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Jialiang (Alan) Zhao, Jacky Liang, and Oliver Kroemer

Abstract Precise robotic grasping is important for many industrial applications,
such as assembly and palletizing, where the location of the object needs to be con-
trolled and known. However, achieving precise grasps is challenging due to noise
in sensing and control, as well as unknown object properties. We propose a method
to plan robotic grasps that are both robust and precise by training two convolutional
neural networks - one to predict the robustness of a grasp and another to predict a
distribution of post-grasp object displacements. Our networks are trained with depth
images in simulation on a dataset of over 1000 industrial parts and were success-
fully deployed on a real robot without having to be further fine-tuned. The proposed
displacement estimator achieves a mean prediction errors of 0.68cm and 3.42deg on
novel objects in real world experiments.

1 Introduction

Grasping is one of the most fundamental skills for robots performing manipulation
tasks. Grasping allows a robot to gain control over objects and subsequently use
them to perform specific interactions or use them as tools. Recent work on grasping
has largely focused on the problem of getting the object in the hand in some manner.
However, many manipulation tasks will require the object to be held in a specific
and known pose. For example, to insert a peg in a hole, the robot should apply a
firm grasp at the far end of the peg from the insertion point. The robot will also need
to have an estimate of the objects pose relative to the hand to perform the actual
insertion task. Some grasps will allow the robot to constrain the object more than
others, reducing the variance in the objects pose, and thus allow for easier in-hand
localization.
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In this paper, we address the problem of predicting object displacements during
grasping. We propose a method that uses two neural networks - the first predicts
whether a grasping action will result in a successful grasp that allows an object
to be lifted, and the second predicts a distribution over post-grasp object displace-
ments. The robot then selects grasps with a high success probability and low object
displacement variance. The predicted mean object displacement can then be used to
estimate the in-hand pose for downstream tasks such as assembling and palletizing
objects (see Figure 1).

Although our system is trained only in simulation, we were able to successfully
deploy the networks on a real Franka Panda robot for precise grasping of 3D printed
industrial parts without further fine tuning. Videos, datasets, and supplementary ma-
terial are available at: https://precise-grasping.jialiangz.me.

Fig. 1 Example of post-grasp object displacement that our method predicts (left) and palletizing
as an example application that requires precise grasp planning (right).

2 Related Works

To generalize grasps between objects, many recent works have used data-driven
grasp synthesis [1] techniques to predict high quality grasps from vision observa-
tions. While early works used hand-tuned visual features [21], recent methods have
focused on using Convolutional Neural Networks (CNNs) to learn grasp quality
functions from a large amount of training data [17, 18, 23].

Robots can collect training data for grasping in a self-supervised manner by
attempting thousands of random grasps and observing whether or not they result
in successful lifts [15, 16, 19]. By contrast, collecting grasping data in simula-
tion can be much faster and less costly. However, learning on simulation data of-
ten suffers from the simulation-to-reality (sim2real) gap, where the visual appear-
ance and object dynamics of simulated data deviate from their real world counter-
parts. Methods for overcoming the sim2real gap include domain randomization [22]
and domain adaptation [2, 13]. For grasping, the sim2real gap can be reduced by
using only depth images for the visual input. Depth-only grasping methods used
in [7, 10, 17, 18] do not require further fine-tuning or domain adaptation to perform
well in the real world.
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Recent works have extended data-driven grasp synthesis for task-oriented grasp-
ing, where the system plans grasps that optimize for the success of downstream
tasks. Detry et al [7] had human experts label parts of objects that are suitable for
tasks like handover and pouring. They trained a CNN to segment depth images based
on task suitability to guide the grasp selection. Other works forgo human labels and
use simulations and self-supervision to jointly optimize grasp selection and policies
for downstream tasks such as sweeping and hammering [9] or tossing [24].

Due to noise in sensing and actuation, as well as unknown object properties, the
grasp that the robot intends to execute is often not the grasp that is actually achieved.
Jentoft et al [14] analyzed sources of grasp variations and quantified basins of attrac-
tion for multi-fingered grasps. Dogar and Srinivasa [8] learned from human strategy
and used pushing to funnel the clutter of objects before grasping to reduce uncer-
tainty. Gupta et al [11] explicitly learned a noise model to compensate for actuation
noise of low-cost robot arms; while this method improves grasp success, it does
not explicitly optimize for precise grasps. Chen et al [4] combine a probabilistic
signed distance function representation of object surfaces from depth images with
analytical grasp metrics to plan grasps that optimize for small post-grasp object dis-
placements.

Instead of choosing precise grasps that minimize object displacement, other
works have explored estimating the in-hand object poses using additional sensory
signals, e.g., vision and tactile [3]. To address the challenge of in-hand occlusions,
Choi et al [5] trained a CNN to segment out robot grippers such that localization can
be done on only the object-relevant pixels, and Izatt et al [12] used tactile sensing to
provide point cloud data on the occluded parts of grasped objects.

In this work, we address the challenges of optimizing grasps for tasks that require
precise post-grasp object poses. Given this context, we note that it is acceptable for
a grasp to result in a significant object displacement as long as the robot can reliably
predict the displacement and adapt the task execution accordingly. Our approach
stands in contrast with previous works as we train a CNN to predict the expected
post-grasp object displacement and the variance of the displacement. In this manner,
the grasp planner can choose grasps that are robust and have the lowest displacement
variance.

3 Learning Precise Robotic Grasping

In this section we describe the problem of precise grasping and explain our approach
for addressing this problem.
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3.1 Problem Statement

Our proposed approach addresses the problem of estimating a distribution of post-
grasp object displacements of top-down, parallel-jaw grasps of singulated objects
lying on a flat surface. The method needs to generalize over novel objects unseen
during training. We are motivated by the palletizing application and therefore focus
our experiments on rigid objects commonly found in industrial and manufacturing
settings, such as gears, brackets, and screws.

Let the initial pose of an object on the work surface be p. We assume that during
manipulation, the object can only undergo translational movements (∆x,∆y,∆z)
and planar rotation ∆θ , and we define the post-grasp object displacement as ∆p =
[∆x,∆y,∆z,∆θ ]T . As the robot will not be able to use additional sensors to perform
in-hand localization, it needs to predict the displacement ∆ p̃ based on the object
pose p and observation o. The observation o∈R64×64 is a depth image of the object.
We use either object-centric full images or grasp-centric image patches of the object
for the observations. In both cases the image size is 64×64 pixels.

A grasp g has 4 degrees of freedom g = [gx,gy,gz,gθ ]
T . The position parameters

(gx,gy,gz) ∈ R3 denote the location of the grasp relative to the object’s geometric
center p. The orientation parameter gθ ∈ [−π,π) denotes the planar rotation of the
gripper about an axis orthogonal to the table surface.

Rather than predicting the post-grasp object displacement ∆p directly, our net-
works instead predict the post-grasp grasp displacement ∆g, i.e., the difference be-
tween the grasp parameters and the realized grasp pose relative to the object co-
ordinate frame, which is located at the object’s geometric center. This grasp dis-
placement is then converted back to the object displacement ∆p for reporting the
results.

3.2 Overview of Approach

The proposed approach consists of three parts: 1) predicting the grasp quality, 2)
predicting the distribution of post-grasp displacements, and 3) combining these pre-
dictions to choose robust and precise grasps.

Grasp Quality Prediction Following the notation in [9], we define the grasp
quality Q of grasp g with observation o as the probability of a successful lift S using
the grasp Q(g,o) = P(S = 1|g,o). We learn this mapping Q(g,o) using a neural
network that we refer to as the Grasp Quality Network (GQN).

Grasp Displacement Prediction Let ∆g denote the distribution of the post-grasp
displacement in the object frame. We assume that the displacement follows a Gaus-
sian distribution:

∆g∼N (µ(g,o),σ2(g,o)) (1)

with mean µ(g,o) = {µx,µy,µz,µθ} and variance σ2(g,o) = {σ2
x ,σ

2
y ,σ

2
z ,σ

2
θ
}. We

learn a neural network to predict the mean and variance of ∆g, which we refer to as
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the Grasp Displacement Network (GDN). This network allows the robot to reason
about the stochasticity of the grasps and select grasps that minimize the variance
over the resulting object poses.

Precise Grasp Planning Given the two learned networks, we can form a grasp
planner that chooses grasps with high probability of successfully lifting the object
as well as low variance over the resulting object pose.

3.3 Simulation Data

To generate grasping data for training the networks and generalizing between differ-
ent objects, we collected 1011 CAD models of industrial parts such as gears, screws,
bolts, and hinges from an online hardware shop1. Then, in simulation, 1000 random
grasp attempts per object were generated and simulated. We gathered simulation
data using the robotic simulation framework V-REP [20] with Bullet ver 2.78 2 as
the physics engine. We assume each object has uniform density.

Fig. 2 Simulation Data Collection. We collected a dataset of 1011 industrial parts (left). During
simulation all objects are set to have uniform density and the same coefficient of friction. We uni-
formly sampled top-down grasps across the object and evaluate whether or not the grasps resulted
in successful lifts (middle). In addition to lift success, we also record the top-down depth image
that are used as inputs to our grasp quality and grasp displacement networks (top right). We also
recorded the post-grasp object displacement (bottom right).

As shown in Figure 2, a depth image is captured at the start of each grasp at-
tempt. The robot robot executes a grasp g, where the grasp center (gx,gy,gz) is
uniformly sampled from the bounding box of the object, and the grasp orientation
gθ is uniformly sampled from [−π

2 ,
π

2 ). The bounding box’s coordinate frame is al-
ways parallel to the camera coordinate frame. The bounding box is calculated as
the minimum area that encloses the entire object in the depth image. In contrast
to previous works that sample antipodal grasps [17, 18], we use uniformly sampled

1 McMaster-Carr, https://www.mcmaster.com
2 https://pybullet.org/
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grasps as using antipodal grasps may introduce a bias in the dataset when estimating
post-grasp displacements. For each grasp attempt g, we record the lift success of the
grasp S, the overhead depth image o, and the post-grasp object displacement ∆p.

For training the networks we collected a simulation dataset with 1.011 million
grasps. After removing objects that are either 1) too hard to grasp (random grasp
success rate < 5%), 2) too easy to grasp (random grasp success rate > 40%), 3) too
big (longest axis longer than 15cm), or 4) too small (longest axis smaller than 2cm),
we have 773k grasp attempts for 773 objects. Data is split object-wise, with 660
objects used for training and 113 for validation.

3.4 Grasp Quality and Post-grasp Displacement Estimation

We train two types of CNNs - the GQN and the GDN. While the GQN and the
GDN share the same convolution architecture, they do not share weights. Rather,
the GQN is trained first, and we use its learned convolution filters to initialize the
filter weights of the GDN. See Figure 3 for details.

Fig. 3 Grasp Quality Network (GQN) and Grasp Displacement Network (GDN). Input to
both networks contains a depth image o cropped at the desired grasp center {gx,gy} aligned to
then grasp rotation gθ , and the relative translation of the object’s geometric center with respect to
the grasp center (gx,gy,gz). The GQN predicts grasp quality Q(g,o), and the GDN jointly predicts
the mean µ(g,o) and variance σ2(g,o) of post-grasp displacements. The GQN is trained first, and
its learned convolution weights are used to initialize the convolution filters of the GDN. The two
networks share the same convolution architecture but not the same weights. We use dropout of 0.5
for the fully connected layers.

The Grasp Quality Network Q(g,o) was trained using grasp-centric image
patches for the observations, and the translation between the grasp and the object’s
center (gx,gy,gz). We train the GQN using a binary cross entropy loss.
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The Grasp Displacement Networks are trained to predict a Gaussian displace-
ment distribution with mean µ(g,o) and variance σ2(g,o). For the observations o
we have GDN variants that use the object-centric full images or the cropped grasp-
centric image patches. The grasp-centric image variants are initialized using the
weights from the GQN, while the object-centric image variants are initialized ran-
domly. We also have GDN variants that predict only the mean µ(g,o) or both the
mean µ(g,o) and the variance σ2(g,o). These four GDN variants are all trained
only on successful S = 1 grasps and we do not try to predict how failed grasps will
displace the objects.

To train the GDN, we form a loss to maximize the log likelihood on the predicted
distribution of post-grasp displacement:

P(∆g|g,o) =
exp
(
− 1

2 (∆g−µ(g,o))>Σ(g,o)−1(∆g−µ(g,o))
)√

(2π)4det(Σ(g,o))
(2)

µ
∗,σ2∗ = argmax

µ,σ2
log(P(∆g|g,o)) (3)

= argmin
µ j ,σ

2
j

(
4

∑
j=1

1
2

log(σ2
j )+

(∆g j−µ j)
2

2σ2
j

)
(4)

Where Σ(g,o) = diag(σ2(g,o)). Thus the loss function to train the GDN is:

L =
N

∑
i=1

 4

∑
j=1

log(σ2(g(i)j ,o(i)j ))+
(∆g(i)j −µ(g(i)j ,o(i)j ))2

σ2(g(i)j ,o(i)j )

 (5)

The Grasp Planner needs to select a grasp based on the learned networks. An
ideal grasp for industrial applications needs to satisfy two requirements: (1) the
grasp should be stable and (2) the uncertainty over the object’s post-grasp pose
should be small. We fulfill these two requirements by first running the GQN to
select the top 3% of the scored randomly generated grasps, denoted as G. This step
makes sure the planned grasp satisfies requirement (1). We then choose the optimal
grasp g∗ as the one that has the lowest displacement variance predicted by the GDN:
g∗ = argming∈G σ2(g,o). In other words, among all the top successful grasps G, we
select the one with the smallest displacement variance. The expected displacement
µ(g∗,o) is then used as a correction of the object pose to parameterize downstream
tasks such as assembly and palletizing.

4 Experiments

We perform experiments in simulation and the real world to evaluate the perfor-
mance of both the GQN and the GDNs. We also evaluate how selecting low-variance
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grasps affects performance. The GQN and GDN networks are always trained with
simulation data only.

4.1 Evaluated Grasp Displacement Models

We compare 5 models for post-grasp displacement estimation:

• LOWESS - Locally Weighted Regression
• OCFI-M - GDN with Object-Centric Full Image Input that predicts only the

mean grasp displacement.
• OCFI-M+V - GDN with Object-Centric Full Image Input that predicts both the

mean and the variance of grasp displacement.
• GCIP-M - GDN with Grasp-Centric Image Patches that predicts only the mean

grasp displacement.
• GCIP-M+V - GDN with Grasp-Centric Image Patches that predicts both the

mean and the variance of grasp displacement.

LOWESS [6] is a non-parametric regression method that is similar to nearest
neighbors except the weight of the neighbors is computed from a Gaussian kernel.
Because this model doesn’t generalize to novel objects, we only use LOWESS as
a baseline to predict grasp displacements for known objects. Given N grasps on the
known training object, and a new query grasp g j, the predicted grasp displacement
is computed by:

∆ ĝ j =
∑

N
i w(gi,g j)∆gi

∑
N
i w(gi,g j)

(6)

where w(gi,g j) = N (g j|gi,Σ) is the probability density function of the isotropic
multivariate Gaussian distribution with mean gi and variance Σ evaluated at g j. We
choose the variance terms to be Σ = diag([0.02,0.02,0.05,1.00]).

The full image GDN variants take as input the uncropped image centered around
the object geometric center, instead of the grasp center as is the case with image
patches. These models help us understand how important it is for the GDN to focus
on local features around the grasp vs. global features that describe overall object
geometry. Although the GDN variants without variance prediction cannot be used
to select grasps by variance, we evaluate against them to see whether or not training
to predict this variance helps improve the prediction accuracy of the mean displace-
ments.

4.2 Training GQN and GDN

All the CNN models we used have the same convolutional layers structure, the only
differences are the input action sizes and output layer activations. Before training,
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all action network inputs are normalized to range [−1,1], and all depth images are
reshaped to 64×64. To simulate noise from real depth cameras we add uncorrelated
pixel-wise Gaussian noise of zero mean and 3mm standard deviation to the depth
image. We preprocess all depth images by subtracting their mean and dividing by
their standard deviation.

We trained the GQN with balanced positive and negative data for 100 epochs
with the RMSProp optimizer using a learning rate of 10−5 and decay of 10−6. The
final accuracy of the GQN is 86.7% on the training set and 85.3% on the validation
set.

We trained all four variants of GDN in a similar fashion. Root mean square er-
ror (RMSE) between predicted mean displacement and actual displacement of each
model on the validation set is shown in Figure 4.

Fig. 4 Validation RMSE of Mean Post-Grasp Object Displacement Predictions for Variants
of GDN We observe that models that incorporate displacement variance prediction consistently
outperform ones that do not, and GDN on image patches outperforms operating on the full image.

We observe that including the displacement variance prediction improves the
RMSE for the predicted displacement means. This improvement is because, with
variance prediction, the network is allowed to increase the variance term on data
that have high variance instead of fitting a mean which may incur high loss.

4.3 Evaluation in Simulation

To evaluate the performance of GQN for planning robust grasps, we formed a grasp
planning policy that uniformly samples 3200 grasps across the object and picks the
grasp with the highest predicted quality. We ran this policy on a set of 130 novel
objects not found in the training or the validation set, and performed 30 grasp trials
for each object. In simulation the trained GQN achieved a grasp success rate of
94.9%.

To evaluate the performance of the GDNs, we ran two sets of experiments using
different grasp selection policies: (1) select grasps with high predicted qualities ac-
cording to the GQN and (2) select grasps that have both high quality and low vari-
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ance. The latter is only applicable for LOWESS, OCFI-M+V, and GCIP-M+V
which predict the variances.

All of the models in both experiments were evaluated on a set of 85 objects, of
which 50 are from the training dataset, and 35 are from the validation dataset. We
perform 35 grasping trials for each object, and only successful grasps were used to
evaluate the performance of displacement prediction models.

Results are shown in Fig. 5. For the high-quality grasps, experiment (1), the av-
erage translational error and rotational error are 0.43cm and 8.29deg with GCIP-
M+V. For the high-quality low-variance grasps, experiment (2), the errors are fur-
ther reduced to 0.24cm and 7.01deg respectively. GCIP-M+V has the best per-
formance in both experiments. We also observe that choosing high-quality, low-
variance grasps generally improves the post-grasp displacement prediction accu-
racy.

Fig. 5 Translational and Rotational RMSE of Grasp Displacement Predictions in Simula-
tion. Blue bars show results of GDN estimated displacement for the grasps with highest qualities
predicted by the GQN. Red bars show results of choosing grasps that have both high quality and
low variance as predicted by a GDN. Grasp displacement models that do not have variance output
are not reported for the second set of experiments.

We observe that in both experiments the proposed GCIP-M+V GDN has a good
performance in terms of translational displacement estimation, but it does not re-
duce the error for rotation in comparison to other baselines. This might be because
predicting translational displacement is easier than rotational displacement, as the
latter needs more information regarding the object’s overall geometry.

4.4 Evaluation with Real World Robot

We use a 7-DoF Franka Emika Panda robot arm for grasping and a Kinect v2 time-
of-flight sensor for depth sensing. For our grasping experiments, we 3D printed 7
novel objects from our dataset of industrial parts that were not used during training.
At the start of each grasp experiment trial, we place one object in a 24cm by 24cm
square region in a bin in front of the robot and directly below the depth camera.
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Then, the human operator puts a cardboard box over the object before shaking the
box for a few seconds. This helps to reduce human bias and randomize the location
and orientation of the object.

During each trial, we use the GQN trained with simulation data to predict the
qualities of randomly sampled grasps from the depth image. A grasp is considered
a success if the object is still grasped by the robot after the lift. If a grasp is success-
ful, the robot proceeds to lowering the end-effector back to the grasp pose before
releasing the grippers.

By placing the object at the same gripper pose as the grasping pose, we can com-
pute the relative pre-grasp and post-grasp translation and rotations to estimate object
displacement. One way to do this is via object pose registration with their known 3D
CAD models, but this approach is not robust due to rotational symmetries and the
low-resolution of the depth sensor. Instead we opted for a marker-based approach
by making the assumption that object displacements during real robot experiments
only occur in a plane. This is done by placing two small, square pieces of white
masking tape on top of the object such that the line that connects them crosses the
object’s geometric center. Their relative translation and rotation after grasping can
be robustly determined from registered color images. See Figure 6 for robot setup
and an illustration of our objects with these markers.

Fig. 6 Real World Robot Setup. We use a 7-DoF Franka Panda robot arm and a Kinect v2 RGB-
D camera (left) and 3D printed test objects used for real world experiments (right). Two white
markers are placed on each object to estimate the post-grasp object displacements.

4.4.1 Real World Experiment Results

We carried out the same two displacement estimation experiments with real world
robot: (1) evaluate on high quality grasps and (2) evaluate on high quality and low-
variance grasps. Because we do not have a set of successful training grasps for
these objects, LOWESS could not be applied. Results are shown in Fig.7. In the
first experiments, by choosing highest GQN scored grasp in each trial, the robot
achieved an 86.3% lifting success rate.
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The GCIP-M+V GDN has the best displacement estimation in both experiments.
In the first experiment it achieved a translational RMSE of 0.72cm and rotational
RMSE of 3.79deg. These errors are further reduced to 0.68cm and 3.42deg respec-
tively by choosing high quality grasps with low predicted displacement variance.
Although the mean RMSE values are similar across the two experiments, the error
bars are greatly decreased when using the high-score low-variance grasps, which
indicates that these models are more consistent and robust across different objects.

Fig. 7 Real World Translational and Rotational RMSE of Grasp Displacement Predictions.

In Figure 7 we show an instance of the palletizing application, wherein we use
GCIP-M+V to estimate the post-grasp displacement and compensate for the placing
action accordingly.

Fig. 8 Example Palletizing Application. We use the post-grasp displacement prediction from our
GCIP-M+V model to accurately place test objects at a target pose. The target location is marked
by the center of the green cross and the target orientation is the horizontal axis of the green cross.
By compensating the placing target pose with the estimated post-grasp displacement, the objects
can be placed more accurately.
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5 Conclusion

In this work we propose a method to plan robust and precise grasps by training
two networks - one to predict grasp robustness and the other to predict the distri-
bution of post-grasp object displacements. We trained the networks in simulation
and deployed them in the real world without further fine-tuning. Experiments in
simulation and the real world show our method can effectively predict post-grasp
displacements, and choosing grasps that have low predicted variance result in lower
displacement prediction errors.
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