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Abstract

In this paper we generalize the results of former papers that dealt with the assignment of students

to dormitories at the Technion–Israel Institute of Technology, under an entrance criterion. Here, we

consider the case where students may apply in groups, thereafter called teams, each consisting of one

or more students. A team-application means that students from any given team, want to be assigned

together to the same dormitory-group. More specifically, students of the same team prefer living

off-campus rather than living in different dormitory-groups.

The underlying assumption in our model is that the dormitory-groups share a common preference

over the teams, which is given by a strictly increasing ranking of the teams’ credit scores. We adjust

the definition of a quasi-stable outcome to incorporate team applications, and show that a quasi-stable

outcome always exists. Furthermore, an algorithm that finds all the quasi-stable outcomes, is presented.

Apparently, some of the properties of the model for teams of a single student, continue to hold also

under the model of team applications. In addition, we consider the incentive compatibility property of

the outcomes generated by the proposed algorithm, and show, in particular, that the algorithm that

produce a specific quasi-stable outcome, is manipulation-proof, i.e., no subset of teams can gain by

misrepresenting their preferences over the dormitory-groups.

1 Introduction

Matching problems form an important topic in game theory. The original formal model was developed by

David Gale and Lloyd Shapley (GS) in 1962 (see [7]). Their paper defines a notion of stability for two-

sided matching in populations where individuals have preferences over being matched with individuals of

the other side. Further, [7] provides an algorithm that finds a stable match. There are many variants

and extensions of the original model of GS that have many useful applications, see, for example, [11, 18,

10, 27, 22, 3, 1, 2, 5, 28, 24], and references therein. In what follows, we refer to the model of GS as the

classic matching model.

A case study of assignment of students to dormitory-groups at the Technion - institute of technology,

led to a development of a matching model which incorporates an ”entrance criterion” (see [16]). Under

this model, students are considered for an assignment only if they meet a competitive eligibility condition,
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characterized by a merit-score. The assignment of eligible students is based on the students’ preferences

over the dormitory-groups as well as a common and complete preference-list of the dormitory-groups over

the students, which is characterized by a credit-score of each student. The paper describes and analyzes

an algorithm that generates a corresponding stable outcome with some desirable properties.

The framework of [16] is generalized in [17], by relaxing the assumption that preference-lists of the

dormitory-groups are common and complete. In particular, dormitory-groups are allowed to use different

evaluation criteria for stating their preferences over the students. The proposed algorithm for the gen-

eralized model preserves most of the properties of the original algorithm. Moreover, [17] demonstrates

that the new algorithm satisfies the incentive compatibility property for a single student, which means

that a single student cannot improve his assignment by misrepresenting his preference-list while all other

students state their true preference-lists.

In the models presented above, the players in at least one of the populations, compete as individuals.

However, some applications require team assignment, such as in the dormitory-groups assignment, where

students want to be assigned to the same room as their friends, and otherwise, they prefer living off

campus. Similarly, in the process of students’ assignment to schools, there may be educational needs that

impose constraints for assigning some students to the same school as their mates. Team assignment in the

classic matching model is discussed, for example, in [13, 15, 12, 18, 4]. The problem of team assignment

under capacity constraints on the population of the other side, is more complicated than the case of single

students, and a stable assignment does not necessarily exist. See, for example, [18].

In this paper we extend the matching model with entrance criterion of [16, 17] to incorporate team

assignment. More specifically, we assume that the population of the first side consists of different sized

groups of students, later referred to as teams, where the population of the second side consists of dormitory-

groups, each is characterized by its capacity of beds. A team is formed if all its members prefer living off

campus rather than being separated and assigned to different dormitory-groups. Further, we assume that

in any team, the preference-lists of all its students over the dormitory-groups, are common. In addition,

the dormitory-groups are assumed to rate teams rather than individual students. There are many ways

for a dormitory-group to decide how to rate a team, as for example, to rate the least/most preferred

student in that team, etc. In this paper we do not discuss the methodology of forming the preference-lists

for the agents, but assume that they are provided to us as an input.

In this paper, as in [16], we refer to the specific case where the preferences of the dormitory-groups

are common, and are determined by the credit scores of the teams. The paper is organized as follows: In

section 2 we present the team assignment model, while adapting the definitions of [16, 17] to include team

assignments. In section 3 we present the properties of team assignment in the classic matching model,

where dormitory-groups’ preferences are common. Section 4 describes the properties of team assignment
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in the general model which incorporates an entrance criterion: a stable assignment for any instance is

shown to exist and an algorithm that returns all possible stable assignments, is proposed. Some of the

properties discussed in [16, 17], are shown to continue to hold in this model. Finally, in section 5 we discuss

the existence of the incentive compatibility property for any set which contains one or more teams, i.e.,

the property that there is no possibility of gaining by misrepresenting the preference-lists of all the teams

in the set.

2 Preliminaries and notations

In this section, a modification of the stable matching model with an entrance criterion (as presented in

[16, 17]), which, incorporates ”team applications”, is presented.

Decisions about the assignment of students to dormitories at the Technion - institute of technology, and

possibly in many other universities and colleges, are based on a three-step process (see section 2 in [16]).

The first step determines the eligibility of applicants for on-campus housing. The second step allocates

the students that were found eligible, to dormitory-groups. Finally, the third step assigns students to

specific rooms\apartments. Different criteria are used for these steps: socio-economic and personal data

are the main factors for determining the merit score of each student for the first step, where academic

seniority and academic excellence determine the credit score for the second step, and finally, student

preferences over rooms and room-mates are the main factors in the actual assignment of students to

rooms/apartments.

Here we consider the first two steps, under the assumption that students may apply in groups rather

than applying one by one. Throughout, we refer to a group of students as a team. Any team that applies

for a dormitory is assigned both a merit-score and a credit-score that are functions of the individual

characteristics of the students in the team. The underlying assumption for a team that fills an application

is that the students in the team prefer living outside the campus than being separated and assigned to

different dormitories/apartments.1 Throughout this paper we assume that both merit scores and credit

scores for each team are given to us as an input by the dormitory management of the university/college.

The data for our model includes two disjoint finite sets G and D, referred to as the set of teams and the

set of dormitory-groups, respectively. Let |G| = n, |D| = k, G = {1, ..., n} (the indices of the teams) and

D = {1, ..., k} (the indices of the dormitory-groups). Note that any student, which applies, belongs to a

1Note that if we just referred to the preferences of the members of a team over room-mates, the three-step process
described here could be reduced to a two-step process by using the model presented in this paper, while eliminating the third
step, and assigning teams directly to rooms rather than to dormitory-groups. In reality, the step of assigning students to
rooms is based also on some other characteristics such as smoking, religions, gender, etc.
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unique team g ∈ G, which is possibly a singleton. Each team g ∈ G is associated with three non-negative

numbers qg, mg and cg: qg is the number of students in team g, mg is the merit score of team g, and

cg is the credit score of team g. The special case where
∑
g∈G qg = n refers to singleton teams, which is

considered in [16]. Throughout we assume that: (1) each of the sequences m1, ...,mn and c1, ..., cn consists

of distinct elements, i.e., for g1 6= g2: mg1 6= mg2 and cg1 6= cg2, and (2) w.l.o.g, teams in G are indexed

according to their credit scores from the highest to the lowest (i.e. ∀g1, g2 ∈ G : g1 > g2⇔ cg1 < cg2). In

addition, each team g ∈ G is associated with a non-empty set ∅ ⊂ Dg ⊆ D, and a ranking �g of Dg ∪{g},
where g is the least preferred element by team g. We refer to �g as the preference of team g over the set

of dormitory-groups in Dg and over being unassigned to any dormitory-group in its preference-list, where

the latter case is represented by g. We say that dormitory-group d ∈ D is acceptable by team g ∈ G if and

only if d ∈ Dg. Similarly, d /∈ Dg means that team g ∈ G finds dormitory-group d ∈ D unacceptable and it

prefers to be assigned to g, which means living off-campus, rather than living in dormitory-group d. Each

dormitory-group is associated with a capacity, which is the number of beds that it offers. However, in

order to avoid the case of having beds that no team is interested in, we consider the ”effective capacity” bd

of each dormitory-group d, to be the minimum between the number of beds in d and
∑
{g∈G|d∈Dg} qg, where

the second term stands for the total number of students that accept dormitory-group d. For simplicity, in

the sequel we assume that the effective capacity of a dormitory-group equals its given capacity. Thus, the

total number of students that are interested in living in dormitories, under some personal preferences, is∑
g∈G qg, and the total number of beds in the dormitories is

∑
d∈D bd, where according to our assumption,

k ∗
∑
g∈G qg ≥

∑
d∈D bd. In addition, we assume that for any team g ∈ G and any dormitory-group d ∈ D,

qg > bd implies that d /∈ Dg. Therefore, for each team g ∈ G, since Dg 6= ∅, qg ≤ maxd∈D bd.

In this study we assume that the credit scores of the teams are common and complete, implying a

common and complete preference-list of the dormitory-groups over the teams. The more general case

where each dormitory-group has its own preference-list over the teams, is open for further research. The

case with non-common preference-lists of the dormitory-groups where teams are singletons, is discussed

in [17].

In what follows, the pair (G′, D), where G′ ⊆ G, is referred to as a market. Let n(G′) be the number

of teams in G′, i.e., n(G′) ≤ n(G) = n.

An assignment for a set A ⊆ G over the dormitory-groups in D is a set of pairs, µ = {(g, d)|g ∈ A, d ∈
D}, where for any (g, d), (g′, d′) ∈ µ : g 6= g′, i.e., the teams in different pairs are distinct,

∑
g:(g,d)∈µ qg ≤ bd

for each d ∈ D, and (g, d) ∈ µ implies d ∈ Dg. µ can also be interpreted as a function µ(·) : A → D

having µ(g) = d for g ∈ A. Under this interpretation, µ represents the assignment of teams in A to

dormitory-groups, while the other teams are not assigned to any dormitory-group.

An outcome is a triplet (µA,W,R) where µ is the current assignment for a set A ⊆ G, and the pair
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(W,R) partitions the teams that have not yet been assigned a dormitory-group, namely G\A, into two

disjoint sets: the teams in W are in a waiting list, while those in R are called refugees, as they are excluded

from any further consideration. The difference between the sets W and R is that W contains the teams

that are still waiting to be considered for an appropriate assignment, while R contains the teams that

have already been considered but, unfortunately, no suitable dormitory-group has been found to host

them. For simplicity, we omit the subscript A from the outcome triplet since clearly A = G\(W ∪R).

Next, we present a definition of plausibility that generalizes the corresponding definition in [16, 17],

where all teams are singletons.

Definition 1 An outcome (µ,W,R) is said to be plausible if:

(a) mg < mg′ for each g ∈W and g′ ∈ G\W , and

(b) Either W = ∅ or
∑
d∈D bd−

∑
(g,d)∈µ qg < qĝ, where ĝ is the team with the highest merit score in W.

Condition (a) of Definition 1 asserts that the merit-score of each team in the waiting list is lower

than the merit score of any team, which is not in the waiting-list (namely, a team which has either been

assigned to a dormitory-group or has been excluded from further consideration). It follows immediately

that if (µ,W,R) and (µ′,W ′, R′) are two outcomes that satisfy condition (a) in Definition 1, then W and

W ′ are ordered by set-inclusion.

Condition (b) of Definition 1 asserts that either all teams are processed (meaning assigned to a

dormitory-group or determined to be refugees), or the total number of empty beds is less than the size of

the next-to-be-processed team in W , according to the merit score. In particular, by condition (b), if all

teams are singletons, all dormitory-groups are at full capacity.

Recall that Definition 1 has not made any use of the credit scores, which next plays a central role in

the determination of the final outcome.

Definition 2 A pair (g, d) ∈ G×D is a blocking pair of an outcome (µ,W,R) if:

(a) g ∈ G\W and

(b) d ∈ Dg and

(c) (g, d) /∈ µ and

(d) If g /∈ R: d >g µ(g) and
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(e) qg +
∑

(i,d)∈µ qi −
∑
i∈G′g qi ≤ bd, where G′g ≡ {i|(i, d) ∈ µ, and, cg > ci}.

In other words, according to Definition 2, a blocking pair in a specific outcome consists of a team,

which is not in the waiting list, and a dormitory-group, where the two are not assigned one to the other,

though each of them prefers to be assigned to the other rather than their current state in the outcome.

Definition 3 An outcome (µ,W,R) is called internally stable if it has no blocking pairs, and is called

quasi-stable if it is plausible, see Definition 1, and internally stable.

Note: If all teams consisted of the same number of students q, then we could scale down the the size of

the teams and the capacity of each dormitory-group by q, to generate a model of single students, which

is discussed in [16, 17]. Thus, in this research, we assume that the teams in G are of non-identical size.

3 A stable assignment for an exogenously given waiting list

This section presents some properties of internally stable outcomes, see Definition 3. Given a certain

waiting list W, where ∅ ⊆ W ⊂ G, we restrict ourselves to a market (G′, D) for a subset G′ ⊆ G where

G′ = G\W.
In the following, we claim that for any given G′, an internally stable outcome, for market (G′, D)

exists, and it is unique. The proof starts by presenting a constructive algorithm. The algorithm scans the

teams of G′ according to their indices, and assigns each team to its most preferred dormitory-group that

still has enough beds to accommodate it. If such a dormitory-group doesn’t exist, the team is classified

as a refugee.

The algorithm is using the following data-structure:

• g - the current team scanned by the algorithm.

• �̂ - the preference-list of the current team g, which contains the dormitory-groups in Dg that have

not yet rejected it.

• d - the current most preferred dormitory-group in �̂.

• R - the current set of unassigned teams from G′, that will eventually remain unassigned to any

dormitory-group.

• µ - the current assignment of teams from G′\R to dormitory-groups.

6



Team Internally Stable Assignment (TISA) algorithm :

Input: Market (G′, D) (assuming G′ 6= ∅).

Initialization: Let µ be the empty assignment, R = ∅, and g = 1. All the beds in the dormitory-

groups are free. In particular, the set of temporarily assigned teams to each dormitory-group is empty.

Begin:

• While g < n+ 1 do the following steps:

1. If g ∈ G′

(a) �̂ =�g.
(b) Let d be the most preferred dormitory-group in �̂.

(c) If such d does not exist, then add team g to R.

(d) Otherwise,

i. If bd −
∑
{g′|(g′,d)∈µ} qj < qg:

A. Delete d from �̂.

B. Go to (1b).

ii. Otherwise, insert (g, d) to µ.

2. g ← g + 1.

Endwhile.

• Output (µ,R).

End ◦

The output (µ,R) is returned where µ is the set of pairs (g, d) ∈ G′×D that are matched and R ⊆ G′

is the set of refugees that could not be assigned by the algorithm. Note that all the students in G′\R are

assigned a dormitory-group under µ.

The following theorem provides a characterization of the outcome generated by the TISA algorithm:

Theorem 1 For any market (G′, D), G′ ⊆ G, there exists a single internally stable outcome of the form

(µ,G\G′, R).
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Proof: We start by showing that the TISA algorithm terminates, and produces an internally stable

outcome of the form (µ,G\G′, R).

Termination is immediate as each team is scanned exactly once, and all preference-lists of the teams are

finite. Let (µ,G\G′, R) be the outcome generated by the TISA algorithm on market (G′, D). Acceptability

of µ is also immediate since a team is assigned to a dormitory-group only if the dormitory-group is

acceptable by the team and there are enough beds in the dormitory-group to accommodate the team.

Now, assume by contradiction that (g, d) is a blocking pair in (µ,G\G′, R). Consider the time of addressing

team g during the algorithm. At this time, dormitory-group d contains only teams with a higher credit-

score than cg. If at this time, there were enough beds to accommodate g in d, g would be assigned to d

or to a dormitory-group that g prefers better than d. The contradiction follows since no team leaves a

dormitory-group once it was assigned to it by the algorithm.

Next, we show that (µ,G\G′, R) is a unique internally stable outcome for market (G′, D). This part

is also proved by contradiction.

Given a market (G′, D), assume that there were two different internally stable outcomes (µ1, G\G′, R1)

and (µ2, G\G′, R2). Let g∗ ∈ G′ be the team with the highest credit-score for which µ1(g∗) 6= µ2(g∗).

W.l.o.g., assume that g∗ prefers the outcome under (µ1, G\G′, R1) (which implies g∗ /∈ R1) than under

(µ2, G\G′, R2), i.e.:

d1 = µ1(g∗) �g∗ µ2(g∗) or g∗ ∈ R2 (1)

Consider the outcome (µ2, G\G′, R2): Let G̃g∗ = {i|µ2(i) = d1 and cg∗ < ci} be the set of teams that

were assigned by µ2 to d1 and their credit scores are higher than the credit score of team g∗. As g∗ is

the highest credit-scored team whose assignment differs between (µ1, G\G′, R1) and (µ2, G\G′, R2), and

since g∗ is assigned to d1 under µ1, clearly,

qg∗ +
∑
i∈G̃g∗

qi ≤ bd1 . (2)

From (1) and (2) we conclude that (g∗, d1) blocks (µ2, G\G′, R2), in contradiction to the assumption on

the internal stability of (µ2, G\G′, R2).

Comment 1: The complexity of the TISA algorithm is of order o(n(G′) ∗ k) since all teams in G′ are

scanned exactly once, and for any team, its preference-list, which, in the worst case, might contain all

dormitory-groups in D, are scanned.
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4 Quasi-stability

In the previous section, the unique internally stable assignment under a certain market was determined.

In this section, we consider the general model with merit scores, as discussed in section 2, and elaborate

on some of its properties. Our first observation is that in the model considered here, unlike the model

with singleton teams (see section 3 in [16] and [17]), there may exist two outcomes, (µ,W,R), (µ′,W ′, R′),

that fulfil condition (a) of plausibility, where (µ,W,R) is plausible, W ′ ⊂W , but (µ′,W ′, R′) is not.

Example 1 Let G = {1, 2, 3}, D = {d}, q1 = q2 = 1, q3 = 2 and bd = 2. Assume d is acceptable by 1, 2

and 3, m1 < m2 < m3, and recall that c1 > c2 > c3. Consider the following outcomes:

• (µ,W,R), where µ = {(3, d)}, W = {1, 2} and R = ∅.

• (µ′,W ′, R′), where µ′ = {(2, d)}, W ′ = {1} and R′ = {3}.

Clearly, (µ,W,R) is a quasi-stable outcome, but (µ′,W ′, R′) is not, as it does not satisfy condition (b)

of Definition 1, even though W ′ ⊂W . ◦

In the next sub-section, we propose an algorithm that finds all quasi-stable outcomes when the set of

teams and the set of dormitory-groups are given. Then, in sub-sections 4.2 and 4.3, we concentrate on a

specific quasi-stable outcome and discuss some of its properties.

4.1 Finding all quasi-stable outcomes

For the classic matching model of men and women (see [7]), a polynomial time algorithm that finds all

stable matchings, is presented in [10]. The following algorithm finds all quasi-stable outcomes for a given

set of teams G and a given set of dormitory-groups D. More specifically, the algorithm finds an internally

stable outcome for any possible waiting-list that satisfies condition (a) of plausibility, by running the

TISA algorithm, while filtering out outcomes that don’t satisfy condition (b) of plausibility.

The algorithm uses the following data structure:

• Ŵ - a stack of teams ordered in a decreasing order of their merit scores. In each iteration, this stack

holds the current teams in the waiting-list.2

• K - the set of quasi-stable outcomes that have already been found.

2Note that the teams in the stack Ŵ , are ordered according to the merit-scores, while we indexed them according to their
credit-scores.
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• k - the index of the current quasi-stable outcome inserted to K.

• G′ - is G\Ŵ .

• itr - iteration counter (which is equal to |G\Ŵ |).

Finding all Quasi-Stable Outcomes (QSO) algorithm

Input: A non-empty set of teams G, and a non-empty set of dormitory-groups D.

1. Let g∗ ∈ G be the team with highest merit score.

2. Push to Ŵ the teams in G\{g∗} in a descending order of their merit scores.

3. Let K = ∅, k = 1, G′ = {g∗}, and itr = 1.

4. While itr ≤ n:

(a) Apply the TISA algorithm on market (G′, D). Denote the output of this run by (µ′, R′).

(b) If condition (b) of plausibility holds for (µ′, G\G′, R′):

i. Let (µk,Wk, Rk) = (µ′, G\G′, R′), and add it to K.

ii. k ← k + 1.

(c) Pop the first team from Ŵ and insert it to G′.

(d) itr ← itr + 1.

Endwhile.

5. Return K. ◦

Comment 2: According to Comment 1, each run of the TISA algorithm on market (G′, D) is of com-

plexity o(n(G′) ∗ k). The QSO algorithm on G and D, considers all possible waiting-lists that consist of a

consecutive set of the lowest possible merit scores, and for which condition (a) of plausibility holds. There

are n(G)+1 such possibilities. For each such waiting-list, the QSO algorithm generates a run of the TISA

algorithm. Therefore, the complexity of the QSO algorithm is of order o((n(G))2 ∗ k) = o(n2 ∗ k).
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Comment 3: In order to simplify the presentation, we start the QSO algorithm when the set G′ con-

sists of the highest merit-scored team. However, the same output can be obtained by a more efficient

algorithm, if we initialize G′ to include the set of teams Ḡ ⊆ G with the highest merit scores such that∑
g∈Ḡ qg ≤

∑
d∈D bd, and Ŵ = G\Ḡ.

We conclude this subsection by the following theorem:

Theorem 2 The output K of the QSO algorithm is equal to the set of all quasi-stable outcomes for the

set of teams G and the set of dormitory-groups D.

Proof: Any element (µk,Wk, Rk) ∈ K, produced by the QSO algorithm, is an outcome by definition.

Any such outcome, is internally stable in view of Theorem 1. The plausibility of (µk,Wk, Rk) is due to the

way of determining Wk by the QSO algorithm (see step 4b). The proof that K consists of all quasi-stable

outcomes for the set of teams G and the set of dormitory-groups D, follows immediately from Theorem

1, and from the fact that the QSO algorithm considers all possible waiting-lists for this data.

Note that in the last iteration of the QSO algorithm, the specific outcome, which is the result of

running the TISA algorithm on market (G,D), whose waiting-list is empty, is added to K. Theorem 1

asserts that such an outcome exists, and is unique, and it satisfies both conditions of plausibility as its

waiting-list is empty. The following observation is, thus, straightforward:

Observation 1 For any set of teams G, and any set of dormitory-groups D, there exists at least one

quasi-stable outcome, i.e., |K| ≥ 1.

4.2 Properties of quasi-stable outcomes

There are several optimality criteria that one can use in the evaluation of quasi-stable outcomes. For

example, the one that has the least number of refugee teams, the one that has the least number of

refugee students as individuals, the one where most teams (or students as individuals) get their most

preferred assignment, the one with the least number of empty beds, etc. In this sub-section we consider

some possible optimality criteria. We start by saying that scanning the list K that the QSO algorithm

generates can serve in finding a quasi-stable outcome under any possible criterion.

In this sub-section we refer to the first outcome that is generated by the QSO algorithm, namely

(µ1,W1, R1), and elaborate on some of its properties. Recall that (µ1,W1, R1) is the lowest indexed
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outcome in K.3

First, the following theorem shows that W1 contains the largest number of teams (and, therefore,

the largest number of students as individuals), and that R1 contains the least number of students as

individuals, among all quasi-stable outcomes. For this sake we introduce the function s : 2G → N , which

returns the number of students in any subset G′ of G.

Theorem 3 Let K be the output of the QSO algorithm on the set of teams G and the set of dormitory-

groups D, and suppose that |K| > 1. Consider two different outcomes in K, (µ1,W1, R1) and (µ∗,W∗, R∗).

Then

1. W∗ ⊂W1.

2. s(W∗) < s(W1).

3. s(R∗) > s(R1).

Proof: The proof of item 1 follows immediately from the way of constructing the elements of K by

the QSO algorithm, implying also the proof of item 2. In order to prove item 3, let e1 and e∗ be the

total number of unassigned beds in (µ1,W1, R1) and (µ∗,W∗, R∗), respectively, i.e., e1 =
∑
d∈D bd −∑

(g,d)∈µ1 qg and e∗ =
∑
d∈D bd −

∑
(g,d)∈µ∗ qg. Therefore, s(R1) =

∑
g∈G\W1

qg–(
∑
d∈D bd − e1), and

s(R∗) =
∑
g∈G\W∗ qg–(

∑
d∈D bd − e∗). By item 1, W∗ ⊂ W1, and therefore, G\W1 ⊂ G\W∗. Let g∗ be

the team with the highest merit score in W1. Clearly, g∗ ∈ G\W∗. Condition (b) of plausibility for

(µ1,W1, R1) asserts that qg∗ > e1. Thus,

s(R∗)− s(R1) =
∑

g∈G\W∗

qg −
∑

g∈G\W1

qg + e∗–e1 ≥ qg∗ + e∗–e1 ≥ qg∗–e1 > 0 (3)

concluding the proof.

Unfortunately, the following example shows that in terms of the number of teams, there may be

markets where R1 is not necessarily minimal among all quasi-stable outcomes.

Example 2 Let G = {1, 2, 3, 4, 5, 6, 7, 8, 9}, D = {d1, d2, d3, d4}, q1 = q3 = q4 = q5 = q8 = q9 = 1,

q2 = q6 = q7 = 2 and bd1 = bd2 = bd3 = bd4 = 2. Recall that c1 > c2 > c3 > c4 > c5 > c6 > c7 > c8 > c9,

and let m9 > m8 > m7 > m6 > m3 > m2 > m4 > m5 > m1. The following table presents the

preference-lists of the teams:

3In the case where all teams are of the same size, the outcome (µ1,W1, R1) coincides with the outcome of Dor-AA in [16].
Therefore, in such a case, this outcome satisfies all optimality criteria stated above.
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1 2 3 4 5 6 7 8 9

d1 d1 d1 d2 d2 d3 d4 d3 d4

d2 d3 d4

For this data there are two quasi-stable outcomes. The first outcome of the QSO algorithm, namely,

(µ1,W1, R1) where µ1 = {(2, d1), (4, d2), (5, d2), (6, d3), (7, d4)}, W1 = {1}, and R1 = {3, 8, 9} and

(µ2,W2, R2), where µ2 = {(1, d1), (2, d2), (3, d1), (4, d3), (5, d4), (8, d3), (9, d4)}, W2 = ∅ and R2 = {6, 7}.
In this example, in (µ1,W1, R1) there are three teams which are determined to be refugees, and in

(µ2,W2, R2) only two teams are determined to be refugees. ◦

4.3 Optimality criteria

4.3.1 Optimality for teams and students

In this sub-section we propose the following definition of optimality for individual student and for teams:

Definition 4 A quasi-stable outcome is said to be optimal for a certain student (team) if there is no

other quasi-stable outcome in which the student (team) is assigned to a dormitory-group that he(it) better

prefers.4

The following example shows that there may exist a team set G and a dormitory-group set D, where

any quasi-stable outcome is not optimal for at least one team in G, and particularly for all its students.

Therefore, unlike the case where the teams are singletons (see [16, 17]), no algorithm can find an optimal

outcome for all teams or students in G.

Example 3 Let G = {1, 2, 3}, D = {d1, d2}, q1 = 1, q2 = 2, q3 = 1 and bd1 = 1, bd2 = 2. Recall that

c1 > c2 > c3, and let m3 > m2 > m1. The following table presents the preference-lists of the teams:

1 2 3

d2 d2 d2

d1 d1

For this data there are two quasi-stable outcomes. The first outcome of the QSO algorithm, namely,

(µ1,W1, R1), where µ1 = {(2, d2), (3, d1)}, W1 = {1} and R1 = ∅, and (µ2,W2, R2), where µ2 =

{(1, d2), (3, d2)}, W2 = ∅ and R2 = {2}.
In this example, optimality for team 2 is reached under (µ1,W1, R1) and optimality for team 3 is

reached under (µ2,W2, R2). ◦
4Definition 4 includes the preference of being assigned to a dormitory-group over being a refugee, as being a refugee is

the least preferred option for any student or team.
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Unfortunately, unlike the case where all teams are singletons (discussed in [16, 17]), the following

example shows that there may exist a quasi stable outcome (µ∗,W∗, R∗) 6= (µ1,W1, R1), where most

students, and also most teams in G\W1, prefer over outcome (µ1,W1, R1).

Example 4 Let G = {1, 2, 3, 4, 5}, D = {d1, d2, d3, d4}, q2 = 2, q1 = q3 = q4 = q5 = 1 and bd1 = 2, bd2 =

bd3 = bd4 = 1. Recall that c1 > c2 > c3 > c4 > c5, and let m2 > m3 > m4 > m5 > m1. The following

table presents the preference-lists of the teams:

1 2 3 4 5

d1 d1 d1 d1 d1

d2 d2 d2 d2

d3 d3 d3 d3

d4 d4 d4 d4

The first outcome is the outcome that the QSO algorithm generates, namely, (µ1,W1, R1), where

µ1 = {(2, d1), (3, d2), (4, d3), (5, d4)}, W1 = {1} and R1 = ∅. However, if the waiting-list is empty, the

following quasi-stable outcome is generated: (µ2,W2, R2), where µ2 = {(1, d1), (3, d1), (4, d2), (5, d3)},
W2 = ∅ and R2 = {2}.

Here, the outcome (µ2,W2, R2) is strictly better than (µ1,W1, R1) for teams 3, 4, 5 ∈ G\W1 (and also

for 1 ∈ W1), where for team 2 the opposite holds. As 3 = q3 + q4 + q5 > q2 = 2, we conclude that

the outcome (µ2,W2, R2) is optimal for more students and more teams in G\W1 than is the case under

(µ1,W1, R1). ◦

4.3.2 Optimality for a team with a complete preference-list

In the case of singletons teams, see [16], it is shown that a team who listed all dormitory-groups as

acceptable cannot end up as a refugee team in (µ1,W1, R1). However, this claim does not hold for the

general case, as the following two examples show. The first example refers to a team of size 2, and the

second refers to a singleton team.

Example 5 Let G = {1, 2, 3}, D = {d1, d2}, q1 = q2 = 1, q3 = 2 and bd1 = bd2 = 2. Recall that

c1 > c2 > c3, and let m1 < m2 < m3. The following table presents the preference-lists of the teams:

1 2 3

d1 d2 d1

d2 d1 d2
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Consider the only quasi-stable outcome for this data, namely, (µ1,W1, R1), where µ1 = {(1, d1), (2, d2)},
W1 = ∅, and R1 = {3}. Here, all dormitory-groups are acceptable by team 3, but 3 ∈ R1. ◦

Example 6 Let G = {1, 2, 3, 4}, D = {d1, d2}, q2 = 2, q1 = q3 = q4 = 1 and bd1 = bd2 = 2. Recall that

c1 > c2 > c3 > c4, and let m4 > m3 > m2 > m1. The following table presents the preference-lists of the

teams:

1 2 3 4

d1 d1 d1 d1

d2 d2 d2

Consider the only quasi-stable outcome for this data, namely, (µ1,W1, R1), where µ1 = {(1, d1), (3, d1), (2, d2)},
W1 = ∅ and R1 = {4}. Thus, all dormitory-groups are acceptable by team 4, but 4 ∈ R1. ◦

Comment 4: Note that all the examples presented in this paper, refer to markets where the teams

consist of two students and singletons only. Thus, the results of this paper continue to hold also for

markets with teams of size larger than two.

5 Incentive compatibility

Incentive compatibility addresses the question of whether each member of a group of one or more

agents can gain by misrepresenting his preference-list, while all agents outside this group state their

true preference-lists. It is well known that in the classic stable matching model (see [7]), in the imple-

mentation of the men courting version of the GS algorithm, such a manipulation is not profitable, i.e.,

any subset of men, where each of its members presents a false preference-list, while all other men state

their true preference-lists, contains at least one man, who prefers less his match when running the al-

gorithm under this misrepresentation of preference-lists than his match when all agents state their true

preference-lists (see [6, 27]). An immediate conclusion is that such a manipulation is not profitable when

applying the GS algorithm in the one to many matching models, such as the assignment of students to

schools, as any school with k positions can be presented as k schools of one position.

In this section we refer to the aforementioned results, and verify if a set of one or more teams can all

gain by misrepresenting their preference-lists, while all other teams state their true preference-lists.

We first refer to the TISA algorithm for market (G,D). The following theorem demonstrates that

under the TISA algorithm, a gain for all the teams in any subset of G is impossible.
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Theorem 4 Let �G= (�1, ...,�n) be the true preference-lists vector of the teams in market (G,D). Let

�̃G = (�̃1, ..., �̃n) be a vector of preference-lists that differs from �G in a minimal non-empty subset

of teams ∅ ⊂ Ĝ ⊆ G. Finally, let (µ,R) and (µ̃, R̃) be the internally stable assignments generated by

application of the TISA algorithm on market (G,D) under �G and under �̃G, respectively. Then, there

exists a team g ∈ Ĝ, for which µ(g) �g µ̃(g), or, alternatively, g ∈ R ∩ R̃.

Proof: Let g be the team with the highest credit-score in Ĝ, i.e., g is the lowest indexed team in Ĝ.

The order of scanning the teams while running the TISA algorithm on market (G,D), is independent

of the preference-lists. Consider the point of time when g is considered by the TISA algorithm. The

temporary assignments at this specific point of time, when running the TISA algorithm with �G and

with �̃G, coincide, as for all g′ < g, �g′= �̃g′ holds. Thus, at this point of time, g is assigned to the

best dormitory-group, according to its stated preference-list, as long as it has a sufficient number of

beds to host it, implying that g cannot get a better assignment by misrepresenting its preference-list.

Finally, since no team is being removed from a dormitory-group during the run of the TISA algorithm,

µ(g) �g µ̃(g), or, alternatively, g is a member of both R and R̃.

Theorem 4 refers to internally stable outcomes in market (G,D). However, an immediate conclusion

from Theorem 4 and the definition of the QSO algorithm, is that manipulation is impossible for the last

quasi-stable outcome of G and D, to be added to the set K. In fact, one can define an algorithm, which

we denote by |K|-QSO, that generates this specific quasi-stable outcome. The algorithm consists of the

final iteration of the QSO algorithm, when applied on the set of teams G and the set of dormitory-groups

D, where the waiting list is empty, and all the teams in G are either assigned to a dormitory-group or

are determined to be refugees. The |K|-QSO algorithm boils down to running the TISA algorithm on

market (G,D), and therefore, under the |K|-QSO algorithm, a gain for all the teams in any subset of G,

is impossible.

Next, we refer to the first outcome in the set K generated by the QSO algorithm, namely (µ1,W1, R1).

Consider the algorithm, which we denote by 1-QSO algorithm, that consists of the first iteration of

the QSO algorithm.5 For the singleton teams case, it is proved in [17], that when running the 1-QSO

algorithm, no student can be assigned to a better dormitory-group, according to his preference-list, by

misrepresenting his preferences, while all other students state their true preference-lists.6 However, the

following example shows that in the general case, a single team can be assigned by the 1-QSO algorithm

to a more preferred dormitory-group if it misrepresents its preference-list.

5The 1-QSO algorithm can be efficiently implemented as a run of the QSO algorithm, which stops when |K| = 1.
6For the singleton teams case, the 1-QSO algorithm coincides with G-DorAA, which is presented in [17].

16



Example 7 Consider example 4. The first outcome of the QSO algorithm is (µ1,W1, R1), where µ1 =

{(2, d1), (3, d2), (4, d3), (5, d4)}, W1 = {1}, and R1 = ∅.
Consider the modified preference-list of the teams which differs only for team 5:

1 2 3 4 5

d1 d1 d1 d1 d1

d2 d2 d2 d2

d3 d3 d3 d3

d4 d4 d4

Now, the first outcome of the QSO algorithm is (µ̃1, W̃1, R̃1), where µ̃1 = {(1, d1), (3, d1), (4, d2), (5, d3)},
W̃1 = ∅ and R̃1 = {2}. Here, team 5 is assigned to d3 under (µ̃1, W̃1, R̃1) and to d4, which is less preferred

than d3, by team 5, under (µ1,W1, R1). ◦

Example 7 demonstrates that not only a team can get a better assignment for itself by misrepresenting

its preference-list, but also the assignment may be better for other teams. Moreover, in this example, all

students, except students in team 2, gain from this ”lie”, implying that most of the students in G gain

from this ”lie”. Example 7 also shows that a ”lie” of a single team can influence the size of the waiting-list

of outcome (µ1,W1, R1).

6 Conclusions and comments

In this paper we extend the stable matching model with entrance criterion to include applications of teams

rather than individual students. The meaning of a team-application is that students in a team prefer

living off-campus than being assigned separately to different dormitory-groups. We adjust the definition of

quasi-stable outcomes, and present some properties of the new model along with algorithms that generate

outcomes with certain desirable properties. In addition, we show that some of the properties that exist

in the model for singleton teams, continue to hold for the generalized model. Finally, the existence of the

incentive compatibility property in the model, is discussed.

The model presented here refers to a specific situation where the dormitory-groups’ preferences, that

are represented by the credit scores of the teams, are common and complete. Nevertheless, all results and

their proofs continue to hold when removing the completeness requirement, i.e., negative credit-scores for

some of the teams, is allowed. A negative credit score means that the respective team is not acceptable

by any dormitory-group, as for example, if the team consists of both genders. In such a case, in all

quasi-stable outcomes, the unacceptable teams will either be in the waiting-list or will end up as refugees.
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In our following work, we intend to generalize the model by letting the dormitory-groups to rate single

students rather than teams, and verify if a quasi-stable outcome, where all students from the same team

are assigned together, exists.
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