Another Criterion for the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

October 10, 2021

Another Criterion For The Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

Let's define $\delta(x)=\left(\sum_{q \leq x} \frac{1}{q}-\log \log x-B\right)$, where $B \approx 0.2614972128$ is the Meissel-Mertens constant. The Robin theorem states that $\delta(x)$ changes sign infinitely often. Let's also define $S(x)=\theta(x)-x$, where $\theta(x)$ is the Chebyshev function. It is known that $S(x)$ changes sign infinitely often. We define the another function $\varpi(x)=\left(\sum_{q \leq x} \frac{1}{q}-\log \log \theta(x)-B\right)$. We prove that when the inequality $\varpi(x) \leq 0$ is satisfied for some number $x \geq 3$, then the Riemann hypothesis should be false. The Riemann hypothesis is also false when the inequalities $\delta(x) \leq 0$ and $S(x) \geq 0$ are satisfied for some number $x \geq 3$ or when $\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \theta(x)} \leq 1$ is satisfied for some number $x \geq 13.1$ or when there exists some number $y \geq 13.1$ such that for all $x \geq y$ the inequality $\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log (x+C \times \sqrt{x} \times \log \log \log x)} \leq 1$ is always satisfied for some positive constant C independent of x.

Keywords: Riemann hypothesis, Nicolas inequality, Chebyshev function, prime numbers 2000 MSC: 11M26, 11A41, 11A25

1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [1]. Let $N_{n}=$ $2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times p_{n}$ denotes a primorial number of order n such that p_{n} is the $n^{\text {th }}$ prime number. Say Nicolas $\left(p_{n}\right)$ holds provided

$$
\prod_{q \mid N_{n}} \frac{q}{q-1}>e^{\gamma} \times \log \log N_{n} .
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, log is the natural logarithm, and $q \mid N_{n}$ means the prime number q divides to N_{n}. The importance of this property is:

Theorem 1.1. [2]. Nicolas $\left(p_{n}\right)$ holds for all prime numbers $p_{n}>2$ if and only if the Riemann hypothesis is true.

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{p \leq x} \log p
$$

[^0]where $p \leq x$ means all the prime numbers p that are less than or equal to x. We know these properties for this function:

Theorem 1.2. [3].

$$
\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1
$$

Theorem 1.3. [4]. There are infinitely many values of x such that

$$
\theta(x)>x+C \times \sqrt{x} \times \log \log \log x
$$

for some positive constant C independent of x.
Let's define $S(x)=\theta(x)-x$. It is a known result that:
Theorem 1.4. [5]. $S(x)$ changes sign infinitely often.
We also know that
Theorem 1.5. [6]. If the Riemann hypothesis holds, then

$$
\left(\frac{e^{-\gamma}}{\log x} \times \prod_{q \leq x} \frac{q}{q-1}-1\right)<\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}
$$

for all numbers $x \geq 13.1$.
Let's define $H=\gamma-B$ such that $B \approx 0.2614972128$ is the Meissel-Mertens constant [7]. We know from the constant H, the following formula:

Theorem 1.6. [8].

$$
\sum_{q}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)=\gamma-B=H
$$

For $x \geq 2$, the function $u(x)$ is defined as follows

$$
u(x)=\sum_{q>x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right) .
$$

Nicolas showed that
Theorem 1.7. [2]. For $x \geq 2$:

$$
0<u(x) \leq \frac{1}{2 \times(x-1)}
$$

Let's define:

$$
\delta(x)=\left(\sum_{q \leq x} \frac{1}{q}-\log \log x-B\right) .
$$

Robin theorem states the following result:
Theorem 1.8. [9]. $\delta(x)$ changes sign infinitely often.
In addition, the Mertens second theorem states that:

Theorem 1.9. [7].

$$
\lim _{x \rightarrow \infty} \delta(x)=0 .
$$

Besides, we use the following theorems:
Theorem 1.10. [10]. For $x>-1$:

$$
\frac{x}{x+1} \leq \log (1+x) \leq x .
$$

Theorem 1.11. [11]. For $x \geq 1$:

$$
\log \left(1+\frac{1}{x}\right)<\frac{1}{x+0.4}
$$

We define another function:

$$
\varpi(x)=\left(\sum_{q \leq x} \frac{1}{q}-\log \log \theta(x)-B\right) .
$$

Putting all together yields the proof that the inequality $\varpi(x)>u(x)$ is satisfied for a number $x \geq 3$ if and only if Nicolas (p) holds, where p is the greatest prime number such that $p \leq x$. In this way, we introduce another criterion for the Riemann hypothesis based on the Nicolas criterion and deduce some of its consequences.

2. Results

Theorem 2.1. The inequality $\varpi(x)>u(x)$ is satisfied for a number $x \geq 3$ if and only if Nicolas (p) holds, where p is the greatest prime number such that $p \leq x$.

Proof. We start from the inequality:

$$
\varpi(x)>u(x)
$$

which is equivalent to

$$
\left(\sum_{q \leq x} \frac{1}{q}-\log \log \theta(x)-B\right)>\sum_{q>x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right) .
$$

Let's add the following formula to the both sides of the inequality,

$$
\sum_{q \leq x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)
$$

and due to the theorem 1.6, we obtain that

$$
\sum_{q \leq x} \log \left(\frac{q}{q-1}\right)-\log \log \theta(x)-B>H
$$

because of

$$
H=\sum_{q \leq x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)+\sum_{q>x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)
$$

and

$$
\sum_{q \leq x} \log \left(\frac{q}{q-1}\right)=\sum_{q \leq x} \frac{1}{q}+\sum_{q \leq x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right) .
$$

Let's distribute it and remove B from the both sides:

$$
\sum_{q \leq x} \log \left(\frac{q}{q-1}\right)>\gamma+\log \log \theta(x)
$$

since $H=\gamma-B$. If we apply the exponentiation to the both sides of the inequality, then we have that

$$
\prod_{q \leq x} \frac{q}{q-1}>e^{\gamma} \times \log \theta(x)
$$

which means that Nicolas (p) holds, where p is the greatest prime number such that $p \leq x$. The same happens in the reverse implication.

Theorem 2.2. The Riemann hypothesis is true if and only if the inequality $\varpi(x)>u(x)$ is satisfied for all numbers $x \geq 3$.

Proof. This is a direct consequence of theorems 1.1 and 2.1.
Theorem 2.3. If the inequality $\varpi(x) \leq 0$ is satisfied for some number $x \geq 3$, then the Riemann hypothesis should be false.

Proof. This is an implication of theorems 1.7, 2.1 and 2.2.
Theorem 2.4. If the inequalities $\delta(x) \leq 0$ and $S(x) \geq 0$ are satisfied for some number $x \geq 3$, then the Riemann hypothesis should be false.

Proof. If the inequalities $\delta(x) \leq 0$ and $S(x) \geq 0$ are satisfied for some number $x \geq 3$, then we obtain that $\varpi(x) \leq 0$ is also satisfied, which means that the Riemann hypothesis should be false according to the theorem 2.3.

Theorem 2.5.

$$
\lim _{x \rightarrow \infty} \varpi(x)=0 .
$$

Proof. We know that $\lim _{x \rightarrow \infty} \varpi(x)=0$ for the limits $\lim _{x \rightarrow \infty} \delta(x)=0$ and $\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1$. In this way, this is a consequence from the theorems 1.9 and 1.2.
Theorem 2.6. If the Riemann hypothesis holds, then

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \theta(x)}>1
$$

for all numbers $x \geq 13.1$.
Proof. Under the assumption that the Riemann hypothesis is true, then we would have

$$
\prod_{q \leq x} \frac{q}{q-1}<e^{\gamma} \times \log x \times\left(1+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}\right)
$$

after of distributing the terms based on the theorem 1.5 for all numbers $x \geq 13.1$. If we apply the logarithm to the both sides of the previous inequality, then we obtain that

$$
\sum_{q \leq x} \log \left(\frac{q}{q-1}\right)<\gamma+\log \log x+\log \left(1+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}\right)
$$

That would be equivalent to

$$
\sum_{q \leq x} \frac{1}{q}+\sum_{q \leq x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)<\gamma+\log \log x+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
$$

where we know that

$$
\begin{aligned}
\log \left(1+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}}\right) & <\frac{1}{\frac{8 \times \pi \times \sqrt{x}}{3 \times \log x+5}+0.4} \\
& =\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+0.4 \times(3 \times \log x+5)} \\
& =\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
\end{aligned}
$$

according to theorem 1.11 since $\frac{8 \times \pi \times \sqrt{x}}{3 \times \log x+5} \geq 1$ for all numbers $x \geq 13.1$. We use the theorems 1.6 and 1.7 to show that

$$
\sum_{q \leq x}\left(\log \left(\frac{q}{q-1}\right)-\frac{1}{q}\right)=H-u(x)
$$

and $\gamma=H+B$. So,

$$
H-u(x)<H+B+\log \log x-\sum_{q \leq x} \frac{1}{q}+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
$$

which is the same as

$$
H-u(x)<H-\delta(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2} .
$$

We eliminate the value of H and thus,

$$
-u(x)<-\delta(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}
$$

which is equal to

$$
u(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\delta(x)
$$

We know from the theorem 2.1 that $\varpi(x)>u(x)$ for all numbers $x \geq 13.1$ and therefore,

$$
\varpi(x)+\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\delta(x)
$$

Hence,

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\log \log \theta(x)-\log \log x
$$

Suppose that $\theta(x)=\epsilon \times x$ for some constant $\epsilon>1$. Then,

$$
\begin{aligned}
\log \log \theta(x)-\log \log x & =\log \log (\epsilon \times x)-\log \log x \\
& =\log (\log x+\log \epsilon)-\log \log x \\
& =\log \left(\log x \times\left(1+\frac{\log \epsilon}{\log x}\right)\right)-\log \log x \\
& =\log \log x+\log \left(1+\frac{\log \epsilon}{\log x}\right)-\log \log x \\
& =\log \left(1+\frac{\log \epsilon}{\log x}\right) .
\end{aligned}
$$

In addition, we know that

$$
\log \left(1+\frac{\log \epsilon}{\log x}\right) \geq \frac{\log \epsilon}{\log \theta(x)}
$$

using the theorem 1.10 since $\frac{\log \epsilon}{\log x}>-1$ when $\epsilon>1$. Certainly, we will have that

$$
\log \left(1+\frac{\log \epsilon}{\log x}\right) \geq \frac{\frac{\log \epsilon}{\log x}}{\frac{\log \epsilon}{\log x}+1}=\frac{\log \epsilon}{\log \epsilon+\log x}=\frac{\log \epsilon}{\log \theta(x)}
$$

Thus,

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}>\frac{\log \epsilon}{\log \theta(x)} .
$$

If we add the following value of $\frac{\log x}{\log \theta(x)}$ to the both sides of the inequality, then

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \theta(x)}>\frac{\log \epsilon}{\log \theta(x)}+\frac{\log x}{\log \theta(x)}=\frac{\log \epsilon+\log x}{\log \theta(x)}=\frac{\log \theta(x)}{\log \theta(x)}=1
$$

We know this inequality is satisfied when $0<\epsilon \leq 1$ since we would obtain that $\frac{\log x}{\log \theta(x)} \geq 1$. Therefore, the proof is done.
Theorem 2.7. If the inequality $\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log \theta(x)} \leq 1$ is satisfied for some number $x \geq$ 13.1, then the Riemann hypothesis should be false.

Proof. This is a direct consequence of theorem 2.6.
Theorem 2.8. If there exists some number $y \geq 13.1$ such that for all $x \geq y$ the inequality $\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log (x+C \times \sqrt{x} \times \log \log \log x)} \leq 1$ is always satisfied for some positive constant C independent of x, then the Riemann hypothesis should be false.

Proof. From the theorem 1.3, we know that there are infinitely many values of x such that

$$
\theta(x)>x+C \times \sqrt{x} \times \log \log \log x
$$

for some positive constant C independent of x. That would be equivalent to

$$
\log \theta(x)>\log (x+C \times \sqrt{x} \times \log \log \log x)
$$

and so,

$$
\frac{1}{\log \theta(x)}<\frac{1}{\log (x+C \times \sqrt{x} \times \log \log \log x)}
$$

for all numbers $x \geq 13$.1. Hence,

$$
\frac{\log x}{\log \theta(x)}<\frac{\log x}{\log (x+C \times \sqrt{x} \times \log \log \log x)} .
$$

If the Riemann hypothesis holds, then

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log (x+C \times \sqrt{x} \times \log \log \log x)}>1
$$

for those values of x that complies with

$$
\theta(x)>x+C \times \sqrt{x} \times \log \log \log x
$$

due to the theorem 2.6. By contraposition, if there exists some number $y \geq 13.1$ such that for all $x \geq y$ the inequality

$$
\frac{3 \times \log x+5}{8 \times \pi \times \sqrt{x}+1.2 \times \log x+2}+\frac{\log x}{\log (x+C \times \sqrt{x} \times \log \log \log x)} \leq 1
$$

is always satisfied for some positive constant C independent of x, then the Riemann hypothesis should be false, because of there are infinitely many values of x which satisfy the inequality in the theorem 1.3 and comply with $x \geq y$ no matter how big could be y.

References

[1] P. B. Borwein, S. Choi, B. Rooney, A. Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, Vol. 27, Springer Science \& Business Media, 2008.
[2] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, Journal of number theory 17 (3) (1983) 375-388. doi:10.1016/0022-314X(83)90055-0.
[3] T. H. Grönwall, Some asymptotic expressions in the theory of numbers, Transactions of the American Mathematical Society 14 (1) (1913) 113-122. doi:10.2307/1988773.
[4] A. E. Ingham, The Distribution of Prime Numbers, no. 30, Cambridge University Press, 1990.
[5] D. J. Platt, T. S. Trudgian, On the first sign change of $\theta(x)-x$, Math. Comput. 85 (299) (2016) 1539-1547. doi:10.1090/mcom/3021.
[6] J. B. Rosser, L. Schoenfeld, Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$, Mathematics of computation (1975) 243-269doi:10.1090/S0025-5718-1975-0457373-7.
[7] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie., J. reine angew. Math. 1874 (78) (1874) 46-62. doi:10.1515/crll.1874.78.46. URL https://doi.org/10.1515/crll.1874.78.46
[8] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357-372. doi:10.5802/jtnb.591.
[9] G. Robin, Sur l'ordre maximum de la fonction somme des diviseurs, Séminaire Delange-Pisot-Poitou Paris 82 (1981) 233-242.
[10] L. Kozma, Useful Inequalities, http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf, accessed on 2021-10-08 (2021).
[11] A. Ghosh, An Asymptotic Formula for the Chebyshev Theta Function, arXiv preprint arXiv:1902.09231.

[^0]: Email address: vega.frank@gmail.com (Frank Vega)

