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Enhancing Performance of Hybrid Electric Vehicle using Optimized 

Energy Management Methodology 

Abstract: 

The hybrid electric vehicle's power management strategy (PMS) and fuel efficiency are 

closely related (HEV). In this paper, an adaptive neuro-fuzzy inference approach and a hybrid 

power management strategy are developed (ANFIS). A significant advancement in controlling 

electricity across multiple energy sources is artificial intelligence (AI). A proton exchange 

membrane fuel cell (PEMFC) serves as the major energy source in the hybrid power supply, with 

a battery bank and an ultracapacitor serving as electric storage systems. The stress on each 

energy source is calculated using the Haar wavelet transform technique. Simulink and MATLAB 

are used to create the suggested model. The results of the simulation show that the suggested 

plan is able to meet the power requirements of a typical driving cycle. Evaluations of the various 

PMS have been done based on their power consumption, overall efficacy, ultracapacitor and 

battery state of charge, stress placed on hybrid power sources, and stability of the DC bus. 

Keywords: ANFIS; ECMS; a hybrid electric vehicle; Haar wavelet transform; hydrogen 

consumption; power management scheme; system efficiency. 

I. INTRODUCTION 

Freshwater, electricity and the atmosphere are interconnected factors that have emerged as 

the most significant and prominent topics in engineering. In particular, global warming and 

resource shortages are key challenges that have been addressed. As a result, manufacturing 

practices and engineering communities are rapidly transforming the approach to energy-efficient 

applications; environmental and economic considerations are driving the transportation sector’s 

development [1]. Transportation is mostly reliant on fossil fuels and produces greenhouse gases. 

Here, several attempts have been made to enhance the requirement of fuel cells (FCs) in 

transportation applications as a sustainable electric power source that emits no greenhouse gas 

[2]. The usage of fuel cells in electric vehicles, trains, aircraft, etc., helps to protect the 

environment, thereby providing a clean fuel source for transportation [3]. Fuel cells are new 

energy conversion solutions that have many advantages over traditional devices, including high 

energy efficiency, small size, environmental safety, long lifespan and so on.  



The proton exchange membrane fuel cell (PEMFC) seems to be the most suitable form for 

use in automotive applications because it has a high density in producing electricity, leading to 

lower heat generation and resulting in a lower temperature, which is important in transportation 

applications. The key drawback of fuel cells in transportation applications is the low dynamic 

response. Since the fuel cell lags against load variations, this means that they are unable to react 

appropriately to sudden changes in load. 

As a result, the fuel cell should be associated with the battery storage and ultracapacitor (UC) 

[4], while the battery storage seems to have a high-power density, with some limitations, such as 

lower energy capacity, a long charging period, a high price and a short lifespan. The usage of a 

hybrid FC/B/UC network is the best strategy to overcome the described issues. This type of 

combination allows the hybrid sources to exploit their unique characteristics. The battery bank 

acts as an energy buffer, whereas the ultracapacitor supplies transient peak power units. A power 

management scheme (PMS) is essential to achieve certain hybridization and achieve the main 

goal of distributing load requirements through power sources. By limiting the fuel cell 

performance to wider operating levels, the PMS successfully maintains the consumption of 

hydrogen and enhances the energy efficiency. To regulate the system load among these 

integrated input sources, a set of conventional PMS was implemented [5]. 

They are PI control, state machine control (SMC), the equivalent consumption minimization 

scheme (ECMS), fuzzy logic control (FLC) and the external energy minimization scheme 

(EEMS), and several other modern optimization-based techniques have also been developed. In 

[6], Wang et al. developed a power management technique for state machine control (SMC) that 

contains the battery bank, fuel cell and ultracapacitors as a multi-input network. In [7], power 

management with the proportional integral (PI) technique was implemented by the authors to 

regulate the energy across photovoltaics (PV), fuel cells (FCs), batteries and supercapacitors 

(SCs). Multiple operational modes were operated for a hybrid device consisting of B/SC/FC in 

[8] using a rule-based energy management technique. In Ref. [9], Jiang et al. proposed a dynamic 

programming (DP) method for reducing hydrogen consumption in a hybrid power system with a 

fuel cell, battery and supercapacitor to provide energy to the power train. In [10] implemented a 

novel power management technique with rule-based fuzzy logic control with various multi-input 



sources, i.e., at first, the input sources consist of FC/B, and, later, the input sources consist of 

B/SC/FC for powering an electric vehicle. 

In [11], the authors present an adaptive neuro-fuzzy inference system (ANFIS) to adequately 

manage the power between the FC and battery often used to provide power to electric vehicles 

(EV). In [12], proposed a power management technique divided into two sections, a wavelet-

based and a radial-based solution, to refine the power output in an electric vehicle using neural 

networks. The authors designed a novel energy management mechanism focusing on wavelet 

transform approaches for controlling power among FC/B/SC to EVs. A Gray Wolf Optimizer 

(GWO) was designed by authors Djerioui et al. considering FC/B/UC as a hybrid power system 

for electric vehicle applications [13]. In a parallel HEV, an FLC-based technique was designed to 

optimize the SoC, enhance fuel efficiency, minimize NOx emissions and ensure greater 

drivability. For power split across accessible sources, an FLC-based intelligent energy 

management agent (IEMA) has been developed. In [14] created an FLC to optimize system 

operation using the energy demands and the speed of the vehicle, as well as the SoC, as input 

variables. 

 
Figure 1. Conventional diagram of Hybrid E-Vehicle 

Various energy management solutions for EVs driven by FC are reported in [15]. Bizon et al. 

suggested a new optimization approach based on a two-dimensional mechanism that 

characterizes the fuel economy of hybrid vehicles. In [16], combined the fuzzy logic and wavelet 

transformation approaches to optimize the energy management of hybrid tramways.  



The research’s primary feature is the development of an optimal EMS for minimizing the 

hydrogen demand and loss of FC functionality. None of the individual algorithms completely 

address all optimization challenges. This is in line with the No Free Lunch Scientific Theory, 

discussed in [17], which signifies that novel optimization algorithms are indeed required in the 

field of research in the power management of EVs. Measuring hydrogen consumption with a 

hybrid energy storage system to the DC voltage bus is a key issue that might be addressed. It also 

consolidates all DC/DC converters into a single unit. This research work describes a novel 

hybrid energy management system that integrates an adaptive neuro-fuzzy inference system 

(ANFIS) and functions as an adaptive control system. Regarding cost and lifespan cycle 

maintenance, this control system is simulated with MATLAB/Simulink software to reduce 

hydrogen utilization in the FC, as well as to maintain the battery levels (SoC percent) as high as 

possible. A hybrid power management scheme is proposed for better fuel economy in a hybrid 

electric vehicle using FC/B/UC and PMS configurations, as illustrated in Figure 1.  

The paper is structured as follows. Section 2 discussed the literature survey as a various 

problem statements. Section 3 presents the proposed power management strategy (ANFIS) 

methodology. Section 4 shows the comparison results analysis with proposed methodology. 

Finally, the Section 5 presents the main conclusions that were obtained from the realization of 

this proposed work. 

II. LITERATURE SURVEY 

The fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell– battery–ultracapacitor vehicles 

were modeled in MATLAB/ Simulink. For a good tradeoff between accuracy and run-time, 

modeling details were included when they significantly affected the optimization goals (e.g., in 

precise modeling of the dc/dc converters) and were omitted otherwise (e.g., in simplified 

modeling of the motor). A qualitative analysis was performed to determine the best powertrain 

topologies for use in this paper, based on efficiency, mass, and cost. Fig. 1 shows the chosen 

powertrain topologies. All three vehicle types use a dc/dc converter to boost the output voltage of 

the fuel cell to match the motor-controller input voltage (250–400 V is a common range [18]). 

This design is advantageous because it allows a smaller, and hence less costly, fuel cell to be 

used, since the fuel-cell output voltage can be below 250 V. Since the ESS is connected directly 

to the high-voltage bus (except for the battery in the fuel-cell– battery–ultracapacitor vehicle), 



the number of battery or ultracapacitor cells in series is constrained. This is an acceptable 

restriction, since the alternative of using another DC/DC converter for the ESS adds to the 

vehicle mass and cost and reduces system efficiency. 

2.1. Batteries   

Lithium-ion batteries are now generally accepted as the optimal choice for energy storage in 

electric vehicles over lead-acid or nickel-metal-hydride batteries due to their superior power and 

energy densities [6]. The battery model used in this paper is based on A123 Systems’ new high-

power lithiumion ANR26650MI cell [1], which shows high power density, high efficiency, and 

low cost as compared to batteries used in previous vehicle studies [20, 21]. The two variables, 

the number of cells in series (batt_s) and in parallel (batt_p), determine the total resistance and 

%V –SOC curves. Similar to the fuel-cell model, the %V –SOC curve is a function of the 

percentage of maximum voltage so that the same curve can be used for different numbers of cells 

in series. The columbic efficiency is estimated at 95% [22]. 

The battery current is measured and multiplied by the battery voltage. This power is 

integrated and then converted from joules to kilowatt hours, so that the energy into or out of the 

battery can be added to the initial energy in the battery (in kilowatt hours). The instantaneous 

amount of energy in the battery is then divided by the total battery capacity to get the battery 

SOC in percent. The lookup table converts this %SOC to voltage, based on the data for the 

ANR26650MI cell [23]. For the battery ESS, the number of battery cells in series is constant at 

105, since at 3.3 V/cell, this gives a nominal bus voltage of 346.5 V (with room to charge and 

discharge without violating the motor–controller voltage limits). For the battery–ultracapacitor 

ESS, a two-quadrant dc/dc converter is used between the battery and the high-voltage bus, and 

the battery voltage is chosen to be lower than the bus voltage. In order to allow the ultracapacitor 

bank to reach 250 V while discharging, the upper limit for the number of battery cells in series is 

75. Each cell has a mass of 70 g. After adding 53 g for cell balancing and packaging, the total 

mass is 123 g/cell. The published cost for six cells is $110 [24]. For higher volume production, it 

is assumed the cost could be reduced to $100. Finally, $15 is added to each group of six cells for 

cell balancing and packaging. Thus, the cost of each cell is estimated at $19.15. The upper 

current limit is 70 A, and the per-kilowatt cost is estimated at $82.90/kW. 



2.2. Fuel Cell Model 

The DC/DC converters connected to the fuel cell and battery are crucial powertrain 

components, as they allow the fuel-cell and battery voltage to vary independently of the 

ultracapacitor voltage. A nonisolated DC/DC converter is suitable for use in fuel-cell vehicles 

when isolation is not required (which is assumed in this paper) and when the voltage boost is not 

too high (which is true in this paper) [25]. Thus, the simple bidirectional converter (shown in 

Fig. 5) is used to connect the battery to the high-voltage bus in the fuel-cell–battery–

ultracapacitor vehicle and the simple unidirectional boost converter (converter in Fig. 5 with 

switch S1 removed to ensure unidirectional power flow) is used to boost the fuel-cell voltage for 

all vehicle types. Although it is common practice to use interleaved and/or soft-switched [26] 

converters at these high power levels, this paper uses models of the basic hard-switched 

converters to simplify the modeling and to avoid the in-depth topic of comparing various soft-

switching methods based on efficiency, complexity, ease of control, mass, and cost. 

It is important to use an accurate DC/DC converter model, because the dynamic converter 

losses will have an effect on the overall vehicle fuel economy [27] and a high-power converter 

can add significant mass and cost to the powertrain. For example, to determine the actual 

advantage of using a smaller fuel cell or battery, the fact that the associated DC/DC converter 

will be lighter and cheaper must be taken into account. 

2.3. Ultracapacitor Vehicle 

In an ultracapacitor vehicle, the ultracapacitor stores regenerative braking energy and 

provides extra power during accelerations. There is generally insufficient energy storage 

available in the ultracapacitor to propel the vehicle at low speeds. Therefore, the control strategy 

must ensure that the available energy-storage capacity is utilized in the best way. In [28] 

compares three strategies and shows that keeping the sum of the kinetic energy of the vehicle and 

the energy stored in the ultracapacitor constant gives the best fuel economy. This makes sense 

intuitively since when the vehicle velocity is high, the ultracapacitor voltage will be low, and 

thus, it will have sufficient room to accept regenerative braking energy when the vehicle brakes. 

The controller variable is again chosen as the low-pass filter coefficient τ. The filter is used to 

divide the desired electrical power into fuel cell and ESS power. The ultracapacitor provides all 



of the ESS (transient) power within its current and voltage limits. If the ultracapacitor voltage 

reaches the lower limit (250 V), the battery provides the remaining power required. The battery 

also provides power if the fuel cell cannot meet its power request and if the fuel-cell current 

request is below 7.55%. 

III. PROPOSED HYBRID POWER MANAGEMENT SYSTEM  

A hybrid energy storage system (HESS) is a combination of PEMFC, Li-ion batteries and a 

supercapacitor. These three sources are often considered as an FCHEV to ensure reliable power 

sufficiency of the load. The configuration of the hybrid system analysis can be seen in Figure 1. 

The fuel cell and rechargeable battery, as well as capacitors, are the three sources of power in 

this setup. A DC/DC boost converter has been used with the fuel cell to enhance its voltage level 

towards the desired level and sustain this at the outputs. There are batteries, where a DC/DC 

bidirectional power device converts variable power to a fixed voltage. Supercapacitors, similarly 

to some other capacitors, have been integrated into bidirectional converters, which enable power 

to be exchanged in both directions. 

 
Figure 2. Proposed Hybrid Power Management System 

3.1. Fuel Cell 

There are several types of fuel cell technology, which are categorized depending upon their 

electrolytes. Another type of fuel cell that is widely used in vehicular applications is the proton 



exchange membrane fuel cell (PEMFC). There are several new fuel cell prototypes, each with a 

combination of benefits and drawbacks based on the topic under study. Any model must be 

concise and accurate. Furthermore, this paper presents a simple electrochemical concept that 

might be used to determine the behavior of such a fuel cell both in dynamic and static conditions 

[29]. The hydrogen fuel design used in this study is based on the interaction between both the 

fuel cell voltage level and hydrogen, water, plus oxygen absolute pressures. The specifications of 

the fuel cell stack are illustrated in Table 1. The fuel cell voltage is regulated via oxygen and 

hydrogen relative pressures, the chemical process temperature of membrane hydration and also 

the output current. The mathematical model is given bellow. 

𝑉𝑉𝐹𝐹𝐹𝐹=𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑉𝑉𝑎𝑎𝑎𝑎𝑛𝑛 − 𝑉𝑉𝑜𝑜ℎ𝑚𝑚𝑚𝑚𝑎𝑎 − 𝑉𝑉𝑎𝑎𝑜𝑜𝑛𝑛        (1) 

Where 𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 represents the mean value of thermodynamic potential in every single cell unit.  

Here,  

𝑉𝑉𝑎𝑎𝑎𝑎𝑛𝑛 = Activation voltage drop, 

𝑉𝑉𝑜𝑜ℎ𝑚𝑚𝑚𝑚𝑎𝑎 = Ohmic voltage drop, 

𝑉𝑉𝑎𝑎𝑜𝑜𝑛𝑛 = Concentration voltage drop.  

Hence, for N number of cells connected in series, the stack voltage 𝑉𝑉𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑠𝑠 is described as 

𝑉𝑉𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑠𝑠 = 𝑁𝑁.𝑉𝑉𝐹𝐹𝐹𝐹      (2) 

Table 1. Fuel Cell Specifications 

Fuel Cell Model 

(Input Parameters) 
Specifications 

Voltage 53.5V 

Number of Fuel Cell 65 

Operating temprature 43OC 

Nominal efficiency of the fuel stack 55% 

Response time of Fuel Cell voltage 1s 

Voltage undershoot 2V 



 

3.2. Supercapacitors 

Supercapacitors are one of the recent advancements for power storage devices, especially in 

integrated devices. A capacitance (𝐶𝐶𝑠𝑠𝑠𝑠) is linked to an equivalent series resistance 𝑅𝑅𝑠𝑠𝑠𝑠 under this 

setup. The parameters of UC are shown in Table 2. The  formula is used to determine the 

supercapacitor voltage (𝑉𝑉𝑠𝑠𝑠𝑠) as a result of the SC current (𝐼𝐼𝑠𝑠𝑠𝑠) [30]. 

𝑉𝑉𝑠𝑠𝑠𝑠 = 𝑉𝑉1 − 𝑅𝑅𝑠𝑠𝑠𝑠 × 𝐼𝐼𝑠𝑠𝑠𝑠 = 𝑄𝑄𝑠𝑠𝑠𝑠
𝑆𝑆𝑠𝑠𝑠𝑠

− 𝑅𝑅𝑠𝑠𝑠𝑠 × 𝐼𝐼𝑠𝑠𝑠𝑠  (3) 

Utilizing supercapacitors as a storage system in such an electric vehicle implies the 

construction of such a stacking of cells, where 𝑁𝑁𝑆𝑆 cells are interconnected in series and 𝑁𝑁𝑃𝑃 cells 

are parallelly connected. 

Table 2. Supercapacitor Specifications 

Supercapacitor Model 

(Input Parameters) 
Specifications 

Surge Voltage 306V 

Capacitor number in series 6 

Capacitor counts in parallel 1 

Rated voltage 290V 

Rated Capacitance 14.5F 

Operating Temperature 24OC 

 

 

 

3.3. Battery 

The battery is designed with a modest controlled power supply in series with such a fixed 

resistance [21]. Li-ion battery specifications are given in Table 3. Equation (1) defines the 

battery voltage Vbat. 



𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐸𝐸 − 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏 . 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏          (4) 

Table 3. Li-ion Battery Specifications 

Battery Model 

(Input Parameters) 
Specifications 

Minimal Voltage 48V 

Determined capacity 40Ah 

Esteemed Capacity 40Ah 

Nominal Voltage capacity 35.15Ah 

Response time of battery voltage 29s 

Fully charged voltage 55.77V 

 

3.4. Adaptive Network-Based Fuzzy Interface System (ANFIS) 

Power management methods have emerged for an automated learning experience to assist 

industrial uses such as fuzzy approaches, which are more common in system control. The ANFIS 

is a vital approach, which integrates both the artificial neural network (ANN)-based learning 

ability and also a rule-based fuzzy logic control technique based on inference capacity to build a 

full set over all different types of neural networks in the feed-forward type using a supervisory 

learning functionality [31]. The ANFIS strategy accomplishes a hybrid training process based on 

appropriate information and parameters of input/output and connections. 

Figure 3 illustrates that the ANFIS architecture comprises a single hidden layer. Layer 1 

indicates the input node, layer 2 comprises the fuzzification nodes, layer 3 comprises the result 

nodes (hidden), layer 4 comprises the defuzzification nodes and layer 5 represents the output 

node [32]. Furthermore, a node can be updated, and it will be classified as dynamic and static. 

Dynamic nodes include layers 2 and 4, whereas the stable nodes are layer 1 and layer 3. The 

ANFIS control technique uses the SoC of a Li-ion battery with three membership functions 

(MFs) and also utilizes the vehicle energy load, which is represented by Pload, as inputs to 

anticipate the fuel cell’s output power [33]. The ANFIS outcome is the estimated proportional 

gain from the PEMFC level. The ANFIS measures and adjusts the norms rapidly while using 

proportional variables. 



 
Figure 3. ANFIS five layer structure 

IV. RESULTS AND DISCUSSION 

In order to evaluate the goodness of the proposed ANFIS energy management strategy the 

performance of EV driving only with the battery, fuel cell and supercapacitor have been 

compared with the performance of EV driving. In Table 4 the main simulation parameters are 

reported. 

Table 4. Comparison Performance [34] 

Power Device’s Drive range (km) 

Specific Energy 

Consumption 

(Wh/km) 

Energy saving (%) 

Fuel cell 150 93 +13 

Supercapacitor 150 91 +15 

Battery 150 90 +2.5 



 

Figure 4. Comparison performance 

Table 5. Characteristics of present and future battery cell technologies for EVs [35] 

Parameter’s Cell voltage Ah Wgt.kg EV W/kg HEV W/kg 
Batteries 2.8 30 87 140 521 
Fuel 2.7 15 60 127 540 
Super 
capacitor 3.4 20 24 5.5 250 

PV 1.5 20 24 40 156 
 

Table 6. The Simulation Results Comparison For Different Driving Cycles [36] 

Driving Cycle 
Proposed HEV 

FC/Bat (kW) 

Proposed HEV 

FC/PV/Bat (kW) 

Proposed HEV 

FC/Bat/PV/UC (kW) 

UDDS 7.57 7.64 7.85 

NEDC 5.28 5.33 5.54 

JP  3.43 3.81 3.90 

Also, in this paper, the proposed EMS for the online driving cycle has been compared with 

dynamic programming, which is the most effective offline global optimization method. The 

advantage of the proposed strategy over the dynamic programming method will ensure the 

priority and effectiveness of the proposed strategy. Moreover, PEMFC generated power in the 

dynamic programming method is not limited to specific operation points. The simulation results 
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of the proposed strategy are compared with the results of the dynamic programming approach, 

which is the most effective offline global optimization method. The proposed EMS fuel 

consumption is approximately equal to DP method; for instance, the fuel consumption in 

proposed EMS is 7.64 MPG, while the fuel consumption in DP strategy is 7.65 MPG in UDDS 

driving cycle for the same FC/battery/UC structure. Also, battery power fluctuations are listed in 

Table 4. The results indicate that FC/battery/UC structure with proposed EMS has minimum 

power fluctuations compared with other strategies. 

V. CONCLUSION 

An ANFIS for power management in hybrid electric vehicles is proposed in this paper to 

conserve maximum fuel, with the main power source as a fuel cell (FC) and secondary sources 

as a battery bank (BB) and ultracapacitors (UC). The ECMS is a cost function-based 

optimization approach where the SoC of the battery is regulated by the penalty coefficients of 

battery power. The power of UC is overlooked in this optimization approach. The voltage profile 

of the DC bus is regulated by converters of the battery bank such that, once the UCs are drained, 

they are restored with the same power from the battery bank. The load demand is balanced via a 

battery and FC over a load cycle. The ANFIS-based controller efficiently monitors the 

fluctuating energy demand but also continues to maintain a DC bus voltage profile with a limited 

error signal as well as a rapid trackability level compared to that of a conventional control 

system. Since continuous monitoring enhances the battery’s lifespan, the performance of HEVs 

will be superior and more reliable. For all the control strategies, the value of the DC link is 

maintained at around (270 VDC). Energy management in hybrid vehicles must adopt a multi-

scheme EMS since each approach is chosen as per key variables. For instance, depending on the 

actual lifespan of the input sources, EMS can indeed be employed to optimize the source lifespan 

or reduce the stress on FC/B/UC. 
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