and so \mathfrak{F} is not in QSMSL $\ni \mathfrak{C}$, for \mathfrak{K}_{2} is not so. Hence, $\mathfrak{F} \npreceq \mathfrak{C}$, while, by Lemma $5.36, \mathfrak{N} \in \mathbf{I S} \mathfrak{F} \subseteq P$. Next, if there was any $e \in \operatorname{hom}_{\mathrm{I}}(\mathfrak{F}, \mathfrak{I})$, then $e[\mathfrak{F}] \in(\mathbf{I}(\mathfrak{F}) \cap \mathbf{S}(\mathfrak{I})) \subseteq \mathbf{S}\left(\mathfrak{K}_{2} \times \mathfrak{K}_{3}\right)$ would be neither idempotent nor quasistrong, for $\mathfrak{F} \in \mathbf{S M}$ is so, in view of Lemma 5.1 , in which case we would have $0 \in \pi_{0}[e[F]]$, for $\mathfrak{K}_{1} \in \mathrm{OMSL} \subseteq$ QSMSL $\ni \mathfrak{K}_{3}$, but $1 \notin \pi_{1}[e[F]]$, for, otherwise, we would then get $e[\mathfrak{F}] \not \vDash(5.1)\left[x_{i} /\langle 1-i, 1-i\rangle\right]_{i \in 2}$, and so, by (5.20), $e \circ\left(\epsilon_{2}^{3} \oplus 1\right)^{-1}$ would be an an embedding of \mathfrak{F} into \mathfrak{N}. Likewise, if there was any $f \in \operatorname{hom}_{\mathrm{I}}(\mathfrak{F}, \mathfrak{L})$, then $f[\mathfrak{F}] \in(\mathbf{I}(\mathfrak{F}) \cap \mathbf{S}(\mathfrak{L}))$ would be a model of (4.13), for $\mathfrak{F} \in \mathbf{S M}$ is so, in which case $\langle 0,1\rangle$ would not be in $f[F]$, i.e., $f[\mathfrak{F}]$ would be a subalgebra of \mathfrak{N}, for, otherwise, we would have $f[\mathfrak{F}] \not \vDash(4.13)\left[x_{0} /\langle 0,1\rangle\right]$, and so e would be an an embedding of \mathfrak{F} into \mathfrak{N}. Finally, $(\langle 0,0,1\rangle \in F) \Leftrightarrow(\mathfrak{F}=\mathfrak{M})$, for \mathfrak{M} is generated by $\langle 0,0,1\rangle$. Consider the corresponding complementary cases:

- $\mathfrak{F}=\mathfrak{M}$,

in which case $\mathfrak{G}=\mathfrak{L}$, for \mathfrak{L} is generated by $\langle 0,1\rangle \in G \subseteq L$, while $\mathfrak{H}=\mathfrak{I}$.

- $\mathfrak{F} \neq \mathfrak{M}$,
in which case $\mathfrak{G}=\mathfrak{N}$, for \mathfrak{N} is generated by $\langle 0,0\rangle \in G \subseteq N$, because $\langle 0,1\rangle \notin G \subseteq L$ but $0 \in \pi_{0}^{3}[F]=\pi_{0}^{2}[G]$.
Then, Theorem 5.42 completes the argument.
Corollary 5.48. Let $\mathrm{P} \subseteq$ MSL be a pre-variety, $\mathfrak{C} \triangleq \mathfrak{S}_{3}, g \triangleq \chi_{3}^{3 \backslash 1}$, $\mathfrak{I} \triangleq\left(\mathfrak{K}_{2} \times \mathfrak{B}_{2}\right)$, $\mathfrak{L} \triangleq(\mathfrak{C} \oplus 1), \mathfrak{M} \triangleq \mathfrak{M S}_{5: 1}, \mathfrak{N} \triangleq\left(\mathfrak{B}_{2} \oplus 1\right), \mathfrak{F} \in\left(\mathrm{P} \cap\left(\mathbf{S}_{>1}(\mathfrak{M}) \backslash \mathbf{I S}(\mathfrak{N})\right)\right), \mathfrak{K} \triangleq\left(\pi_{0}^{2} \mid F\right)[\mathfrak{F}]$ and $\mathfrak{G} \triangleq\left(\left(\pi_{0}^{2} \upharpoonright F\right) \odot\left(\left(\pi_{1}^{2} \upharpoonright F\right) \circ g\right)\right)[\mathfrak{F}](c f$. $(2.7))$. Then, $\left(\mathfrak{F} \in \operatorname{SI}_{\mathrm{P}}(\mathrm{P})\right) \Leftrightarrow((\mathfrak{G} \in \mathrm{P}) \Rightarrow$ $(\mathfrak{F} \preceq \mathfrak{C}))$, in which case, providing $\mathfrak{F}=\mid \neq \mathfrak{M},\left(\mathfrak{F} \in \operatorname{SI}_{P}(\mathrm{P})\right) \Leftrightarrow((\mathfrak{I} \notin \mathrm{P}) \mid(\mathfrak{F} \preceq \mathfrak{C}))$, and so $\mathfrak{L} \notin \operatorname{SI}_{\mathrm{P}}(\mathrm{P})$. In particular, $\left(\mathfrak{M} \in \operatorname{SI}_{\mathrm{P}}(\mathrm{P})\right) \Leftrightarrow(\mathfrak{I} \notin \mathrm{P})$.
Proof. First, if \mathfrak{F} was embedable into $\mathfrak{I} \in A B L \subseteq$ NDML $\nexists \mathfrak{C}$, then $\mathfrak{J} \in(\mathbf{H}(\mathfrak{F}) \cap \mathbf{S}(\mathfrak{C}))$ would be distinct from \mathfrak{C}, i.e., 1 would not be in J, for \mathfrak{C} is generated by 1 , in which case $g \upharpoonright J$ would be injective, and so, by (2.1), (2.7) and (4.21), $\left(\pi_{0}^{2} \upharpoonright F\right) \odot\left(\left(\pi_{1}^{2} \upharpoonright F\right) \circ g\right)$ would be an embedding of \mathfrak{F} into \mathfrak{N}, for $\langle 0,1\rangle \notin F \subseteq M S_{5: 1} \not \nexists\langle 0,2\rangle$. Likewise, if $\mathfrak{F} \in$ QSMSL $\nexists \mathfrak{K}_{2}$, then QSMSL $\supseteq \mathbf{H}(\mathfrak{F}) \ni \mathfrak{K} \in \mathbf{S}\left(\mathfrak{K}_{2}\right)=\left\{\mathfrak{K}_{2}, \mathfrak{K}_{1}\right\}$, in which case $\mathfrak{K}=\mathfrak{K}_{1}$, and so π_{1}^{2} is an embedding of \mathfrak{F} into \mathfrak{C}. Finally, if $\mathfrak{F}=\mid \neq \mathfrak{N}$, then $(\mathfrak{G} \in(\{\mathfrak{I}\} \mid \mathbf{S}\{\mathfrak{N}\}$. Then, Lemmas 5.15, 5.36, (5.8), Theorem 5.42 and the fact that $|M||L|=(5 \| 4)>3=\left|S_{3}\right|$ complete the argument.
5.6. Lattices of quasi-varieties of quasi-strong Morgan-Stone and almost quasi-strong Kleene-Stone lattices.

Theorem 5.49. Pre-//quasi-varieties of /almost [\{quasi-\} strong]|| Morgan-/Kleene [-Stone] \mid Stone \mid Boolean lattices form the/a non-chain /non-distributive lattice

Table 3. Quasi-identities false/true in generating algebras and embedability lemmas for them.

\mathfrak{K}_{2}	(5.7)	$\left[x_{0} / 0\right]$	\varnothing	5.32
$\mathfrak{K}_{4: 1}$	$((5.6))$	$\left[x_{0} / 2, x_{1} / 3, x_{2} / 1\right]$	\varnothing	5.30
$\mathfrak{K}_{2} \times \mathfrak{B}_{2}$	$((4.13))$	$\left[x_{0} /\langle 0,1\rangle\right]$	$\{(5.1)\}$	5.35
\mathfrak{S}_{3}	(4.19)	$\left[x_{i} /(1+i)\right]_{i \in 2}$	$\{(4.16)\}$	5.23
$(\mathfrak{K} \mid \mathfrak{B})_{3 \mid 2} \oplus 1$	$[(5.6)] \mid(4.11)$	$\left[x_{i} /\langle i, i\rangle\right]_{i \in(2 \mid 1)}$	$\{(5.7)\}$	5.36
$\mathfrak{K}_{3\langle+1: 1\rangle} \times \mathfrak{B}_{2}$	$\mathcal{R}_{\langle\mathrm{M}\rangle}^{\mathrm{W}}$	$\left[x_{i} /\langle(4-i) \bmod 3,1\rangle\right]_{i \in(2\langle+1\rangle))}$	$\left\{\mathcal{K}_{\mathrm{M}},((5.6))\right\}$	5.26
$\mathfrak{K}_{5: 1}$	(4.12)	$\left[x_{0} / 3, x_{1} / 1\right]$	$\left\{(4.16),\left(\neg x_{2} \approx x_{2}\right) \rightarrow \mathcal{R}^{\mathrm{W}}\right\}$	5.31
$\left(\mathfrak{K} \mid \mathfrak{B}_{3 \mid 2}\right.$	$(5.4) \mid(4.14)$	$\left[x_{i} /(1-i)\right]_{i \in(2 \mid 1)}$	\varnothing	5.3
$\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}$	$\mathcal{R}_{\mathrm{NS}}$	(4.13)	$\left[x_{i} /\langle 1-i, 1-i, 1\rangle\right]_{i \in 2}$	$\{(5.1),((4.13))\}$
$\mathfrak{M}_{5: 1}$	$\left[x_{0} /\langle 0,1\rangle\right]$	$\{((4.13))\}$	5.39	
\mathfrak{K}_{4}	$[(4.20)]$	$\left[x_{i} /(2+i)\right]_{i \in 2}$	$\{(5.1))$	5.38
\mathfrak{D}_{4}	$\mathfrak{K})$	$\{(4.16)\}$	5.27	
$\mathfrak{D M}_{4} \times \mathfrak{B}_{2}$	$\left[x_{i} /\langle i, 1-i\rangle\right]_{i \in 2}$	$\{(4.16),(5.1)\}$	5.28	

Figure 4. The lattice of quasi-varieties of quasi-strong MorganStone lattices.
with $((8[+(\{3 \cdot\} 7)])|3| 2) /(([\{50+\} 36+] 21)|11| 6)$ elements "as well as Hasse diagram with [either both small and \{either non-solid or\} solid or] both solid and large circles-nodes depicted at Figure 4 , in which case it is embedable into $\left[\mathfrak{D}_{2\{+3\}} \times\right]\left(\mathfrak{D}_{5} \times\right.$ $\left.\mathfrak{D}_{3}\right)$, and so is distributive"||/ [\{the list of which, numbered from $0 / 14$ to 28/120, is given by the first and second columns of Tables 4 and 5, in which case, for each $i \in 121, f(i)$ is generated by $\pi_{1}[g(i)]$, where $f \| g$ is the function with domain 123 given by the first and second \|third columns of Tables 4 and 5, and so $\mathrm{SI}_{f(i)}(f(i))=$ $\left(\mathbf{I}\left(\left(\left(\mathbf{M S} \cup \mathbf{K}^{\prime}\right) \cap \mathbf{I S} \pi_{1}[g(i)]\right) \cup\left(\mathbf{S}_{>1}\left(\pi_{1}[g(i)] \backslash \mathbf{K}^{\prime}\right) \backslash \mathbf{I S}\left(\left\{\mathfrak{S}_{3}, \mathfrak{B}_{2}\right\} \otimes\left\{\mathfrak{B}_{2}\right\}\right)\right)\right) \backslash \mathbf{I}(\bigcup\{\mathrm{K} \mid\right.$ $\left.\left.\left(\left\{\mathfrak{K}_{3}, \mathfrak{D M}_{4}, \mathfrak{K}_{3} \oplus 1, \mathfrak{K}_{4: 1}\right\} \cap \pi_{1}[g(i)]\right) \neq \varnothing\right\}\right)$, where $\mathrm{K} \triangleq\left\{\mathfrak{K}_{3} \times \mathfrak{B}_{2}, \mathfrak{K}_{4}\right\}$ and $\mathrm{K}^{\prime} \triangleq(\mathrm{K} \cup$ $\left.\left\{\mathfrak{K}_{2} \times \mathfrak{B}_{2}, \mathfrak{B}_{2} \oplus 1, \mathfrak{K}_{3} \oplus 1,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}, \mathfrak{M}_{5: 1}\right\}\right)$, while, for every $\langle j, \mathfrak{A}\rangle \in g(i)$, both $f(j)=(f(i) \cap \operatorname{Mod}(e(\mathfrak{A})))$ and $(f(i) \backslash f(j)) \subseteq \operatorname{Mod}(t(\mathfrak{A}))$ but $\mathfrak{A} \not \vDash e(\mathfrak{A})[h(\mathfrak{A})]$, where $e \prec h \imath t$ is the function with domain QMS given by the first and secondlthirdlfourth columns of Table 3, in which case $\mathfrak{A} \notin f(j) \subseteq f(i) \ni \mathfrak{A}$, and so $f(j) \subsetneq f(i)$. In particular, $f \upharpoonright(29 /(121 \backslash 14))$ is an isomorphism from the poset over $29 /(121 \backslash 14)$ with partial ordering, being the union of $\Delta_{29 /(121 \backslash 14)}$ and the transitive closure of $(\varnothing /\{\langle 112,29\rangle\}) \cup\left(\bigcup\left\{\pi_{0}[g(k)] \times\{k\} \mid k \in(29 /(121 \backslash 14)\}\right)\right.$, onto the lattice poset involved.\}]||

Proof. We use Lemma 4.6 and Corollary 4.7 tacitly. Consider any $i \in 121$ and any $\langle j, \mathfrak{A}\rangle \in g(i)$, in which case the falsity of $e(\mathfrak{A})$ in \mathfrak{A} under $h(\mathfrak{A})$ is immediate, while the generation of $f(i)$ by $\pi_{1}[g(i)]$ is by Corollaries $5.4,5.5,5.6,5.8,5.14$, $5.19,5.20,5.21,5.18$, Theorems 5.12, 5.17, 5.24, 5.25 and Lemma 5.7, whereas

Table 4. Quasi-varieties of /almost quasi-strong Morgan-/Klee-ne-Stone lattices and their generating sets (part I: 0-79).

0	QSMSL	$\left\{\left\langle 1, \mathfrak{D}^{(1)}{ }_{4}\right\rangle,\left\langle 2, \mathfrak{K}_{4: 1}\right\rangle\right\}$
1	NIQSMSL U QSKSL	$\left\{\left\langle 14, \mathfrak{D M}_{4} \times \mathfrak{B}_{2}\right\rangle,\left\langle 3, \mathfrak{K}_{4: 1}\right\rangle\right\}$
2	NIQSMSL \cup DML	$\left\{\left\langle 3, \mathfrak{D}^{(1)} \mathfrak{M}_{4}\right\rangle,\left\langle 4, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
3	NIQSMSL \cup KL	$\left\{\left\langle 21, \mathfrak{D}^{(1)}{ }_{4} \times \mathfrak{B}_{2}\right\rangle,\left\langle 5, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 6, \mathfrak{K}_{3}\right\rangle\right\}$
4	MRQSMSL	$\left\{\left\langle 5, \mathfrak{D}^{\prime} \mathfrak{M}_{4}\right\rangle,\left\langle 7, \mathfrak{K}_{5: 1}\right\rangle\right\}$
5	NIMRQSMSL \cup KL	$\left\{\left\langle 15, \mathfrak{D}^{\prime} \mathfrak{M}_{4} \times \mathfrak{B}_{2}\right\rangle,\left\langle 8, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 9, \mathfrak{K}_{3}\right\rangle\right\}$
6	NIQSMSL	$\left\{\left\langle 9, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 25, \mathfrak{D} \mathfrak{M}_{4} \times \mathfrak{B}_{2}\right\rangle\right\}$
7	SMSL	$\left\{\left\langle 8, \mathfrak{D}^{(1)}{ }_{4}\right\rangle,\left\langle 10, \mathfrak{S}_{3}\right\rangle\right\}$
8	NISMSL \cup SKSL	$\left\{\left\langle 16, \mathfrak{D P}_{4} \times \mathfrak{B}_{2}\right\rangle,\left\langle 12, \mathfrak{K}_{3}\right\rangle,\left\langle 11, \mathfrak{S}_{3}\right\rangle\right\}$
9	NIMRQSMSL	$\left\{\left\langle 17, \mathfrak{D}^{(1)}{ }_{4} \times \mathfrak{B}_{2}\right\rangle,\left\langle 12, \mathfrak{K}_{5: 1}\right\rangle\right\}$
10	DML	
11	NIDML U KL	$\left\{\left\langle 18, \mathfrak{D}^{\prime} \mathfrak{M}_{4} \times \mathfrak{B}_{2}\right\rangle,\left\langle 13, \mathfrak{K}_{3}\right\rangle\right\}$
12	NISMSL	$\left\{\left\langle 19, \mathfrak{D M}_{4} \times \mathfrak{B}_{2}\right\rangle,\left\langle 13, \mathfrak{S}_{3}\right\rangle\right\}$
13	NIDML	$\left\{\left\langle 20, \mathfrak{D} \mathfrak{M}_{4} \times \mathfrak{B}_{2}\right\rangle\right\}$
14	QSKSL	$\left\{\left\langle 21, \mathfrak{K}_{4: 1}\right\rangle\right\}$
15	MRQSKSL	$\left\{\left\langle 17, \mathfrak{K}_{3}\right\rangle,\left\langle 16, \mathfrak{K}_{5: 1}\right\rangle\right\}$
16	SKSL	$\left\{\left\langle 18, \mathfrak{S}_{3}\right\rangle,\left\langle 19, \mathfrak{K}_{3}\right\rangle\right\}$
17	NIMRQSKSL	$\left\{\left\langle 22, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle,\left\langle 19, \mathfrak{K}_{5: 1}\right\rangle\right\}$
18	KL	$\left\{\left\langle 20, \mathfrak{K}_{3}\right\rangle\right\}$
19	NISKSL	$\left\{\left\langle 20, \mathfrak{S}_{3}\right\rangle,\left\langle 23, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
20	NIKL	$\left\{\left\langle 24, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
21	NIQSKSL \cup KL	$\left\{\left\langle 15, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 25, \mathfrak{K}_{3}\right\rangle\right\rangle$
22	RQSKSL	$\left\{\left\langle 23, \mathfrak{K}_{5: 1}\right\rangle\right\}$
23	RSKSL	$\left\{\left\langle 24, \mathfrak{S}_{3}\right\rangle,\left\langle 26, \mathfrak{K}_{4}\right\rangle\right\}$
24	RKL	$\left\{\left\langle 27, \mathfrak{K}_{4}\right\rangle\right\}$
25	NIQSKSL	$\left\{\left\langle 17, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
26	SL	$\left\{\left\langle 27, \mathfrak{S}_{3}\right\rangle\right\}$
27	BL	$\left\{\left\langle 28, \mathfrak{B}_{2}\right\rangle\right\}$
28	OMSL	\varnothing
29	AQSKSL	$\left\{\left\langle 30, \mathfrak{K}_{2}\right\rangle,\left\langle 31, \mathfrak{K}_{4: 1}\right\rangle\right\}$
30	NIAQSKSL \cup VQSKSL	$\left\{\left\langle 32, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 33, \mathfrak{K}_{4: 1}\right\rangle,\left\langle 34, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
31	NIAQSKSL \cup AKL	$\left\{\left\langle 33, \mathfrak{K}_{2}\right\rangle,\left\langle 35, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 36, \mathfrak{K}_{3}\right\rangle\right\}$
32	PVQSKSL	$\left\{\left\langle 37, \mathfrak{M}_{\left.\mathfrak{S}_{5: 1}\right\rangle}\right\rangle,\left\langle 38, \mathfrak{K}_{4: 1}\right\rangle,\left\langle 39, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
33	NIAQSKSL \cup VKL	$\left\{\left\langle 38, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 40, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 41, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
34	NIAQSKSL U QSKSL	$\left\{\left\langle 39, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 41, \mathfrak{K}_{4: 1}\right\rangle\right\}$
35	NIWMRAQSKSL \cup AKL	$\left\{\left\langle 40, \mathfrak{K}_{2}\right\rangle,\left\langle 42, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 43, \mathfrak{K}_{3}\right\rangle\right\}$
36	NIAQSKSL \cup TNIMSL	$\left\{\left\langle 44, \mathfrak{K}_{2}\right\rangle,\left\langle 43, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
37	VQSKSL	$\left\{\left\langle 45, \mathfrak{K}_{4: 1}\right\rangle,\left\langle 46, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
38	NIPVQSKSL \cup VKL	$\left\{\left\langle 45, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 47, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 48, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
39	NIPVQSKSL \cup QSKSL	$\left\{\left\langle 46, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 48, \mathfrak{K}_{4: 1}\right\rangle,\left\langle 49,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
40	NIWMRAQSKSL \cup VKL	$\left\{\left\langle 47, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 50, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 51, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
41	NIAQSKSL \cup KL	$\left\{\left\langle 48, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 51, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 44, \mathfrak{K}_{3}\right\rangle\right\}$
42	NIASKSL \cup AKL	$\left\{\left\langle 50, \mathfrak{K}_{2}\right\rangle,\left\langle 52, \mathfrak{S}_{3}\right\rangle,\left\langle 53, \mathfrak{K}_{3}\right\rangle\right\}$
43	NIWMRAQSKSL \cup TNIMSL	$\left\{\left\langle 54, \mathfrak{K}_{2}\right\rangle,\left\langle 53, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 55, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
44	NIAQSKSL	$\left\{\left\langle 56, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 54, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
45	NIVQSKSL \cup VKL	$\left\{\left\langle 58, \mathfrak{K}_{3} \oplus 1\right\rangle,\left\langle 57, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
46	NIVQSKSL U QSKSL	$\left\{\left\langle 59,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 58, \mathfrak{K}_{4: 1}\right\rangle\right\}$
47	NIWMRPVQSKSL \cup VKL	$\left\{\left\langle 57, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 60, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 61, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
48	NIPVQSKSL \cup KL	$\left\{\left\langle 58, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 61, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 62,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 56, \mathfrak{K}_{3}\right\rangle\right\}$
49	NINQSRPVQSKSL \cup QSKSL	$\left\{\left\langle 59, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 62, \mathfrak{K}_{4: 1}\right\rangle\right\}$
50	NIASKSL \cup VKL	$\left\{\left\langle 60, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 63, \mathfrak{S}_{3}\right\rangle,\left\langle 64, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
51	NIWMRAQSKSL \cup KL	$\left\{\left\langle 61, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 64, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 54, \mathfrak{K}_{3}\right\rangle\right\}$
52	AKL	$\left\{\left\langle 63, \mathfrak{K}_{2}\right\rangle,\left\langle 65, \mathfrak{K}_{3}\right\rangle\right\}$
53	NIASKSL \cup TNIMSL	$\left\{\left\langle 66, \mathfrak{K}_{2}\right\rangle,\left\langle 65, \mathfrak{S}_{3}\right\rangle,\left\langle 67, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
54	NIWMRAQSKSL	$\left\{\left\langle 68, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 66, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 69, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
55	WRAQSKSL	$\left\{\left\langle 69, \mathfrak{K}_{2}\right\rangle,\left\langle 67, \mathfrak{K}_{5: 1}\right\rangle\right\}$
56	NIPVQSKSL	$\left\{\left\langle 70, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 68, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 71,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
57	NIWMRVQSKSL \cup VKL	$\left\{\left\langle 72, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 73, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
58	NIVQSKSL \cup KL	$\left\{\left\langle 73, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 74,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 70, \mathfrak{K}_{3}\right\rangle\right\}$
59	NIQSRVQSKSL \cup QSKSL	$\left\{\left\langle 74, \mathfrak{K}_{4: 1}\right\rangle,\left\langle 14, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
60	NIPVSKSL \cup VKL	$\left\{\left\langle 72, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 75, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
61	NIWMRPVQSKSL \cup KL	$\left\{\left\langle 73, \mathfrak{M ㇒}_{5: 1}\right\rangle,\left\langle 75, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 76,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 68, \mathfrak{K}_{3}\right\rangle\right\}$
62	NINQSRPVQSKSL \cup KL	$\left\{\left\langle 74, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 76, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 71, \mathfrak{K}_{3}\right\rangle\right\}$
63	NIAKL \cup VKL	$\left\{\left\langle 77, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 78, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
64	NIASKSL \cup KL	$\left\{\left\langle 75, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 78, \mathfrak{S}_{3}\right\rangle,\left\langle 66, \mathfrak{K}_{3}\right\rangle\right\}$
65	NIAKL \cup TNIMSL	$\left\{\left\langle 79, \mathfrak{K}_{2}\right\rangle,\left\langle 80, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
66	NIASKSL	$\left\{\left\langle 81, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 79, \mathfrak{S}_{3}\right\rangle,\left\langle 82, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
67	WRASKSL	$\left\{\left\langle 82, \mathfrak{K}_{2}\right\rangle,\left\langle 80, \mathfrak{S}_{3}\right\rangle,\left\langle 83, \mathfrak{K}_{4}\right\rangle\right\}$
68	NIWMRPVQSKSL	$\left\{\left\langle 84, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 81, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 85,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
69	NIWRAQSKSL	$\left\{\left\langle 99, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 82, \mathfrak{K}_{5: 1}\right\rangle\right\}$
70	NIVQSKSL	$\left\{\left\langle 88,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 84, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
71	NINQSRPVQSKSL	$\left\{\left\langle 88, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 85, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
72	NIVSKSL \cup VKL	$\left\{\left\langle 77, \mathfrak{S}_{3}\right\rangle,\left\langle 89, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
73	NIWMRVQSKSL \cup KL	$\left\{\left\langle 89, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 90,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 84, \mathfrak{K}_{3}\right\rangle\right\}$
74	NIQSRVQSKSL \cup KL	$\left\{\left\langle 21, \mathfrak{B}_{2} \oplus 1\right\rangle,\left\langle 90, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle,\left\langle 88, \mathfrak{K}_{3}\right\rangle\right\}$
75	NIPVSKSL \cup KL	$\left\{\left\langle 89, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 81, \mathfrak{K}_{3}\right\rangle,\left\langle 91,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
76	NINQSRWMRPVQSKSL \cup KL	$\left\{\left\langle 90, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 91, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 85, \mathfrak{K}_{3}\right\rangle\right\}$
77	VKL	$\left\{\left\langle 93, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
78	NIAKL \cup KL	$\left\{\left\langle 93, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 79, \mathfrak{K}_{3}\right\rangle\right\}$
79	NIAKL	$\left.\left\{\left\langle 94, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 86, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\rangle\right\}$

the fact that both $f(j)=(f(i) \cap \operatorname{Mod}(e(\mathfrak{A})))$ and $(f(i) \backslash f(j)) \subseteq \operatorname{Mod}(t(\mathfrak{A}))$ is due to Lemmas 5.7, 5.15, 5.22, Theorems 5.24, 5.25, Corollaries 5.5, 5.6, 5.8, 5.11, (4.18), (5.8), (5.9), (5.16), (5.19) and (5.18). Then, for any pre-variety $\mathrm{P} \subseteq f(i)$, by Corollaries 5.5, 5.6, 5.8 as well as Lemmas 5.7, 5.15 and $\boldsymbol{\ell}(\mathfrak{A})$, where the function $\boldsymbol{\ell}$ with domain QMS is given by the first and fifth columns of Table $3, \mathfrak{A} \in \mathrm{P}$, unless $\mathrm{P} \subseteq f(j)$. In particular, $\mathrm{P}=f(i)$, whenever $\mathrm{P} \subseteq f(k)$, for no $k \in \pi_{0}[g(i)]$, in which case, $\operatorname{img} f$, containing all varieties of almost/ quasi-strong Morgan-/Kleene-Stone lattices, does exhaust all their pre-varieties, because these are subsumed by the varieties they generate, and so Corollaries 5.16, 5.43, 5.44, 5.45, 5.46, 5.47, 5.48, Footnote 1, (2.10), Theorem 4.4 and Table 3 complete the argument.

This subsumes [18, Theorem 4.8], in its turn, subsuming [1, Theorem 6.2], as well as, by Corollaries 4.7, 5.4, 5.6 and Theorem 5.12, immediately yields:

Corollary 5.50. Any [pre-/-quasi-]variety $\mathrm{P} \subseteq$ SMSL such that $\mathrm{P} \nsubseteq \mathrm{DML}$ is generated by $(\mathrm{P} \cap \mathrm{DML}) \cup \mathrm{SL}$.

Though we have refrained from explicit presenting the Hasse diagram of the lattice of quasi-varieties of almost quasi-strong Kleene-Stone lattices just because of its being too expansive and complicated, Theorem 5.49 does provide its comprehensive description. The reason of restricting our consideration by merely almost quasi-strong Kleene-Stone lattices is clarified by the next subsection.

Table 5. Quasi-varieties of /almost quasi-strong Morgan-/Klee-ne-Stone lattices and their generating sets (part II: 80-120).

80	WRAKL	$\left\{\left\langle 86, \mathfrak{K}_{2}\right\rangle,\left\langle 97, \mathfrak{K}_{4}\right\rangle\right\}$
81	NIPVSKSL	$\left\{\left\langle 95, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 92,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
82	NIWRASKSL	$\left\{\left\langle 96, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 86, \mathfrak{S}_{3}\right\rangle,\left\langle 87, \mathfrak{K}_{4}\right\rangle\right\}$
83	ASL	$\left\{\left\langle 87, \mathfrak{K}_{2}\right\rangle,\left\langle 97, \mathfrak{S}_{3}\right\rangle\right\}$
84	NIWMRVQSKSL	$\left\{\left\langle 95, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 98,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
85	NINQSRWMRPVQSKSL	$\left\{\left\langle 98, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 92, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 99, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
86	NIWRAKL	$\left\{\left\langle 100, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 101, \mathfrak{K}_{4}\right\rangle\right\}$
87	NIASL	$\left\{\left\langle 102, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 101, \mathfrak{S}_{3}\right\rangle\right\}$
88	NIQSRVQSKSL	$\left\{\left\langle 25, \mathfrak{B}_{2} \oplus 1\right\rangle,\left\langle 98, \mathfrak{K}_{4: 1} \times \mathfrak{B}_{2}\right\rangle\right\}$
89	NIVSKSL \cup KL	$\left\{\left\langle 93, \mathfrak{S}_{3}\right\rangle,\left\langle 95, \mathfrak{K}_{3}\right\rangle,\left\langle 103,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
90	NIQSRWMRVQSKSL \cup KL	$\left\{\left\langle 15, \mathfrak{B}_{2} \oplus 1\right\rangle,\left\langle 103, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 98, \mathfrak{K}_{3}\right\rangle\right\}$
91	NINQSRPVSKSL \cup KL	$\left\{\left\langle 103, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 92, \mathfrak{K}_{3}\right\rangle\right\}$
92	NINQSRPVSKSL	$\left\{\left\langle 106, \mathfrak{M} \mathfrak{S}_{5: 1}\right\rangle,\left\langle 96, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle\right\}$
93	NIVKL \cup KL	$\left\{\left\langle 94, \mathfrak{K}_{3}\right\rangle,\left\langle 104,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
94	NIVKL	$\left\{\left\langle 105,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
95	NIVSKSL	$\left\{\left\langle 94, \mathfrak{S}_{3}\right\rangle,\left\langle 106,\left(\mathfrak{R}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle\right\}$
96	WRPVSKSL	$\left\{\left\langle 107, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 102, \mathfrak{K}_{4}\right\rangle\right\}$
97	ABL	$\left\{\left\langle 101, \mathfrak{K}_{2}\right\rangle,\left\langle 108, \mathfrak{B}_{2}\right\rangle\right\}$
98	NIQSRWMRVQSKSL	$\left\{\left\langle 109, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle,\left\langle 106, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 17, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
99	WRPVQSKSL	$\left\{\left\langle 109, \mathfrak{M}^{(1)}{ }_{5: 1}\right\rangle,\left\langle 96, \mathfrak{K}_{5: 1}\right\rangle\right\}$
100	NIWRVKL	$\left\{\left\langle 110, \mathfrak{K}_{4}\right\rangle,\left\langle 24, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
101	NIABL	$\left\{\left\langle 110, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle\right\}$
102	PVSL	$\left\{\left\langle 111, \mathfrak{M S}_{5: 1}\right\rangle\right\}$
103	NIQSRVSKSL \cup KL	$\left\{\left\langle 106, \mathfrak{K}_{3}\right\rangle,\left\langle 104, \mathfrak{S}_{3}\right\rangle,\left\langle 16, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
104	NIQSRVKL \cup KL	$\left\{\left\langle 105, \mathfrak{K}_{3}\right\rangle,\left\langle 18, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
105	NIQSRVKL	$\left\{\left\langle 100, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle,\left\langle 20, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
106	NIQSRVSKSL	$\left\{\left\langle 107, \mathfrak{K}_{3} \times \mathfrak{B}_{2}\right\rangle,\left\langle 105, \mathfrak{S}_{3}\right\rangle,\left\langle 19, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
107	WRVSKSL	$\left\{\left\langle 111, \mathfrak{K}_{4}\right\rangle,\left\langle 100, \mathfrak{S}_{3}\right\rangle,\left\langle 23, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
108	TNIMSL	$\left\{\left\langle 28, \mathfrak{K}_{2}\right\rangle\right\}$
109	WRVQSKSL	$\left\{\left\langle 107, \mathfrak{K}_{5: 1}\right\rangle,\left\langle 22, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
110	VBL	$\left\{\left\langle 27, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
111	VSL	$\left\{\left\langle 110, \mathfrak{S}_{3}\right\rangle,\left\langle 26, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$
112	ASKSL	$\left\{\left\langle 53, \mathfrak{K}_{3}\right\rangle,\left\langle 52, \mathfrak{S}_{3}\right\rangle,\left\langle 113, \mathfrak{K}_{2}\right\rangle\right\}$
113	NIASKSL \cup VSKSL	$\left\{\left\langle 114, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 63, \mathfrak{S}_{3}\right\rangle,\left\langle 115, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
114	PVSKSL	$\left\{\left\langle 116, \mathfrak{M} \mathfrak{S}_{5: 1}\right\rangle,\left\langle 117, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
115	NIASKSL \cup SKSL	$\left\{\left\langle 117, \mathfrak{K}_{2} \times \mathfrak{B}_{2}\right\rangle,\left\langle 78, \mathfrak{S}_{3}\right\rangle,\left\langle 66, \mathfrak{K}_{3}\right\rangle\right\}$
116	VSKSL	$\left\{\left\langle 77, \mathfrak{S}_{3}\right\rangle,\left\langle 118, \mathfrak{K}_{3} \oplus 1\right\rangle\right\}$
117	NIPVSKSL \cup SKSL	$\left\{\left\langle 119,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 118, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 81, \mathfrak{K}_{3}\right\rangle\right\}$
118	NIVSKSL \cup SKSL	$\left\{\left\langle 120,\left(\mathfrak{K}_{3} \oplus 1\right) \times \mathfrak{B}_{2}\right\rangle,\left\langle 93, \mathfrak{S}_{3}\right\rangle,\left\langle 95, \mathfrak{K}_{3}\right\rangle\right\}$
119	NINQSRPVSKSL \cup SKSL	$\left\{\left\langle 120, \mathfrak{M S}_{5: 1}\right\rangle,\left\langle 92, \mathfrak{K}_{3}\right\rangle\right\}$
120	NIQSRVSKSL \cup SKSL	$\left\{\left\langle 104, \mathfrak{S}_{3}\right\rangle,\left\langle 106, \mathfrak{K}_{3}\right\rangle,\left\langle 16, \mathfrak{B}_{2} \oplus 1\right\rangle\right\}$

5.7. Infiniteness of the lattice of quasi-varieties of almost De Morgan lattices. To avoid cumbersome couple notations, we use standard abbreviations: $(\mathrm{f} \mid \mathrm{t}) \triangleq\langle 0| 1,0|1\rangle$ and $(\mathrm{n} \mid \mathrm{b}) \triangleq\langle 0| 1,1|0\rangle$.

Given any $n \in(\omega \backslash 1)$, let $Q_{n} \triangleq\left(\left(\left\{\neg x_{i} \approx x_{i} \mid i \in n\right\} \cup\left\{\neg x_{n} \approx\left(\vee_{+}\left\langle x_{j}\right\rangle_{j \in n}\right)\right\}\right) \rightarrow\right.$ $\left.\left(\neg \neg x_{n} \approx x_{n}\right)\right)$, in which case $\operatorname{Mod}\left(Q_{1}\right)=\operatorname{Mod}((5.7))$, and so, by Lemma 5.15,

$$
\begin{equation*}
\left(A V \cap \operatorname{Mod}\left(Q_{1}\right)\right)=(\operatorname{NIAV} \cup \mathrm{VV}) \tag{5.25}
\end{equation*}
$$

where $\mathrm{V} \triangleq(([\{\mathrm{Q}\} \mathrm{S}](\mathrm{M} \mid \mathrm{K})[\mathrm{S}]) /(\mathrm{S} \| \mathrm{B})) \mathrm{L}$, while, for any $\mathrm{K} \subseteq \mathrm{MSL},\left(\mathrm{K} \cap \operatorname{Mod}\left(\mathrm{Q}_{n}\right)\right)=$ $\left(\mathrm{K} \cap \operatorname{Mod}\left(Q_{n+1}\left[x_{n+k} / x_{(n-1)+k}\right]_{k \in 2}\right)\right)$, in which case:

$$
\begin{equation*}
\left(\mathrm{K} \cap \operatorname{Mod}\left(Q_{n+1}\right)\right) \subseteq\left(\mathrm{K} \cap \operatorname{Mod}\left(Q_{n}\right)\right) \tag{5.26}
\end{equation*}
$$

and so $\left\langle\mathrm{K} \cap \operatorname{Mod}\left(\mathscr{Q}_{l}\right)\right\rangle_{l \in(\omega \backslash 1)}$ is a decreasing denumerable chain of relative sub-quasivarieties of K with intersection, being that relatively axiomatized by $\mathbf{Q}_{\omega} \triangleq\left\{Q_{n} \mid\right.$ $n \in(\omega \backslash 1)\}$.

Lemma 5.51. Let $n \in(\omega \backslash 2), \bar{a} \triangleq\langle\{\langle i, \mathrm{~b}\rangle\} \cup((n \backslash\{i\}) \times\{\mathrm{n}\})\rangle_{i \in n}$ and $\mathfrak{D M}_{4: n}$ the subalgebra of $\mathfrak{D M}_{4}^{n}$ generated by $I_{n} \triangleq(\operatorname{img} \bar{a})$. Then, $\mathcal{Q}_{(n-1)[+1]}$ is [not] true in $\left(\mathfrak{D M}_{4: n} \oplus 1\right) \in \operatorname{IVDML}$ [under $\left.\left[x_{j} /\left\langle 1, a_{j}\right\rangle ; x_{n} /\langle 0, n \times\{f\}\rangle\right]_{j \in n}\right]$.

Proof. Clearly, $A \triangleq D M_{4: n} \ni b \triangleq\left(\vee_{+}^{\mathcal{D M}_{4}^{n}} \bar{a}\right)=(n \times\{\mathrm{t}\})=\neg^{\mathfrak{D M}_{4}^{n}} \neg^{D_{M}^{n}} b$, in which case $A \ni c \triangleq \neg^{\mathfrak{D} \mathfrak{M}_{4}^{n}} b=(n \times\{\mathrm{f}\})$, and so the []-optional part holds, for $I_{n} \subseteq \Im^{\mathfrak{D} \mathfrak{M}_{4}^{n}}$, while $\neg^{\mathfrak{K}_{2}} 0=1=\left(\vee_{+}^{\mathfrak{K}_{2}}(n \times\{1\})\right) \in \Im^{\mathfrak{K}_{2}} \not \nexists 0$. Now, given any $B \subseteq A$, let $(C \mid D)(B) \triangleq(\wedge \mid \vee)_{+}^{\mathcal{D} \mathfrak{M}_{4}^{n}}\left[B^{+}\right] \in \wp(B, A)$, in which case $E \triangleq\left(C\left(I_{n}\right) \backslash I_{n}\right) \subseteq\{\mathrm{n}, \mathrm{f}\}^{n}$, and so $D(E) \subseteq\{\mathrm{n}, \mathrm{f}\}^{n}$, while, for each $k \in n$ and every $\bar{d} \in E$, either of $d_{k}=(\mathrm{n} \| \mathrm{f})$ holds, implying, resp., $\left(a_{k} \vee^{\mathfrak{D} M_{4}^{n}} \bar{d}\right) \ni \|=\left(\langle k, \mathrm{t}\rangle \mid a_{k}\right) \mid$ "because $a_{k}[n \backslash\{k\}]=\{\mathrm{n}\}$ ", whereas, for all $l \in(n \backslash\{k\}), \pi_{k / l}\left(a_{k} \vee^{\mathfrak{D M}_{4}^{n}} a_{l}\right)=\mathrm{t}$. Then, by (4.1) and (4.5), $A=D\left(C\left(I_{n}\right)\right)$, in which case, since, by (4.3), the Σ_{+}^{-}quasi-identity $\left(\left\{\neg x_{m} \approx x_{m} \mid\right.\right.$ $\left.m \in 2\} \cup\left\{x_{0} \lesssim x_{1}\right\}\right) \rightarrow\left(x_{1} \approx x_{0}\right)$ is true in MSL $\ni \mathfrak{D M}_{4}^{n},\left(\Im^{\mathfrak{D M}_{4: n}} \backslash I_{n}\right) \subseteq D(E)$, and so $I_{n} \subseteq J \triangleq \Im^{\mathcal{D M}_{4: n}} \subseteq\left(I_{n} \cup\{n \times\{\mathrm{n}\}\}\right)$. Finally, we prove the truth of Q_{n-1} in $\mathfrak{F} \triangleq\left(\mathfrak{D M}_{4: n} \oplus 1\right)$ by contradiction. For suppose there are some $\bar{e} \in\left(\Im^{\mathfrak{F}}\right)^{n-1}$ and $f \in F$ such that $\neg^{\mathfrak{F}} f=\left(\vee_{+}^{\mathfrak{F}} \bar{e}\right)$ but $\neg_{\mathfrak{F}}^{\mathfrak{F}} \not{ }^{\mathfrak{F}} \neq f$, in which case $\bar{g} \triangleq\left(\bar{e} \circ \pi_{1}\right) \in J^{n-1}$, while $f=\langle 0, c\rangle$, whereas $\left(\vee_{+}^{\mathcal{D M}_{4: n}} \bar{g}\right)=b$, and so, for each $\ell \in n$, there is some $\mathbb{k}_{\ell} \in(n-1)$ such that $\pi_{\ell}\left(g_{\mathbb{k}_{\ell}}\right)=\mathrm{b}$. Then, $g_{\mathbb{k}_{\ell}}=a_{\ell}$, in which case $\overline{\mathbb{k}} \in(n-1)^{n}$ is injective, and so $n \leqslant(n-1)$. This contradiction completes the argument.

This, by Corollary 4.7, Lemma 5.32 , (4.18), (5.25), (5.26) and the Compactness Theorem for ultra-multilicative classes (cf., e.g., [15]), immediately yields:

Theorem 5.52. $\left\langle\mathrm{ADML} \cap \operatorname{Mod}\left(Q_{n}\right)\right\rangle_{n \in(\omega \backslash 1)}$ is a strictly decreasing countable chain of proper sub-quasi-varieties of $\mathrm{ADML}=(\mathrm{AQSMSL} \cap \mathrm{NDML}) \subseteq[\mathrm{PS}] \mathrm{MSL}$, in which case $\left(\operatorname{ADML} \cap \operatorname{Mod}\left(\mathbf{Q}_{\omega}\right)\right)=\left(\operatorname{ADML} \cap \operatorname{Mod}\left(Q_{m}\right)\right)$, for no $m \in(\omega \backslash 1)$, and so this is not finitely-axiomatizable.

6. Relatively semi-Simple quasi-varieties of Morgan-Stone lattices and algebras

First, by (2.4) as well as Lemmas 4.6, due to which, for any $i \in 2, \mathfrak{K}_{3[01]} \preceq$ $\mathfrak{K}_{4: i[, 01]}$, and 5.40 , we immediately get:
Corollary 6.1. Let $\mathrm{P} \subseteq[\mathrm{B}] \mathrm{MSL}$ be a pre-variety and $i \in 2$. Suppose $\mathfrak{K}_{4: i[01]} \in \mathrm{P}$. Then, $\mathfrak{K}_{4: i[, 01]} \in\left(\operatorname{SIP}_{P}(\mathrm{P}) \backslash \operatorname{Sip}(\mathrm{P})\right)$.
Lemma 6.2. Let $\mathrm{P} \subseteq \mathrm{A}((\mathrm{DM}) \mid \mathrm{K}) \mathrm{L}$ be a pre-variety containing $(\mathfrak{D M} \mid \mathfrak{K})_{4 \mid 3}$. Then, \mathfrak{K}_{2} is embeddable into any $\mathfrak{A} \in \operatorname{Sip}(\mathrm{P} \backslash \mathrm{DML})$.

Proof. Take any $a \in\left(A \backslash\left\{\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\}\right)$. Let $(\mathcal{H} \| \mathcal{G}) \triangleq \operatorname{hom}\left(\mathfrak{A},(\mathfrak{K} \|(\mathfrak{D M} \mid \mathfrak{K}))_{2 \|(4 \mid 3)}\right)$ and $(\theta \| \vartheta) \triangleq\left(A^{2} \cap(\bigcap \operatorname{ker}[\mathcal{H} \| \mathcal{G}])\right)$, in which case, by (2.8) and Corollary $4.7,(\theta \cap \vartheta)=\Delta_{A}$, while, by (2.5) and the P-simplicity of $\mathfrak{A}, \vartheta \in \operatorname{Cop}(\mathfrak{A})=\left\{A^{2}, \Delta_{A}\right\}$, whereas, by Corollary 4.7, $\Delta_{A} \nexists\left\langle a, \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a\right\rangle \in \vartheta$, and so $\vartheta=A^{2}$. Then, $\theta=\Delta_{A}$, in which case, by (2.8), Corollary 4.7 and the P-simplicity of $\mathfrak{A}, \mathfrak{A} \in$ (TNIMSL \backslash OMSL), and so Lemma 5.33 completes the argument.

The P-simplicity of \mathfrak{A} cannot be neither omitted nor replaced by its idempotence here, even if P is quasi-equational, when taking $\mathfrak{K}_{2} \notin P \triangleq(A((D M) \mid K) L \cap$ $\left.\operatorname{Mod}\left(\mathfrak{Q}_{1}\right)\right) \ni[\mathfrak{A} \triangleq]\left(((\mathfrak{D M}) \mid \mathfrak{K})_{4 \mid 3}[\oplus 1]\right)\left[\in(I P \backslash \mathrm{DML})\right.$, for $((\mathfrak{D M}) \mid \mathfrak{K})_{4 \mid 3}$ is idempotent, while $1 \in \Im^{\mathfrak{K}_{2}}$, whereas $\left.\left(\pi_{0} \upharpoonright A\right)[\mathfrak{R}]=\mathfrak{K}_{2} \not \vDash(4.9)\left[x_{0} / 0\right]\right]$.

Corollary 6.3. Let $\mathrm{P} \subseteq([\mathrm{MSA} \cap \mathrm{B}] \mathrm{MSL})$ be a pre-variety. Suppose $\mathfrak{K}_{2} \in \mid \notin$ $\mathrm{P}\left(\supseteq\left(\varnothing \mid\left\{\mathfrak{D M}_{4}\right\}\right)\right)$ Then, $\mathrm{K} \triangleq \operatorname{Sip}(\operatorname{NIP}(\cup([\mathrm{B}] \mathrm{NDML} \cap \mathrm{P}))) \subseteq \mathbf{I}\left(\left\{\mathfrak{B}_{2[0,1]}\right\} \cup\left(\left(\left\{\mathfrak{K}_{2}\right\}\right.\right.\right.$ $[\cap \varnothing]) \mid \varnothing)(\cup[B](A \mid) D M L)) \subseteq[B](A \mid) D M L$.
Proof. Consider any $\mathfrak{A} \in \mathrm{K} \subseteq \mathrm{P}$, in which case $|A|>1$, and so we have the following $2(+1)[-1]$ exhaustive cases [but the first one]:
(1) $\mathfrak{A} \in$ TNIMSL,
in which case, by Lemma $5.33, \mathfrak{K}_{2}$, being enbeddable into \mathfrak{A} belongs to P, while, as $|A|>1$, whereas \mathfrak{K}_{2}, being two-element, has no proper non-one-element subalgebra, by (2.8) and Corollary 4.7, there is some $h \in$ $\operatorname{hom}^{\mathrm{S}}\left(\mathfrak{A}, \mathfrak{K}_{2}\right)$, and so, by $(2.5), h$ is injective, for $(\mathrm{img} h)=2$, being twoelement, is not a singleton.
(2) $\mathfrak{A} \in($ NIP $\backslash($ TNIMSL[$\cap \varnothing]))$,
in which case, by Lemma $5.3, \mathfrak{B}_{2[, 01]}$, being embeddable into \mathfrak{A}, belongs to P , while, as $\mathfrak{B}_{2[01]}$ has no proper subalgebra, by Corollary 5.4, there is some $g \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{A}, \mathfrak{B}_{2[, 01]}\right)$, and so, by (2.5), g is injective, for $(\operatorname{img} g)=2$, being two-element, is not a singleton.
(3) $\mathfrak{A} \notin($ NIP $\cup($ TNIMSL[$\cap \varnothing]))$,
in which case, by Lemma $5.3, \mathfrak{K}_{3[, 01]}$, being embeddable into \mathfrak{A}, belongs to P, while $\mathfrak{A} \in([B] N D M L \cap P)$. We prove that $\mathfrak{A} \in[B]$ ADML, by contradiction. For suppose $\mathfrak{A} \notin[\mathrm{B}] \mathrm{ADML}$, in which case there are some $a, b \in A$ such that $\left(\neg^{\mathfrak{A}} \neg^{\mathfrak{A}} a \wedge^{\mathfrak{A}} \neg^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right) \not^{\mathfrak{A}}\left(a \vee^{\mathfrak{A}} \neg^{\mathfrak{A}} b\right)$, and so, by (2.8) and Corollary 4.7, there are some $\mathfrak{B} \in\left\{\mathfrak{K}_{4: 0[, 01]}, \mathfrak{D M}_{4[, 01]}\right\}$ and some $f \in \operatorname{hom}(\mathfrak{A}, \mathfrak{B})$ such that $\left(\neg^{\mathfrak{B}} \neg^{\mathfrak{B}} f(a) \wedge^{\mathfrak{B}} \neg^{\mathfrak{B}} \neg^{\mathfrak{B}} f(b)\right) \star^{\mathfrak{B}}\left(f(a) \vee^{\mathfrak{B}} \neg^{\mathfrak{B}} f(b)\right)$. Then, $\neg^{\mathfrak{B}} \neg^{\mathfrak{B}} f(a) \neq$ $f(a)$, in which case $\mathfrak{B} \neq \mathfrak{D M}_{4[, 01]}$, and so $\mathfrak{B}=\mathfrak{K}_{4: 0[01]}$, while $\neg^{\mathfrak{B}} \neg^{\mathfrak{B}} f(b) \neq$ $\neg^{\mathfrak{B}} f(b)$, in which case $f(b) \notin(3 \backslash 1)$, and so, by Lemma 5.40, $e \triangleq(f \circ h) \in$ $\operatorname{hom}\left(\mathfrak{A}, \mathfrak{K}_{3[, 01]}\right)$, where $h \in \operatorname{hom}\left(\mathfrak{B}, \mathfrak{K}_{3[, 01]}\right) \neq \varnothing$, whereas, since $\Im^{\mathfrak{K}_{3}}=\{1\}$, $\operatorname{img} e$, forming a subalgebra of $\mathfrak{K}_{3[, 01]}$, is not a singleton, i.e., $e_{*}^{-1}\left[\Delta_{3}\right]=$ $(\operatorname{ker} e) \neq A^{2}$. Thus, by (2.5), e is injective, in which case, by Corollary 4.7, \mathfrak{A}, being embeddable into $\mathfrak{K}_{3[, 01]} \in$ ADML, belongs to this variety, and so Corollary 4.7, Lemma 6.2 and this contradiction complete the argument of this ()-optional case.
In this way, Corollary 4.7 completes the argument.
Given any [finite] $\mathfrak{A} \in$ MSA, by (4.7) and (4.8), $(A \oplus 2) \triangleq((A \times\{1\}) \cup$ $\left\{\left\langle\perp^{\mathfrak{A}}, 0\right\rangle,\left\langle\top^{\mathfrak{A}}, 2\right\rangle\right\}$) [being finite] forms a subalgebra of $\mathfrak{A} \times \mathfrak{K}_{3,01}$, in which case $(\mathfrak{A} \oplus 2) \triangleq\left(\left(\mathfrak{A} \times \mathfrak{K}_{3,01}\right) \upharpoonright(A \oplus 2)\right) \in \mathrm{MSA}$ [is finite].

Lemma 6.4. Let $\mathrm{P} \subseteq \mathrm{BMSL}$ be a pre-variety and $\mathfrak{A} \in\{I\} \mathrm{MSA} \backslash \mathrm{KA})\langle$ as well as $\left.f \in \operatorname{hom}\left(\mathfrak{A}, \mathfrak{K}_{3,01}\right)\right\rangle$. Suppose $\operatorname{Co}(\mathfrak{A})=\left\{\Delta_{A}, A^{2}\langle\right.$, ker $\left.f\rangle\right\}$, while $\mathfrak{F} \triangleq(\mathfrak{A} \oplus 2) \in \mathrm{P} \not \nexists$ \mathfrak{A}, whereas $|A| \in \omega$. Then, $\mathfrak{F} \in\left(\operatorname{SI}_{P}(\mathrm{P})\left\{\backslash \operatorname{Sip}_{\mathrm{P}}(\mathrm{P})\right\}\right)$.

Proof. In that case, since $\left(\pi_{0} \upharpoonright F\right) \in \operatorname{hom}^{\mathrm{S}}(\mathfrak{F}, \mathfrak{A}), \mathfrak{F} \notin \mathrm{KA} \ni \mathfrak{K}_{3,01}$ is not embeddable into $\mathfrak{K}_{3,01}^{2}$, and so, by Remark 4.2, the simplicity of $\mathfrak{K}_{3,01}$ (cf. Remark 4.3) as well as the non-optional version of Corollary 3.12 with $\mathfrak{B}=\mathfrak{C}=\mathfrak{K}_{3,01}$ and a unique $h \in(((A \times\{1\})\langle\cap \varnothing\rangle)\langle\cup\{f\}\rangle), \mathfrak{F} \in \operatorname{SI}_{\mathrm{P}}(\mathrm{P})$. \{And what is more, $\left\{\left\langle 0,\left\langle\perp^{\mathfrak{A}}, 0\right\rangle\right\rangle,\langle 1,\langle a, 1\rangle\rangle,\left\langle 2,\left\langle\top^{\mathfrak{A}}, 2\right\rangle\right\rangle\right\}$, where $a \in \mathfrak{\Im}^{\mathfrak{A}} \neq \varnothing$, is an embedding of $\mathfrak{K}_{3,01}$ into \mathfrak{F}, in which case $\mathfrak{K}_{3,01} \in \mathrm{P}$, and so, as $e \triangleq\left(\pi_{1} \upharpoonright F\right) \in \operatorname{hom}^{\mathrm{S}}\left(\mathfrak{F}, \mathfrak{K}_{3,01}\right)$, by (2.5), $(\operatorname{ker} e) \in\left(\operatorname{Cop}(\mathfrak{F}) \backslash\left\{\Delta_{F}, F^{2}\right\}\right)$, for $|F|=(|A|+2)>3 \neq 1$, as $\omega \ni|A|>1$, because \mathfrak{A} is idempotent.\}

Corollary 6.5. Let $\mathrm{P} \subseteq$ MSA be a relatively semi-simple pre-variety, $\mathfrak{A} \in P, \mathfrak{B} \in$ $\left(\left\{\mathfrak{K}_{4: i, 01} \mid i \in 2\right\} \cup\left\{\mathfrak{D M}_{4,01}\right\}\right)$ and e an embedding of $\mathfrak{B} \mid \Sigma_{+}^{-}$into $\mathfrak{A} \mid \Sigma_{+}^{-}$. Then, $\mathfrak{B} \in \mathrm{P}$.

Proof. By contradiction. For suppose $\mathfrak{B} \notin \mathrm{P}$, in which case e is not an embedding of \mathfrak{B} into \mathfrak{A}, and so, by (4.7) and (4.8), both $e\left((\perp \mid \top)^{\mathfrak{B}}\right) \neq(\perp \mid T)^{\mathfrak{A}}$. Then, by (4.7) and (4.8), $\left(\left(\pi_{0} \upharpoonright(B \times\{1\})\right) \circ e\right) \cup\left\{\left\langle\perp^{\mathfrak{B}}, 0, \perp^{\mathfrak{A}}\right\rangle,\left\langle\top^{\mathfrak{B}}, 2, \top^{\mathfrak{A}}\right\rangle\right\}$ is an embedding of $\mathfrak{B} \oplus 2$ into \mathfrak{A}, in which case $(\mathfrak{B} \oplus 2) \in \mathrm{P}$, and so Lemmas $5.40,6.4$, the simplicity of $\mathfrak{D} \mathfrak{M}_{4,01} \notin(\mathrm{MSA} \backslash \mathrm{KA})$ (cf., e.g., Remark 4.3), its finiteness and idempotence as well as those of $\mathfrak{K}_{4:(0 \mid 1)[01]} \notin(\mathrm{MSA} \backslash \mathrm{KA})$ contradict to the relative semi-simplicity of P , as required.

Theorem 6.6. Any relatively semi-simple relatively subdirectly-representable (more specifically, "relatively semi-simple quasi-equational"/implicative) pre-variety P $\subseteq([\mathrm{MSA} \cap \mathrm{B}] \mathrm{MSL})$ is a sub-variety of $[\mathrm{B}] \mathrm{ADML}$, in which case it is $\mho_{V_{1} \mid \Omega, \wp_{(}(\Omega)^{\bar{\varphi}}}{ }^{-}$ implicative, and so " $\{$ relatively $\}\langle$ finitely- \rangle semi-simple" $/ /\left\lfloor\mho_{V_{1} \| \Omega, \wp(\Omega)}^{\bar{\varphi}}-\right\rfloor$ implicative sub-\{ quasi-//pre-\} varieties of $[\mathrm{MSA} \cap \mathrm{B}] \mathrm{MSL}$ are exactly sub-varieties of [B]ADML.

Proof. In that case, P is generated by $K \triangleq \operatorname{Sip}_{P}(P)$. If there was some $\mathfrak{A} \in$ $(\mathrm{P} \backslash(\mathrm{NI}[\mathrm{B}] \mathrm{MSL} \cup[\mathrm{B}] \mathrm{NDML}))$, then, by Lemma 5.30 [and Corollary 6.5], $\mathfrak{K}_{4: i[, 01]}$ would be in P , for some $i \in 2$, contrary to the relative semi-simplicity of P and Corollary 6.1. Hence, $\mathrm{K} \subseteq \mathrm{P} \subseteq(\mathrm{NI}[\mathrm{B}] \mathrm{MSL} \cup[\mathrm{B}] \mathrm{NDML})$, in which case, by Corollary 6.3, $\mathrm{K} \subseteq[\mathrm{B}] \mathrm{ADML}$, and so $\mathrm{P} \subseteq[\mathrm{B}] A D M L$. Consider the following complementary cases:

- $\mathrm{K}=\varnothing$,
in which case $\mathrm{P}=[\mathrm{B}]$ OMSL.
- $K \neq \varnothing$.

Consider the following complementary subcases:
$-K \subseteq \operatorname{NI}[B] M S L$.
in which case, by Footnote 1 and Lemma $6.3, \mathrm{~K}=\mathbf{I}\left(\left(\mathrm{P} \cap\left\{\mathfrak{B}_{2[, 01]}\right\}\right) \cup\right.$ $\left(\left(\mathrm{P} \cap\left\{\mathfrak{K}_{2}\right\}\right)[\cap \varnothing]\right)$, and so, by Corollary $4.7, \mathrm{P}=([\mathrm{B}](\mathrm{A} \mid) \mathrm{BL} \|([\mathrm{BOMSL} \cap$ $\mathrm{B}]$ TNIMSL $) \mid[\mathrm{B}] \mathrm{OMSL})$, whenever $\mathfrak{K}_{2} \in \mid \notin \mathrm{P} \ni \| \not \supset \mathfrak{B}_{2[, 01]}$.

- K $\neq \mathrm{NI}[\mathrm{B}] \mathrm{MSL}$.

Consider the following complementary subcases:

* $\mathrm{K} \subseteq([\mathrm{B}] \mathrm{KSL} \cup \mathrm{NI}[\mathrm{B}] \mathrm{MSL})$,
in which case $\mathrm{IK} \subseteq[\mathrm{B}] \mathrm{AKL}$, and so, by Lemma $6.3, \mathrm{P} \subseteq[\mathrm{B}] \mathrm{AKL}$. Conversely, take any $\mathfrak{A} \in \mathrm{IK} \neq \varnothing$, in which case, by Lemma 5.3, $\mathfrak{K}_{3[, 01]} \in \mathrm{P}$, so, by Corollary 4.7 and Lemma $6.2, \mathrm{P}=[\mathrm{B}](\mathrm{A} \mid) \mathrm{KL}$, whenever $\mathfrak{K}_{2} \in \mid \notin \mathrm{P}$.
* $\mathrm{K} \nsubseteq([\mathrm{B}] \mathrm{QSKSL} \cup \mathrm{NI}[\mathrm{B}] \mathrm{QSMSL}$. Take any $\mathfrak{B} \in(\mathrm{K} \backslash([B]$ QSKSL $\cup \operatorname{NI}[B] Q S M S L)) \neq \varnothing$, in which case, by Lemma 5.28 [and Corollary 6.5], $\mathfrak{D M}_{4[01]} \in \mathrm{P}$, and so, by Corollary 4.7 and Lemma 6.2, $\mathrm{P}=[\mathrm{B}](\mathrm{A} \mid) \mathrm{DML}$, whenever $\mathfrak{K}_{2} \in \mid \notin \mathrm{P}$.

This, by Corollary 4.7 (and Remark/Corollary 2.4/3.4), completes the proof.
This supersedes the reservation "quasi-equational/finitely" in Corollary 4.7 for the unbounded case.

7. Conclusions

Perhaps, the most acute problems remained open concern the lattice of quasivarieties of all MS lattices. First of all, taking Subsection 5.7 and Corollary 5.16 into account, it would be especially valuable to find out whether varieties of MS lattices including ADML $\supseteq \mathrm{ABL}$ - NDML and $[(\mathrm{PS}) \mid(\mathrm{AQS})] \mathrm{MSL}$ - are Q -universal. Likewise, it would be equally important to learn whether the lattices of other varieties subsumed by neither QSMSL nor AQSKSL - NKL and [PS](W)KSL \supseteq NKL - are finite. Such equally concerns extension of Section 6 beyond MS algebras in the bounded case. After all, an interesting (though purely methodological) point remained open is to find equational proofs (like that of (4.18)) of the rather curious inclusions such as

$$
[\mathrm{B} /] \mathrm{NDM}(\mathrm{~L}[/ \mathrm{A}]) \subseteq[\mathrm{B} /] \mathrm{PSMS}(\mathrm{~L}[/ \mathrm{A}]) \subseteq[\mathrm{B} /] \mathrm{WKMS}(\mathrm{~L}[/ \mathrm{A}])
$$

and $[\mathrm{B} /] \mathrm{QSWKS}(\mathrm{L}[/ \mathrm{A}]) \subseteq[\mathrm{B} /] \mathrm{QSKS}(\mathrm{L}[/ \mathrm{A}])$ as well as both

$$
(\mathrm{NIMR}[\mathrm{~B}] \mathrm{QSMSL} \cup \mathrm{MR}[\mathrm{~B}](\mathrm{QS}) \mathrm{KSL}) \subseteq(\mathrm{NIMR}[\mathrm{~B}] \mathrm{QSMSL} \cup[\mathrm{~B}] \mathrm{KL})
$$

and NQSRVQSMSL \subseteq QSRVQSMSL, just ensuing from Corollaries 4.7, 5.14 and Theorem 5.25. Likewise, the fact that abstract non-trivially-hereditary subclasses of $\operatorname{SI}([B] M S L)$ are its relative sub-varieties looks too occasional to refrain from raising the question whether such is the case, in general, for arbitrary varieties like [B]MSL (e.g., disjunctive finitely-generated ones of lattice expansions with REDPC \{being the pre-varieties generated by the underlying algebras of finite matrices with equality determinant and truth predicates being prime filters of their underlying algebras $\}$).

References

1. M.E. Adams and W. Dziobiak, Lattices of quasi-varieties of 3-element algebras, Journal of Algebra 166 (1994), 1181-210.
2. R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia (Missouri), 1974.
3. T.S. Blyth and J.C. Varlet, On a common abstraction of De Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburg A 94 (1983), 301-308.
4. A. I. Budkin and V. A. Gorbunov, Implicative classes of algebras, Algebra and Logic 12 (1973), 139-140.
5. A. L. Foster and A. F. Pixley, Semi categorical algebras I, Mathematische Zeitschrift 83 (1964), no. 2, 147-169.
6. T. Frayne, A.C. Morel, and D.S. Scott, Reduced direct products, Fundamenta Mathematicae 51 (1962), 195-228.
7. E. Fried, G. Grätzer, and R. Quackenbush, Uniform congruence schemes, Algebra Universalis 10 (1980), 176-189.
8. G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin, 1978.
9. G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices, Acta. Math. Acad. Sci. Hungar. 9 (1958), 137-175.
10. B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121.
11. J. A. Kalman, Lattices with involution, Transactions of the American Mathematical Society 87 (1958), 485-491.
12. A. I. Kogalovskiĭ, On Birkgoff's Theorem, Uspehi Mat. Nauk 20 (1965), 206-207, In Russian.
13. H. Lakser, Principal congruences of pdeudocomplemented distributive lattices, Proceedings of the American Mathematical Society 37 (1973), 32-37.
14. A. I. Mal'cev, To a general theory of algebraic systems, Mathematical Collection (New Seria) 35 (77) (1954), 3-20, In Russian.
15. _, Algebraic systems, Springer Verlag, New York, 1965.
16. G. C. Moisil, Recherches sur l'algèbre de la logique, Annales Scientifiques de l'Université de Jassy 22 (1935), 1-117.
17. A. F. Pixley, Distributivity and permutability of congruence relations in equational classes of algebras, Proceedings of the American Mathematical Society 14 (1963), no. 1, 105-109.
18. A. P. Pynko, Implicational classes of De Morgan lattices, Discrete mathematics 205 (1999), 171-181.
19. \qquad , Sequential calculi for many-valued logics with equality determinant, Bulletin of the Section of Logic 33 (2004), no. 1, 23-32.
20. \qquad , A relative interpolation theorem for infinitary universal Horn logic and its applications, Archive for Mathematical Logic 45 (2006), 267-305.
21. \qquad , Subquasivarieties of implicative locally-finite quasivarieties, Mathematical Logic Quarterly 56 (2010), no. 6, 643-658.
22. H.P. Sankappanavar, A characterization of principal congruences of De Morgan algebras and its application, Proceedings of IV Latin American Symposium on Mathematical Logic, Santiago, 1978 (Amsterdam) (A.I. Arruda, R. Chuaqui, and N.C.A. da Costa, eds.), North-Holland Publishing Company, 1980, pp. 341-349.
23. L. A. Skornyakov (ed.), General algebra, vol. 2, Nauka, Moscow, 1991, In Russian.
24. D. Ševčovič, Free non-distributive Morgan-Stone algebras, New Zealand Journal of Mathematics 94 (1996), 85-94.

Department of Digital Automata Theory (100), V.M. Glushkov Institute of Cybernetics, Glushkov prosp. 40, Kiev, 03680, Ukraine

Email address: pynko@i.ua

[^0]: 2020 Mathematics Subject Classification. 06D15, 06D30, 08A30, 08B05, 08B26, 08C15.

[^1]: ${ }^{1}$ This is abstract 〈whenever K^{\prime} is so〉, in view of (2.5).

[^2]: ${ }^{2}$ From now on, to unify equation environment references, those $<$ not $>$ incorporated into option brackets mean corresponding <non->optional versions of referred quasi-identities.

