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Abstract—The purpose of speech enhancement is to extract
target speech signal from a mixture of sounds generated from
several sources. Speech enhancement can potentially benefit from
the visual information from the target speaker, such as lip move-
ment and facial expressions, because the visual aspect of speech is
essentially unaffected by acoustic environment. In order to fuse
audio and visual information, an audio-visual fusion strategy
is proposed, which goes beyond simple feature concatenation
and learns to automatically align the two modalities, leading
to more powerful representation which increase intelligibility in
noisy conditions. The proposed model fuses audio-visual features
layer by layer, and feed these audio-visual features to each
corresponding decoding layer. Experiment results show relative
improvement from 6% to 24% on test sets over the audio modality
alone, depending on audio noise level. Moreover, there is a
significant increase of PESQ from 1.21 to 2.06 in our -15dB
SNR experiment.

Index Terms—speech enhancement, audio-visual, multi-layer
feature fusion convolution network (MFFCN)

I. INTRODUCTION

Speech enhancement aims at improving speech quality and
intelligibility when audio is recorded in noisy environment.
This step is important for applications involving voice com-
mands, especially in far-field conditions where Automatic
Speech Recognition (ASR) may be affected by noise and
interference, such as radio, TV, or other speakers [1]. Speech
enhancement has been the subject of extensive research [2]–[4]
and has recently benefited from advancements in lip reading
[5], [6], and speech reading [7], [8].

Advanced audio-only speech enhancement algorithms
makes noisy signal more audible, but the deficient in restor-
ing intelligibility is remained. Consequently, the multi-modal
speech enhancement algorithms are demanded that simulate
the audio-visual speech processing mechanism in human con-
texts, amplify the target speaker, or filter out acoustic clutter.
The model for audio-visual speech enhancement algorithms is
shown in Fig. 1.

Recently, a large amount of research has been shown that
the fusion of visual and audio information is beneficial for
various speech perception tasks, e.g., [9]–[11], but several
studies substantiates the belief that the audio-visual speech
enhancement still being less investigated than audio-only
speech enhancement. The overview article by Rivet et al.
[12] surveys audio-visual speech separation techniques, but

it is up to 2014 when deep learning was not adopted for
the task. Although audio-visual speech enhancement has been
recently addressed in the framework of deep neural networks
(DNNs), several interesting architectures, and well-performing
algorithms were developed, e.g., [13], [14], the majority of
the existing systems have a common disadvantage that one
modality (not necessarily the most reliable in a given scenario)
tends to dominate the other, causing performance degradation.

To tackle the above problems, this paper proposes an
audio-visual deep Convolution Neural Networks (CNNs) based
speech enhancement model that integrates audio and visual
cues into a unified network. Moreover, the proposed model
adopts a novel fusion technique named multi-layer audio-
visual fusion strategy, instead of concatenating audio and
visual modalities only once in the whole network, the proposed
model extracted audio and visual feature in every encoding
layers and fuses the audio-visual information in each layer.
When two modalities in each layer are concatenated, the
system applies them as an additional input to feed the cor-
responding decoding layer.

The method is evaluated on an audio-visual speech en-
hancement task involving the two largest publicly available
audio-visual datasets, TCD-TIMIT [15] and GRID corpus
[16], which contain complex sentences of both read speech
and in-the-wild recordings. Using both of these datasets offers
repeat-ability and allows other researchers to compare their
systems directly to ours. The training data videos are added
with synthetic background noise taken from the noise dataset
collected in our lab.1

The reminder of the paper is organised as follows. Section
II reviews related work in the field of audio-visual speech
enhancement. Section III introduces the framework and audio-
visual fusion strategy of proposed model. Section IV illustrates
the employed datasets and audio-visual feature extraction
method. In Section V experimental results are presented, and
a discussion is shown in Section VI.

II. RELATED WORK

Related work in the areas of speech enhancement and audio-
visual signal processing is briefly reviewed in this section.

1Speech samples are available at: https://XinmengXu.
github.io/MultilayerFFCN

https://XinmengXu.github.io/MFFCN.github.io/MultilayerFFCN
https://XinmengXu.github.io/MFFCN.github.io/MultilayerFFCN


Fig. 1. The model for audio-visual speech enhancement. (a) The input is a video (frames and audio track) with the target speaker speaking, where the speech
of interest is interfered by background noise. (b) Both audio and visual features are extracted and fed into the proposed audio-visual speech enhancement
models. (c) The output is enhanced speech of target speaker.

A. Audio-only based speech enhancement

Traditional single-channel-based speech enhancement meth-
ods were derived based on the characteristics and statistical as-
sumptions of clean speech and noise signals. Classical methods
use spectral subtraction [17], linear estimator, often referred
to as the frequency domain Wiener filter [18], [19], and non-
linear estimator [20], e.g., OM-LSA [2]. Another category
of successful SE approaches is subspace-based methods [21],
which aim to separate noisy speech into two subspaces, one
for clean speech and the other for noise components.

Not surprisingly, speech enhancement has been recently
addressed in the framework of DNNs [22]. Formulated as a
supervised learning problem, noisy speech can be enhanced
by neural networks either in the time-frequency domain or
directly in time-domain where the discriminative patterns of
speech, speakers, and background noise are learned from
training data [23], [24].

In the past few decades, many speech enhancement ap-
proaches have been proposed and shown to provide better
sound quality. However, despite their decent overall perfor-
mance, deep learning based audio-only approaches are still
not commonly accepted by industrial, because people always
spend more resources to build a deep neural model but with
only minor improvements when compared with traditional
methods.

B. Visually-derived speech processing

There is increased interest in using neural networks for the
multi-model fusion of audio and visual signals to solve various
speech-related problems. These include audio-visual speech
recognition [25], detecting and classifying sound events [26],
voice activity detection [27], and unsupervised learning of
language from visual and speech signals. The above methods
leverage natural synchrony between simultaneously recorded
visual and auditory signals.

C. Audio-visual speech enhancement

Speech processing based on audio-visual multi-modal learn-
ing has been done on speech enhancement and separation [28].
Furthermore, a fully connected network, proposed by Hou et
al. [13], was used to jointly process audio and visual inputs

to perform speech enhancement. Since the fully connected
architecture cannot effectively process visual information, the
audio-visual speech enhancement system in Hou’s approach
is only slightly better than its audio-only speech enhancement
counterpart. In addition, Gabbay et al. proposed a model [29]
which feed the video frames into a trained speech generation
network, and predict clean speech from noisy input, which
has obtained a better performance when compared with the
previous approaches.

The audio-visual multi-modal learning present significant
performance mainly reflected in audio-visual features fusion
approaches. These fusion approaches aims at one-time data
fusion, which not only request a large multi-modal training
dataset, but also cause the data feature wasting.

III. MODEL ARCHITECTURE

In this section, the presented MFFCN architecture involves
the encoder component, fusion component, and decoder com-
ponent, and its architecture is shown in Fig. 2.

A. Audio encoder

As previous approaches in several convolution neural net-
work based audio encoding models [30]–[32], the audio en-
coder is thus designed as a convolution neural network using
the spectrogram as input.

Each layer of an audio encoder block is followed by batch
normalization, Leaky-ReLU for non-linearity, and strided con-
volutions for temporal sequence maintaining. The network
layer structure of the audio encoder is described in Table I.

B. Video encoder

The video encoder part is used to process the input face
embedding. In our approach, the video feature vectors and
audio feature vectors take concatenation access at every step in
the encoding stage, and the size of visual feature vectors after
convolution layer have to be the same as the corresponding
audio feature vectors is shown in Fig. 2.

Consequently, the first encoding layer is used to regulate
the size of video input equal to audio input, and the following
video encoding blocks take the same structure with audio
encoder, which has illustrated in Table I .Each layer in a video



Fig. 2. Illustration of proposed MFFCN model architecture. A sequence of 5 video frames centered on the lip-region is resized by a convolution layer, and
fed into video encoding convolution neural network blocks (blue). The corresponding spectrogram of the noisy speech is put into audio encoding convolution
neural network blocks (green) in as same fashion as the video encoder. A single audio-visual embedding (purple) is obtained by concatenating the last video
and audio encoding layers and is fed into several consecutive fully-connected layers (amber). Finally, a spectrogram of enhanced speech is decoded in audio
decoding layers that are obtained by concatenating between audio-visual fusion vector (red), a fusion of audio (green) and visual (blue) modalities generated
from encoding layers, and audio decoding vectors (gray), from the last audio decoder layer.

TABLE I
DETAILED ARCHITECTURE OF THE ENCODERS.

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 Conv10

Num Filters 64 64 128 128 256 256 512 512 1024 1024
Filter Size (5, 5) (4, 4) (4, 4) (4, 4) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2)

Stride(audio) (2, 2) (1, 1) (2, 2) (1, 1) (2, 1) (1, 1) (2, 1) (1, 1) (1, 5) (1, 1)
MaxPool(video) (2, 2) (1, 1) (2, 2) (1, 1) (2, 1) (1, 1) (2, 1) (1, 1) (1, 5) (1, 1)

encoder block is followed by batch normalization, Leaky-
ReLU for non-linearity, max pooling, and dropout of 0.25.

C. Audio-visual fusion

The proposed model includes two fusion strategies:

i) audio-visual fusion which combines the audio and visual
streams in each layer directly and feeds the combination
into several convolution layers;

ii) audio-visual embedding which flattens audio and visual
streams from 3-D to 1-D, then concatenates both flattened
streams together, and finally feed the concatenated feature
vector into several fully-connected layers.

Audio-visual fusion process usually designates a consoli-
dated dimension to implement fusion. The principle of con-
catenation process of audio-visual fusion is shown as

Zconcat = {Vi, Ai} (1)

where Vi and Ai denotes visual and audio feature in layer i,
in which i = 2, 4, 6, 8 in proposed model. From Fig. 2, each
special feature and Zconcat can be regarded as a fusion set

with all the features. For the following convolution layers, the
relationship between input and output has been shown as

Xi = Convav3(Convav2(Convav1(Zconcat))) (2)

Then the resulting vectors Xi are fed into the corresponding
audio decoder layer.

Audio-visual embedding process, which requested to flatten
feature vector from 3-dimensional to 1-dimensional, to pursue
a highly feature fusion. In addition, the concatenation process
of audio-visual embedding is shown as

Zembed = {Flatten(Vj),Flatten(Aj)} (3)

where j denotes the index of last encoder layer, and it thus
equal to 10 in the proposed model. Then the concatenated
feature maps, which named to shared embedding, are sub-
sequently fed into a block of 3 consecutive fully connected
layers. The resulting vector is then to build audio decoder.

D. Audio decoder
The audio decoder consists of 6 transposed convolution

layers, mirroring the layers of the audio encoder. Referring to



Fig. 2, each decoder layer input is the concatenation feature
vector between the corresponding audio-visual fusion vector
and the output from the last decoder layer.

Because of the downsampling blocks, the model can com-
pute several higher-level features on coarser time scales,
which are concatenated with the local, high-resolution fea-
tures computed from the same level upsampling block. This
concatenation results in multi-scale features for predictions.

IV. DATASET AND PREPROCESSING

This section describes the datasets and the input feature
extractions for the audio-visual speech enhancement network.

A. Datasets

The model is trained on two datasets: the first is the TCD-
TIMIT [15], which consists of 60 volunteer speakers with
around 200 videos each, as well as three lip-speakers; the
second is GRID audio-visual sentence corpus [16], which
is a large dataset of audio and facial recordings of 1,000
sentences spoken by 34 people (18 male and 16 female). The
noise dataset includes 12 types of noise recorded in real-world
environments.

These videos are divided into a training set which contain 30
speakers (15 male and 15 female) and 900 videos per speakers;
a development set which contains 30 speakers and 100 videos
per speakers as the training set but not included in the training
set; and a test set which contains two speakers that are not in
the training set, each with 1,000 videos.

The noise signals are from the dataset which is categorized
into 12 types: room, car, instrument, engine, train, human-
chatting, air-brake, water, street, mic-noise, ring-bell, and mu-
sic. For each type, part of noise signals (80%) are conducted
into both training data and development data, but the rest are
used to mix the test data. Moreover, all of the noise are treated
as the unknown type and is randomly added to speech data.

B. Audio feature extraction

The audio representation is extracted from raw audio wave-
forms using Short Time Fourier Transform (STFT) with Han-
ning window function after resampling the audio signal to 16
kHz. Each frame contains a window of 40 milliseconds, which
equals 640 samples per frame and corresponds to the duration
of a single video frame, and the frame shift is 160 samples
(10 milliseconds).

For each speech frame, a log Mel-scale spectrogram is
extracted by multiplying the spectrogram via a Mel-scale filter
bank. The resulting spectrogram have frequency resolution
F=321, representing 80 Mel frequencies from 0 to 8 kHz.
The whole spectrogram sliced into pieces of duration of 200
milliseconds corresponding to the length of 5 video frames,
resulting in spectrograms of size 80×20, representing 20
temporal samples, and 80 frequency bins in each sample.

C. Video feature extraction

Visual feature is extracted from the input videos that is
re-sampled to 25 frames per second. The video is divided
into non-overlapping segments of 5 frames each. During the
processing stage, each frame that has been cropped a mouth-
centered window of size 128 × 128 by using the 20 mouth
landmarks from 68 facial landmarks suggested by Kazemi et
al. [33]. Then the video segment is processed as input is the
sizeof 128×128×5.

As the mentioned in Part B, Sec. III, the size of video
input has to be the same as audio input. By convenience, the
processed video segment is zoomed to 80×80×5 by bilinear
interpolation algorithm [34].

V. EXPERIMENT RESULTS

The proposed model is evaluated on several speech enhance-
ment tasks using the dataset provided in Part A, Sec. IV. In all
cases, background interference are set by the different types
of acoustic environment from the noise dataset. The speech
and noise signals are mixed with SNR from 10 dB to -10 dB
both from the training and testing dataset.

The model performance is assessed by two objective scores:
Short-term Objective Intelligibility (STOI) [35] and Perceptual
Evaluation of Speech Quality (PESQ) [36] scores.

A. Comparison with audio-only

To examine the effectiveness of the proposed MFFCN
model, subjective comparison test were conducted in terms
of speech enhancement capability with an audio-only based
approach, temporal convolutional neural network (TCNN)
[37], which structure is similar with the proposed model. The
comparison results is given in Table II.

In each sample, the target speech is mixed with natural
interference, and speech interference respectively. Speech in-
terference denotes the background speech produced by un-
known talker(s), as the table provided that audio-only based
model shows degraded performance on this speech noise, but
our approach has a clear improvement with 30% increase of
PESQ score if compared with audio-only model. Moreover,
for the natural interference, which denotes the noise not
produced by the human vocal cord system, the proposed model
also outperforms the audio-only approach that the PESQ is
improved by 24.2% at -5 dB SNR and 13% at 0 dB SNR.

B. Comparison with baseline

To further determine the significance of the results, the
performance between the proposed MFFCN model and a
baseline speech enhancement algorithm, which proposed by
Gabbay et al. [14], is contrasted and the results are shown in
Table II.

At the pair-wise comparison, the proposed model has no
obvious advantage on 0dB, but a better value at -5 dB SNR, in
which results show improvement of STOI score from 77.9% to
80.7% on speech interference set, and improvement of PESQ
from 2.35 to up to 2.72 on natural interference set.



TABLE II
MODELS COMPARISON IN TERMS OF STOI AND PESQ SCORES, “SPEECH” INTERFERENCE DENOTES THE BACKGROUND SPEECH SIGNAL FROM

UNKNOWN TALKER(S); “NATURAL” INTERFERENCE DENOTES THE AMBIENT NON-SPEECH NOISE.

Evaluation metrics STOI (%) PESQ

Test SNR -5 dB 0 dB -5 dB 0 dB

Interference Speech Natural Speech Natural Speech Natural Speech Natural

Unprocessed 57.8 51.4 64.7 62.6 1.59 1.03 1.66 1.24

TCNN (Audio-only) 73.2 78.7 80.8 81.3 2.01 2.19 2.47 2.58

Gabbay et al. [2017] 77.9 81.3 88.6 87.9 2.41 2.35 2.77 2.94

MFFCN (proposed) 80.7 82.7 88.4 89.3 2.61 2.72 2.84 2.92

TABLE III
MODEL COMPARISON IN TERMS OF STOI AND PESQ SCORES BETWEEN

RECENT AV MODEL AND THE PROPOSED MODEL AT -15 DB SNR ON
“NATURAL” INTERFERENCE SET

Evaluation metrics STOI (%) PESQ

Unprocessed 43.12 0.83

Gabbay et al. [2017] 61.8 1.21

MFFCN (proposed) 69.4 2.06

Fig. 3. The waveforms and spectrograms of an example speech utterance
under the condition of nature noise at -15 dB. Top: Noisy speech; Middle:
Enhancement speech using Gabbay’s approach; Bottom: Enhancement speech
using the proposed model.

Fig. 4. The details of spectrograms of an example speech utterance under
the condition of nature noise at -15 dB in low-frequency band. Top: Noisy
speech; Middle: Enhancement speech using Gabbay’s approach; Bottom:
Enhancement speech using the proposed model.

In order to verify robustness of the proposed model in
stronger noise environment, enhancement capability test on
noisy speech of -15 dB, between our approach and Gabbay’s
approach, is presented. The test results are shown in Table
III, and its waveforms and spectrograms are shown in Fig
3. Moreover, table III strengthens that the proposed approach
produces better result than the baseline work on noisy speech
at -15 dB SNR, especially the PESQ value is improved from
1.21 to 2.06. What is more, the observation from Fig. 3
supported that the results generated by MFFCN, keeps more
speech elements in both time domain and frequency domain.

In addition, Fig. 4 illustrates more details that the pro-
posed model exposes a robust performance on enhancing high
noise speech signal, the visualization of spectrogram in low-
frequency band (0-1KHz), generated by MFFCN, apparently
kept more energy of speech signal.

VI. DISCUSSION

A multi-layer features fusion based MFFCN model for
audio-visual speech enhancement, separating the target speech
of visible speaker from background noise, has been presented.
A long temporal context is processed by repeated downsam-
pling and convolution of feature maps to combine both high-
level and low-level features at different layer steps.

The proposed model consistently improves the quality and
intelligibility of noisy speech, and experiment results showed
that MFFCN has better performance than recent audio-only
based model and also demonstrated a obvious improvement
on highly noisy speech enhancement.

The proposed model is compact and operates on short
speech segments, and thus potentially suitable for real-time
applications. Although the proposed method has shown a
robust result on enhancing speech, the proposed method cannot
work on enhancing the target speech in high frequency bands
well, and also fails when the proposed model cannot capture
the target speaker’s lip region clearly, since during training
both audio and video are necessary elements.

The future work will be aiming to improve the sound quality
of processed speech in high frequency band, and to keep more
speech signal when reducing the noise.
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