
EasyChair Preprint
№ 5092

Vision-based Docking of a Mobile Robot

Andreas Kriegler and Wilfried Wöber

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 2, 2021



Vision-based Docking of a Mobile Robot

Andreas Kriegler, Wilfried Wöber
UAS Technikum Vienna

{mr18m016,woeber}@technikum-wien.at

Abstract. For mobile robots to be considered
autonomous they must reach target locations in
required pose, a procedure referred to as docking.
Popular current solutions use LiDARs combined
with sizeable docking stations but these systems
struggle by incorrectly detecting dynamic obsta-
cles. This paper instead proposes a vision-based
framework for docking a mobile robot. Faster
R-CNN is used for detecting arbitrary visual
markers. The pose of the robot is estimated us-
ing the solvePnP algorithm relating 2D-3D point
pairs. Following exhaustive experiments, it is
shown that solvePnP gives systematically inac-
curate pose estimates in the x-axis pointing to
the side. Pose estimates are off by ten to fifty
centimeters and could therefore not be used for
docking the robot. Insights are provided to cir-
cumvent similar problems in future applications.

1. INTRODUCTION
Docking can be understood as the localization

and navigation of a robot towards a target lo-
cation [1]. In contrast to path-planning across
larger distances, docking does not require obsta-
cle avoidance methods but instead seeks highly
accurate pose estimates [28]. As long as the pose
of the robot and the target location are known in
a reference coordinate system path planning al-
gorithms can easily generate control commands.
In the xy ground-plane, the pose x⃗ consists of
three degrees of freedom, x, y, and θ as the rota-
tion about its own axis z, and is described using
the state at time t

x⃗t =
(
x ẋ y ẏ θ θ̇

)T
t

(1)

where ẋ, ẏ and θ̇ describe the speed of the
robot in x and y and its rotation respectively.

Figure 1. The visual target used for docking. The
target location is on the ground infront. The origin
for the PnP solvers is in the upper left corner. The
logos are roughly 9x3 centimeters in size. The upper
right logo was raised during experiments to remove
coplanarity.

As Thrun et al. [32] write outlining the motion
model and measurement model, taking multiple
control steps u⃗t with only an initial measure-
ment or observation z⃗t leads to large uncertain-
ties about its pose, they propose a measurement
step after every control to restore confidence in
the belief bel(x⃗). These measurements can be
non-vision methods such as evaluating detections
from LiDAR-scans [22] or can come from a cam-
era setup providing visual feedback [6]. Yurt-
sever et al. [34] show in their survey on auto-
mated driving systems (ADS) that computer vi-
sion (CV) based approaches to navigation have
become increasingly popular. Artificial land-
mark detection as described by Luo et al. [19] and
gradient based optical flow [20] rival modern non-
vision solutions. Classical non-vision systems
typically employ LiDAR technology, indoor GPS
or wireless fingerprinting [17]. While LiDARs
are still widely used commercially (such as MiRs



and Robotinos) recent advances in deep learn-
ing and their application in the ADS domain are
of more scientific interest. Deep Convolutional
Neural Networks (CNNs) have proven successful
at tackling a variety of perception problems, in-
cluding object detection [26] and pose estimation
[30]. Open source implementations for different
learning tasks are plentiful and can be used to
provide perception for a robotics system. Due to
the strong capabilities of CNNs as general fea-
ture extractors, it is possible to learn multiple vi-
sual targets which can be different depending on
the environment or application. This relaxes the
constraint of using specifically designed visual
markers that classical CV methods pose. The
learning task of the object detector in this work
is comparatively simple (only one class of logos
exist and they are easily distinguishable from the
rest of the target, see Fig.1).
In previous work the LiDAR of the mobile robot,
a robotino, was used to create a map of the envi-
ronment and localization was implemented with
the amcl package. While this pipeline in com-
bination with obstacle avoidance methods has
been useful for path-planning across the room,
only employing the AMCL the robot arrives at
the target position with great inaccuracy (10cm
to 20cm). Therefore, for this project an entirely
vision-based solution for docking was developed
which is bound to take over the task of gener-
ating pose-estimates from the AMCL once the
robot comes close to the docking target.
The aim of this work therefore is to approach
and dock onto desired targets in a semi indus-
trial environment with sufficiently high accuracy.
To contribute to the transition of state-of-the-art
CNNs from public datasets to real world prob-
lems an appropriate combination of old and new
algorithms is presented in this work. A CNN
based object detectors is used for image pro-
cessing and object detection, followed by a cam-
era pose estimation algorithm using point corre-
spondences from the detections. The presented
method could be easily adapted to learn new tar-
get positions outfitted with a visual marker with
minimal setup requirements.

2. STATE OF THE ART

The problem of estimating the pose of a cal-
ibrated camera, assuming a known 3D scene, is

known as the PnP-problem [29]. The idea is to
use a feature detector such as SIFT [16] or SURF
[2] to extract features from multiple sequential
images. Since an image of a known 3D point
gives two nonlinear constraints on camera pose
and calibration, using three points (or more pre-
cisely three image-object point pairs) would give
all 6 pose parameters. As [33] point out, such
minimal cases lead to polynomial systems with
multiple solutions, hence one additional point is
used. This leads to four necessary points for
estimating the pose (and one intrinsic param-
eter) and six points for estimation of 3D pose
and five additional calibration parameters. The
problem is formulated diffently for the planar
two-dimensional or the general, aforementioned
three dimensional case. Direct Linear Transfor-
mation (DLT, [9]) allows the estimation of the
homography matrix H for the planar problem,
requiring at least four 2D-3D point correspon-
dences. For the general case, DLT estimates the
projection matrix P and requires at least six such
correspondences. In either case, H or P can be
expressed with a set Ax⃗ = 0 of multiple pairs
of independent equations. Since individual pix-
els are generally noisy, no exact solution can be
obtained using DLT, only an approximate so-
lution by obtaining the SVD of A. It should
be noted, that for the noisy and overconstrained
case, only the eigenvector of ATA, correspond-
ing to the smallest eigenvalue, should be com-
puted. A continuation to DLT is the family of
PnP algorithms. Efficient PnP or EPnP [14] uses
the notion that each of the n 3D-2D point pairs
are expressed as weighted sum of four virtual
control points, and solves the pose problem from
these control points. Perspective-Three-Point or
P3P is a method applicable if only three cor-
respondences are obtained, and in turn returns
four real, possible solutions, the newest imple-
mentation being Lambda Twist P3P [25]. A
fourth point pair can be used to remove this four-
solution ambiguity.
Kartoun et al. [12] were able to achieve dock-
ing times averaging 85 seconds but attributed
the success of their method to the unique hard-
ware on the robot and a generously large dock-
ing station. Burschka et al. [3] take the afore-
mentioned approach to the outdoors, using a
Kanade-Lucas tracker [18] to track points in im-



age sequences, followed by RANSAC and DLT.
They achieve good results for rotation, but strug-
gle with estimating translation. In the work of
Mehralian et al. [21] an Extended Kalman Filter
(EKF, [11]) is combined with PnP algorithms to
create EKFPnP. They achieve better robustness
against noisy features, although no details are
given regarding the feature tracker.

In the field of deep learning, pose estimation
is a well researched problem [23], camera pose
estimation is less so [13] and no architectures or
datasets exists specifically designed for docking
a mobile robot. The dataset would need to in-
clude the complete pose of the robot for every
captured image to allow end-to-end training. In-
stead, Shalnov et al. [30] were able to create a
deep model using a CNN for camera pose esti-
mation via object detections of human heads. In
the work of Pavlakos et al. [24] a geometric ap-
proach to object pose estimation using semantic
keypoints is taken but their published dataset
only uses outdoor objects and is thus not ap-
plicable to docking. Lastly, as part of Zhou et
al. [35]’s Centernet, they are proposing to regress
from centerpoints to other object properties in-
cluding pose but their framework is unnecessarily
complex for the task at hand.

While the methods are numerous, no single
framework exists that combines deep learning for
object detections with a PnP-solver, all for the
application of mobile robot docking. This work
shows the hesitation of using CNNs for robot
docking is unwarranted, as long as the learning
task is managable in complexity.

3. METHODS AND IMPLEMENTATION

The robotino mobile robot used in this project
was equipped with a Logitech C920 USB web-
cam. A remote desktop with an NVIDIA GTX
1080 GPU runs ROS to control the robot and
process the images.

To showcase the flexibility of the pipeline re-
garding the visual target, no QR-tags or ARUCO
markers [8, 27] were used. Three small pa-
per printouts of a logo were instead fixed on a
board roughly 20 by 15 centimeters in size and
this board was used for training the detector.
Video data was collected while arbitrarily mov-
ing the robot around close to the target. From
the roughly 4500 recorded images 100 were se-

lected to form the training set. The chosen im-
ages show the target from different viewing an-
gles, distances, lighting conditions while a few
images do not show the target at all to control
for false positives. The bounding box coordi-
nates of the three logos in all 100 images were
manually annotated. Creating annotations took
around three hours to complete. Resizing the
images to 512x512 RGB-images allows the usage
of Che et al. [4]’s toolbox with many different
object detectors implemented.

Accuracy of the detector is important, since
wrong detections would lead to wrong pose es-
timates and erroneous controls, while inference
speed is important to enable a smooth docking,
although inference times below 70 milliseconds
are unnecessary, due to the bottleneck imposed
by transporting 960x720 images from the camera
to the remote desktop via Wi-Fi using the ROS
image_transport package for compressed trans-
fer. Looking at various speed-accuracy tradeoff
comparisons between object detectors, Faster R-
CNN [26] with pretrained ResNet [10] backbones
seems to be a sweet spot, ResNet50 was chosen
for this implementation. Faster R-CNN belongs
to the class of detectors using a separate region
proposal network to generate bounding box pro-
posals. For the optimizer the default stochas-
tic gradient descent with momentum of 0.9 was
used and learning rate was kept default at 0.01
with a linear step learning rate scheduler and
warmup. Other parameters and image augemen-
tation steps were kept default to Che et al. [4]’s
configuration of Faster R-CNN for PascalVOC
[5], including a 50 percent chance of a random
horizontal flip. From the infered bounding boxes,
image coordinates of the upper-left and lower-
right corners of all three logos are saved for the
PnP-solver. The Faster R-CNN network was
trained for fifty epochs which amounted to 37
minutes training time on a GTX 1080 graph-
ics card. GPU memory usage was 2GB show-
ing a weaker graphics unit would suffice. Both
bounding box and classification loss plateued af-
ter training for ten epochs.

The required pose estimate at timestep t for
path planning can be described with the trans-
formation matrix Ttarget

base,t ∈ R4x4 from the base
link of the robot to the target position near the



station

Ttarget
base,t =

[
R t⃗

0⃗ 1

]
t

(2)

with R ∈ R3x3 and t⃗ ∈ R3x1 being the rota-
tion matrix and translation vector to be esti-
mated at sampling time t respectively. Physi-
cally measuring the transformation from the base
link of the robot to the camera sensor as well
as relating the logos at Klogo to the target lo-
cation allows an estimated camera pose from a
reference coordinate system on the logo-board
Tcamera
logo to be linearly tranformed into Ttarget

base .
Getting the transformation Tcamera

logo with a cali-
brated camera and assuming the pinhole camera
model means solving correspondences of points
in 2D image space and those same points in the
3D real world. After calibrating the camera us-
ing the ROS camera_calibration package, the
measured points in the object frame and saved
image coordinates are combined in the Open-
CV solvePnP algorithm using the intrinsic cam-
era parameters. Available variations of the algo-
rithm are iterative, which is the default method
based on Levenberg-Marquardt optimization [15]
to find a pose which minimizes reprojection er-
ror (sum of squared distances), P3P based on [7]
which requires only four of the six point pairs
and EPnP mentioned earlier. All three varia-
tions were tried and tested. The estimated ro-
tation and translation vectors, after using Ro-
drigues to transform the rotation vector into the
rotation matrix R, form Tcamera

logo and therefore
finally Ttarget

base,t . As Siegwart et al. [31, p. 81ff]
write, desired velocity can then easily be gener-
ated using estimated parameters kρ and kα for a
linear controller.

The entire pipeline can be quickly summarized
as follows:

1. Create the visual target with arbitrary lo-
gos. Physically measure the logo corners
and their position in relation to Tlogo. Re-
late Tlogo to Ttarget and on the robot Tcamera

to Tbase.

2. To avoid bias in data collection, implement
a random-walk in logo vicinity but constrain
θ to enable the camera to face the logo most
of the time. Annotate bounding-box coordi-
nates of the logos for select images.

3. Train the Faster-RCNN object detector
with this dataset. For docking, load the
model and obtain bounding-boxes using
ROS image-callbacks.

4. Use the inferred coordinates together with
the measurements and intrinsic parameters
of the camera in SolvePnP to obtain T target

base,t

at every timestep t.

5. Use a simple linear controller to generate
ROS motion control commands to guide the
robot towards the docking target.

4. RESULTS AND DISCUSSION

During inference, processing a single image
within the ROS pipeline takes the detector ap-
proximately 35ms. On average the detection
would result in five bounding box proposals, sort-
ing by confidence and extracting the top three
boxes gives six image coordinates close to the
ground thruth typically within one to four pix-
els. Evaluating the mIoU gives 96.3% for thir-
teen test images. Object detection results are
therefore both accurate and confident. The PnP-
solver, the second major component of the frame-
work, proved to be more troublesome producing
inaccurate results. All three implementations
of the solvePnP algorithm express the transla-
tion vector t⃗camera

logo using the right-hand coordi-
nate system Klogo. Preliminary results quickly
showed that all methods are accurate in esti-
mating y and z translation, but struggle with
the x coordinate. To get a better understand-
ing of the pose estimates, in particularly the
estimated translation vector, an extensive field
study was conducted. The robot was steered
towards six points and the ground truth trans-
lation and rotation were noted. These poses
are described by Kidx in Fig 2 where idx ∈
{dock, amcl, left_close, left_far, right_close,
right_far}. At each point fifteen images were
captured, supplied to the Faster-RCNN model
and the obtained image coordinates from bound-
ing boxes, specifically six points per image, given
to the PnP-solvers. After first results were an-
alyzed, showing again large errors in x, changes
were made in hopes of achieving more accurate
pose results. In particular, the following major
changes were made:



Figure 2. Pose estimates using the OpenCV solvePnP algorithm, for images captured at described six locations.
Different colours are for different methods with black being ground truth locations. Different symbols mark
the six different locations. Units are in centimeters. The 6 coordinate systems give the pose of the robot. The
accuracy in estimating y and errors in x are similar as with the previous experiment. The point symmetry
about the origin for the iterative algorithm is visible, having incorrectly flipped all three axis signs. Variance
stays largely the same even with larger z.

1. The upper right logo was raised from the
plastic board to remove the coplanarity of
all six points. By removing the coplanarity
more information is available for estimating
the camera pose [9].

2. Since solvePnP, unlike regular DLT, does
not estimate intrinsics, they are a possible

cause of error. The camera was recalibrated
and the new parameters used. The focal
lengths and distortion coefficients differed
slightly.

3. The autofocus of the camera was turned off.
Captured images were still sharp and logos
clearly visible nonetheless.



Afterwards, the same study was undertaken,
capturing sequences of fifteen images at six
locations, and using the detector followed by
solvePnP to obtain camera pose estimates again.
The translation vectors were than saved and sub-
sequently plotted to give a visual representation
of the results. Figure 2 shows the results of this
experiment in a 3D plot. The most notable thing
here is the iterative algorithm flipped the signs
for all three axis in almost all estimates. Its re-
sults are therefore point-symmetrical about the
origin, a known issue when using solvePnP. Also
of note is that the large error in the x direc-
tion still persists. This error occurs through-
out all experiments and is not intuitive; the esti-
mates in x are strangely placed. All points lie on
the negative (right) half plane (with exception of
some iterative estimates), but the estimates for
the locations with ground-truth in the left half
are not simply mirrored across the z-axis. The
distance gets consistently underestimated yet it
seems with larger absolute value of x in ground-
truth the absolute estimates in x also seem to in-
crease. The estimates for the location Kleft_far

break this pattern, being very close to the esti-
mates for Kamcl, the location where the vision
based navigation is supposed to take over after
using amcl localization. It can also be observed
that variance only slightly increases about the es-
timates in z with increasing z distance. Clusters
are very compact, an improvement compared to
the first experiment. This can be attributed to
using more precise intrinsic camera parameters.
It is also visible that all algorithms are accurate
for estimating the small offset in y.

Unfortunately, the reason for this seemingly
systematic error in x could not be determined
as of yet but considering the flipped signs for al-
most all estimates made by the iterative method,
numeric instability is likely to contribute to the
fragile nature of the solvePnP class.

5. SUMMARY AND OUTLOOK

In this work a novel framework for docking a
mobile robot using only vision-based sensors and
algorithms was developed. A CNN based object
detector yielded bounding boxes of logos with
high accuracy and confidence. Measurements of
the logos were taken and related in a coordinate
system. The family of solvePnP algorithms im-

plemented in OpenCV was used to estimate the
camera pose using the detector results and in-
trinsic parameters. All methods consistently es-
timated wrong distances in one of the directions,
namely the x-axis. Following preliminary ex-
periments, changes were made, in particular the
coplanarity of the object points was removed and
recalibration of the camera undertaken, and the
same experiments run again. Unfortunately the
errors persisted, although improvements regard-
ing the scatterness of the pose estimates could
be made. Consequently, no control commands
were generated and docking of the robot could
not take place in this instance. For future refer-
ence, it is important to note the fragility of the
solvePnP algorithms. The source of the errors
is unclear and while additional point pairs could
improve results regarding compactness, it seems
unlikely they could alleviate the large errors in
predicting the x coordinates.
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