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Abstract—Segmentation quality evaluation is an essential step
to quantify the performance of segmentation algorithms. It can
be used as a feedback for correcting segmentation errors or
selecting appropriate algorithm parameters. We propose a novel
evaluation framework where a convolutional neural network
is designed for distinguishing the segmentation quality instead
of using ground truth images. Our work has three primary
contributions: First, we evaluate the quality of object segmen-
tation by learning region features. A novel feature embedding
model is proposed to integrate meta evaluation principles in
a metric learning process. Second, it exempts the requirement
of ground truths in the test stage, where object features of
trained classes are used for the discrepancy calculation. Third, a
large-scale object segmentation evaluation dataset is constructed,
which contains various segmentation qualities under different
assumptions. The experimental results on PASCAL VOC2012
dataset demonstrate that our method improves the evaluation
accuracy and outperforms the popular supervised evaluation
measures.

Index Terms—Image segmentation evaluation, metric learning,
meta-measures, feature embedding, object segmentaion

I. INTRODUCTION

Image segmentation is a necessary pre-processing step in
computer vision tasks. In recent years, researchers have pro-
posed many segmentation algorithms with high performance,
while few work has been contributed to the study of segmen-
tation quality evaluation. It is widely accepted that none of the
existing segmentation algorithms is universally applicable to
all images or scenarios, which makes a challenge for designing
the evaluation methods. Usually, image objects consist of
visually salient pixels and have definite semantic meanings.
Therefore, evaluating the quality of object segmentation is a
relatively objective task. In other words, people can easily
agree on a common standard for evaluating the segmented
objects in an image. Existing evaluation methods are mainly
classified into three categories: analytical methods, empirical
goodness methods and empirical discrepancy methods [1]. The
analytical methods directly evaluate the principles, require-

ments and complexity of the segmentation algorithm itself,
thus could be difficult for practical applications. On the other
hand, empirical goodness methods based on human vision
are proposed, which are relatively subjective and cannot be
standardized. However, empirical discrepancy [26], [31], [19]
is the most commonly used strategy. The basic idea is to
compare the differences between a segmentation result and

Fig. 1. Overview of the proposed framework.

its human labeled counterpart (ground truth). To this end,
various region features and edges [31], [9], [8], [29], [18] of



the segmentation have been explored for designing measures in
terms of distance or similarity. These methods only compute
geometric features of object elements, i.e. region or edges,
while image cues of the objects are not directly considered.
In other words, object features such as colors, textures and
semantic cues are not compared and are treated equally in
the evaluation. Moreover, hand-crafted features mainly express
low-level image information yet insufficient to represent the
high-level semantic information.

In this paper, we study the segmentation evaluation problem
in a learning based aspect. Following the principle of discrep-
ancy evaluation, we design a convolutional neural network
(CNN) for segmentation feature embedding, in the meanwhile
integrating the meta-measures [22] into the metric learning
process to extract distinguishable object features. Inspired by
the object classification and segmentation tasks [25], [16],
we pursue an evaluation method by learning to evaluate the
segmentation quality instead of using pre-designed criteria.
The proposed segmentation evaluation will be conducted in
two steps. Firstly, an original image and its segmentation are
passed into a Feature Embedding Model (FEM) to obtain the
object feature vectors of the segmentation. Then, the cosine
distance between these feature vectors and those from trained
object classes is calculated as the final evaluation score.

To the best of our knowledge, it is the first attempt to
explicitly learn a CNN for extracting segmentation features
and couple the evaluation principles in a unified architecture.

The remaining sections of this paper are organized as
follows. Section 2 explains related work. Section 3 presents he
detailed proposed method. Section 4 provides the experimental
results. Section 5 concludes the paper.

II. RELATED WORK

In recent years, there has been a growing interest in explor-
ing segmentation quality evaluation using empirical discrep-
ancy methods, since it has a generality in various segmentation
algorithms, and quantitatively and objectively evaluate the
quality of segmentation results. Researchers computed the
discrepancy between handcrafted features, such as regions
[4], [27], edges [3] or a combination [19]. For example, [4]
represented region features that used global consistency errors
and local consistency errors to calculate the accuracy of seg-
mentation. In contrast, [3] explored edge features to evaluate
segmentation quality. Movahedi et al. [19] combined region
features and edge features to further enhance the efficiency
of the evaluation. These methods take the assumption that
the segmentation quality is only depended on the consistency
between the used geometric features and the ground truths.

Researchers [13] [28] adopted CNN frameworks to design
segmentation quality evaluation algorithms, taking into consid-
eration hand-crafted features can only express low-level image
information and the excellent performance of convolutional
neural work in extracting image high-level semantic features.
Shi et al. [28] proposed a double and multi scale deep CNN
evaluation model, which seeks to obtain more comprehensive

TABLE I
THE MAIN PARAMETERS OF THE THREE OBJECT SEGMENTATION

ALGORITHMS.

DeepLab v3 FCN Mask R-CNN
input size 512 any size any size

epoch 25 25 25
batch size 16 8 16

learning rate 0.007 1.0e-10 0.001
weight decay 0.0005 0.0005 0.0005
momentum 0.9 0.99 0.9

local and global information. The segmentation quality eval-
uation can also be viewed as a regression problem [13] and
suggested three evaluation models, where an object detection
network was proposed to predict the quality scores. The first is
to modify the last layer of the network to a sigmoid layer. The
second is to measure IoU for both the segmented image and
the image produced by a specific segmentation algorithm. The
third is to divide the segmented image into the foreground and
background. But in principle, there is no clear explanation for
the connection between the regression score and the similarity
to the human labelings.

In general, the main principle in metric learning [33] is to
shorten the distance between ground truth and positive samples
and to expand the distance between ground truth and negative
samples. Moreover, metric learning is commonly regarded as
similarity learning [34]. When calculating the similarity be-
tween images, the purpose of metric learning to maximize the
inter-class variations and minimize the intra-class variations.
In order to deal with various feature similarities, in a particular
task, we can pick appropriate features and manually construct
a distance function. In a general sense, there are two types of
metric learning [15]: metric learning by linear transformation
and the nonlinear metric learning model.

There are evaluation methods studying the extent to which
the segmentation matches the criteria of the good segmen-
tations [3], [2], [20], [23], [32]. Common characteristics
of objects (e.g. homogeneous regions, smooth boundaries,
etc.) were explored, but they can not accurately quantify the
complex objects in natural images [5]. Feature learning and
integration [8] is a prominent way to obtain object features,
however there is a gap between extracting features for regress-
ing the segmentation quality and optimizing the metric value.

III. PROPOSED METHOD

The main contributions of this work are three-folds. First, to
accurately describe objects features, a novel FEM is proposed,
which is further integrated with the meta-measures for feature
representation. Moreover, the score obtained by the proposed
method is proportional to the effect of image segmentation.
That is, the higher the score, the better the segmentation
effect. Second, in the test stage, the trained object features
are used for unsupervised evaluation. Compared to supervised
evaluation methods, it exempts the requirement for ground
truth, thus can be used for online evaluation. Third, we



construct a large-scale object segmentation evaluation dataset,
where different assumptions on the segmentation quality are
used to obtain the positive and the negative samples.

A. Network architecture

The proposed CNN evaluation model is shown in Fig. 1.
The training stage produces a set of library vectors, which
represents object features from ground truths. Based on these
vectors, the quality of arbitrary segmented objects can be
evaluated in the test stage through the objects in the image. A
FEM is designed to learn the feature embedding space, where
a refinement step is performed on the feature space to get
feature vector corresponding to the object region. Specifically,
we use a U-Net structure [24] with a linear activation in the
last layer to extract object features from the original image.
Then a feature refinement module is used for calculating
the embedding features for each image pixel. The module
contains four layers, i.e. dropout, convolution, linear activation
and L2 normalization. The ratio parameter in dropout is set
as 0.5. In the convolutional layer, 3 × 3 × 3 convolution
kernels are used with a linear activation, and the number
of output channels is 3. The module finally outputs M ×
N × 3 embedding features. To extract object features, the
segmentation mask is utilized, where the object pixels are set
as ones, and background pixels as zeros. A dot multiplication
is performed between each channel of the feature maps and
the zero-one segmentation mask, so that feature values in the
corresponding object regions are retained, while the non-object
positions become zero. The product result is then reshaped to
obtain a one-dimensional feature vector. In the training stage,
we simultaneously use three segmentations of the same object,
i.e., anchor (ground truth), positive and negative samples. The
binary segmentation map is duplicated and converted into a N
× M × 3 one-zero matrix, where N and M are the width and
height of the image, respectively.

We seek to a network which can evaluate the segmentation
quality under the principle of meta-measures. In [21], meta-
measures were proposed to distinguish the qualities of different
segmentations. Choosing an appropriate evaluation metrics
(M), the meta-measure is defined as:

|M (S1)−M (S2)| < |M (S1)−M (S3)| (1)

where S1 S2 and S3 are segmentations in different qualities,
i.e., the ground truth, the positive sample, and the negative
sample, respectively. In evaluation, the similarity between
anchor and positive samples is expected to be larger than
the similarities of anchor and negative samples. For the same
image, the embedding object features do not directly denote
the segmentation quality, however the similarity relations
among the three entities will also follow the meta evaluation
rule, as is shown in (2).

‖f (xai )− f (x
p
i )‖

2
2 + α < ‖f (xai )− f (xni )‖

2
2 (2)

where for any object segmentation i, xai is the anchor feature
vector, xpi is the positive feature vector and xni is the negative
feature vector, α is a margin for enforcement between positive

and negative pairs. Since the distance metric is established, we
consider the similarity loss function as follows:

L =

i∑
‖f (xai )− f (x

p
i )‖

2
2 + α− ‖f (xai )− f (xni )‖

2
2 (3)

It is in the form of a triplet loss function. Using this
similarity loss, we can learn the feature embedding space in an
end-to-end manner. Finally, the feature vectors of all anchors
are collected to form a feature library.

In the test stage, a segmentation mask is input with the
source image. Then object segmentation features are calculated
by FEM. We calculate the evaluation score as the cosine
distance between the segmentation feature and the anchors’
features in the library for the same object class. Because the
proposed evaluation dataset is based on the VOC dataset,
it contains 21 categories and category identifiers. When the
feature vectors of extracted objects are stored in the library
vectors, they will be mapped to the category identifiers one by
one to ensure that each object has an accurate corresponding
class identifiers. In the test, the feature vectors of target region
in the original image are extracted and compared with the
categories in the library vectors. The evaluation score for
objects from the same class is defined as:

S (xi) = max

(
xi · y
|xi| |y|

)
(4)

where xi,is the segmentation vector of the object, and y ∈ Y
is an anchor feature vector in the object set Y from the library.
The highest score is taken as the final result. In presence
of multiple object classes in an image, the average score is
calculated by taking an equal importance of all objects, i.e.:

S =
1

n

n∑
i=1

max

(
xi · y
|xi| |y|

)
(5)

Fig. 2. Part of the dataset.From left to right: ground truth, B and W. a and
b represent the 1st-rank test set and the 2nd-rank test set, respectively.



TABLE II
ACCURACY (%) OF UNSUPERVISED EVALUATION MEASURES.

measures best positive worst positive 1st-rank test set
F 44.2 38.5 54.6
F

′
51.9 42.3 62.6

Q 73.5 64.7 81.5
Ecw 43.3 37.5 63.3
Zeb 70.8 58.7 70.7
E 54.8 64.4 75.9

Ours 76.3 72.9 90.1

B. Dataset

In the existing segmentation quality evaluation datasets, the
segmentation images are independent, which does not repre-
sent the actual situation of segmented images [15]. Therefore,
in order to evaluate the quality of segmentation images more
reasonably and accurately, we should consider the correlations
among segmentation images when constructing our dataset.

A segmentation evaluation database should be prepared
for training the proposed deep evaluation network. We select
images with 21 object classes from Pascal VOC 2012. Three
popular object segmentation algorithms (i.e., DeepLab V3 [7],
FCN [17], Mask R-CNN [12]) are used to create segmentation
samples, where main parameters are set as in Table I. The
segmentation results obtained by different CNNs can lead
to various of qualities in the segmentations. Specifically, for
DeepLab V3, we obtain the results from the 1st, 5th, 10th,15th
and 25th epoches. And for FCN and Mask-R-CNN, we use
the results from the 25th epoch. We collect 7 segmentations
of each image for evaluation.

Firstly, we use all segmentation results as candidate segmen-
tation samples. Then, we arrange 10 observers to screen out the
positive and negative samples in the candidate segmentation
images, based on criteria in [11]. The positive samples are
determined by following standards: (1) the same regions of
an image are consistent and uniform; (2) the interior of the
region should be simple without many holes; (3) adjacent
regions should have significant differences in characteristics
while satisfying the regional consistency; (4) the boundary of
each region should be simple but not rough, and the spatial
position should be accurate. Therefore, and negative samples
are those obeying these conditions. Based on the above steps,
we take the majority votes to obtain the 1st-rank, the 2nd-
rank positive samples and the 1st-rank negative samples for
each image in the data set. Finally, we use the 1st-rank pairs
to construct the training set (7937 images) and the 1st-rank
test set (1058 images) by the random way. For each image,
there is one pair of segmentations labeled as positive and
negative respectively. We also create the 2nd-rank test set
(the same 1058 images) with the 2nd-rank positive and 1st-
rank negative pairs corresponding to group a and group b in
Fig. 2 respectively. Moreover, the training and test sets were
randomly selected from the VOC dataset, which contained 21
categories. Therefore, there is some similarity between them.

TABLE III
COMPARING THE ACCURACY (%) WITH SUPERVISED

EVALUATION MEASURES.

measures 1st-rank test set 2nd-rank test set
Dice 77.372 71.167
PRI 79.562 77.737
SC 83.211 81.386
VI 83.576 83.211

IoU 92.635 90.032
Ours 91.793 90.148

The evaluation task is more challenging for the 2nd-rank test
set, due to the smaller distances between the positive and the
negative samples.

IV. EVALUATION

A. Experimental Configuration

For segmentation quality evaluation model, we choose the
U-Net as the backbone network. The initial weights of this
network are pre-trained parameters on the ImageNet dataset.
Before inputting the segmentation image to the evaluation
CNN model, it is randomly cropped to 512 × 512 and
normalized for each RGB channel. We set Adam optimizer, 0.5
dropout rate, 0.9 momentum, 0.0005 weight decay. Besides,
the initial learning rate is 0.001, the batch size is 8. In the
training process, it takes 8 hours on a NVIDIA GeForce
2080TI GPU with 12GB memory.

B. Evaluation Results

The proposed evaluation framework is validated on the
dataset introduced in III-B. The feature library is obtained by
training on the 7937 original images and their corresponding
segmentation results.

1) Comparison to unsupervised evaluation measures: The
proposed method requires no ground truth segmentation in
the test stage. Therefore, we compare it with six well-known
unsupervised evaluation measures, i.e., F [15], F

′
[2], Q [2],

Zeb [5], Ecw [6] and E [32]. The six measures are based on
describing the inter- or intra-region similarities to evaluate the
quality of segmentation. For example F, F

′
and Q calculate

the average squared color errors inside each region. Zeb uses
internal uniformity, while Ecw computes the intra-region color
error (i.e. the proportion of misclassified pixels). E uses region
entropy as the measure of intra-region uniformity. These five
indexes are positively correlated with segmentation effect.
However, by definition all of these measures do not consider
the high-level semantic feature information. To compare the
goodness of these measures, the meta-evaluation [22] is used
to assess how well each measure can distinguish different
qualities of segmentations. However, the data sets used in the
experiments (a) and (b) are slightly different from III-B. For
each segmentation image we created use different segmenta-
tion algorithms [16-18]. Separately, a subjective evalution is
performed in which each human evaluator to select the best
and worst segmented image from all segmented images. From



TABLE IV
EVALUATION MEAN SCORES AND VARIANCE FOR GROUND

TRUTH SEGMENTATIONS.

measures mean variance
V I ↓ 0.294 0.242
Dice ↑ 0.889 0.011
PRI ↑ 0.914 0.062
SC ↑ 0.882 0.076
IoU ↑ 0.878 0.054
Ours ↑ 0.905 0.008

the best and worst segmented image sets selected by each
evaluator, we aggregate the best and worst segmented images
selected by the seven eavluators into the best set B and the
worst set W. Part of the data set is shown in Fig 2. And we
perform the experiments to test: (a) if the measures can find
the best segmentations for each image in the test set, (b) if
they can find the worst segmentations; and (c) if they can
correctly identify the positive samples from the negative ones
in the test set. The comparison results are shown in Table
II. In all the experiments, the proposed method outperforms
the other measures. F, F

′
and Ecw have the low performance

which is no better than a random guess. They tend to favor
the under-segmentation or over-segmentation of objects. While
the proposed method can correctly find over 70% of the
best positive and the worst negative samples among the 7
candidate segmentations of each image. Moreover, it achieves
90% accuracy in differentiating the positive segmentations
from the negative ones in the 1st-rank test set.

2) Comparison to supervised evaluation measures: Since
evaluation without a ground truth is challenging, most litera-
ture adopt a supervised way [22] with human labeling. Popular
measures include Intersection-over-Union (IoU), Dice [10],
Segmentation Covering (SC) [1], Probabilistic Rand Index
(PRI) [29], Variation of Information (VI)[30] and so on. Our
method does not require the exact ground truth for a test
segmentation, however, it is interesting to study whether it can
make a comparable performance to the supervised measures.
The experimental results are shown in Table III. For the 1st-
rank test set, the evaluation task is relatively easier since the
quality differences between the positive and the negative pairs
are obvious. We can see that the proposed method achieves
the accuracy above 90% for both test sets (i.e, 91.793% and
90.148%, respectively), which are better than most of the
supervised measures. IoU has the best performance in the 1st-
rank test set, but fail to beat the proposed method in the 2nd-
rank test set, which is more challenging for evaluation. Our
method only requires pre-trained object features from the same
class, so it can easily be extended and applied to the evaluation
task without human labeled ground truths.

3) Ground truth evaluation: The ability of identifying high
quality segmentation is essential for segmentation evaluation.
We thus validate the measures by calculating the evaluation
results for ground truths. For a good measure, it should
consistently assign good scores to these segmentations. The

Fig. 3. Images and their segmentations with evaluation scores. From left to
right: the original image, the good segmentation and the bad segmentation.

experimental results are shown in Table IV. For supervised
measures, ground truths of other images in the same object
class are used as the reference for evaluation. We can see
that there are five measures producing mean scores close to 1,
which is the upper bound of these measures.

Fig. 4. Segmentation images with one category and multiple categories. From
left to right: the original image, the good segmentation, the bad segmentation
and the ground truth.



TABLE V
EXPERIMENTAL RESULTS FOR ONE CATEGORY AND MULTIPLE CATEGORIES SEGMENTATION IMAGES.

measures 1 2 3 4
positve negative positve negative positve negative positve negative

IoU ↑ 0.7347 0.3611 0.6498 0.5618 0.7802 0.6760 0.7614 0.1084
Dice ↑ 0.8471 0.5306 0.7877 0.7194 0.8765 0.8067 0.8654 0.7722
SC ↑ 0.9271 0.6451 0.8869 0.8401 0.7293 0.5634 0.9431 0.8949
PRI ↑ 0.9450 0.6937 0.8928 0.8476 0.8168 0.6987 0.9506 0.9117
V I ↓ 0.3896 1.0744 0.5245 0.6522 1.5208 1.9434 0.3809 0.5702
Our ↓ 0.8092 0.5347 0.8211 0.5243 0.5639 0.3464 0.8688 0.4484

Our measure obtains the second highest mean value and
the smallest variance for the ground truths. So it shows the
ability of stably evaluating the good segmentations with high
scores. A reason for this is that supervised measures mainly
calculate the labeling distance between the reference image
and the segmentation, while this distance could be large for in-
class objects. By representing the objects in the feature space,
the variance of in-class objects is reduced, which brings a
consistent evaluation result for good segmentations.

4) Qualitative evaluation: To intuitively check the perfo-
mance of our method, we conduct three experiments to verify
it. Firstly, we show some qualitative comparisons with the
widely used IoU measure in Fig. 3. In the figure, two segmen-
tations in different qualities are shown for each image, as well
as their evaluation scores. Ideally, a large difference between
the good (the middle) and the bad (the right) segmentations is
preferred. In these examples, the proposed measure produces
much lower scores for bad segmentations, especially in the
2nd, 3rd and the 4th rows. Compared to IoU which mistakenly
assigns higher score to the bad segmentation for the 4th image,
our measure correctly identify the under-segmentation result
with a lower score.

In image segmentation, the difficulty of segmentation partly
depends on the number of objects in the images, and the
segmentation quality evaluation is also affected by the category
[25]. We employ popular supervised measures [1], [10], [29],
[30] to evaluate segmentation image with one category and
multiple categories. Experimental images are shown in Fig.
4 and experimental results are shown table V. In the figure,
positive and negative samples represent segmented images
of different quality and an excellent evaluate measure can
be clearly distinguished. However, in the experimental re-
sults, other methods do not clearly and accurately distinguish
between segmentation images in different quality, especially
multiple categories (the third and fourth rows). Besides, We
find that other evaluation methods give unreasonable scores
for bad segmentation images and often give high scores in
multiple categories (i.e. The scores given by Dice, SC, PRI
to the third and fourth rows of images). The main reason is
that these methods only consider low-level image information.
Compared with the proposed method, this method can not
only distinguish the segmentation quality of single category
or multiple categories images, but also objectively give a
feedback to the segmentation image. Meanwhile, this method

can evaluate the segmentation quality without being limited
by the difficulty of segmentation.

Through experimental analysis, it is concluded that the
proposed method is not effective in evaluating the over-
segmentation images. From the partial over-segmentation im-
age shown in Fig. 5, it can be seen that the evaluation score
given by the proposed method is less objective. If we draw
the segmentation effect of the image directly from the score,
it will cause misjudgment. For example, b in the third row
would be mistaken for a better segmentation.

V. CONCLUSION

In this paper, we studied the segmentation evaluation by
designing a CNN based evaluation framework. A feature
embedding module which integrates meta evaluation principle
was proposed and trained in a metric learning process. In the
test stage, we used the trained object features to calculate
the cosine distance and obtain the score for the segmentation
result. Also, an object segmentation evaluation dataset was
constructed to validate the proposed method. We compared the
proposed method with different unsupervised and supervised
measures, which showed that it can provide more accurate
evaluation results for segmentations of different qualities on
the proposed evaluation dataset.

Fig. 5. Badly evaluated images and their segmentation with evaluation scores.
From left to right: the original image, two segmentation images and ground
truth.
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